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<> Modeling Concepts and Decision Support in Environmental Systems 

DEVELOPMENT OF KRIGING ALGORITHMS 
FOR APPROXIMATING ENVIRONMENTAL 

MEASUREMENTS DATA* 

Lucyna BOGDAN 
Systems Research Institute. Polish Academy of Sciences. Warsaw 

<bogdan@i/Jspan.waw.pl> 

Abstrnct: In lhe Syslem Research inslilUle in !he frame of a research projecl 
supporled by lhe Polish Minis1ry of science !he so_{lware for such environ
men!al dala as yearly rain and snow falls, the soi/ composilion and 1he soi/ 
erosion componenls is developed. The end resu/1 of !his invesligalion shall be 
lhe developmen/ of geos1alic maps for 1he w/wie Poland or some polish re
gions. The problems which are Io be so/ved by developing the kriging algo
rilhms concern !he choice of Iwo- or 1hree-dimensional approximalion, !he 
choice of direcliona/ or direclion/ess approach, !he formulalion of analylical 
fu11c1ions for ma1hema1ica/ modeling of lhe dala. There are same compuler 
programs.for kriging approximalion availab/e on !he marke1 bw aur decision 
was Io work ou/ an own sof/lvare because of 1he possibilily of using !he mvn 
a/gori1hms deve/oped in 1he insli1t1/e. In !he paper lhe lheory of kriging algo
ri!hm wi!h de!ailed proof explanalions 1ha1 has been developed inio computer 
program Io salve 1he above /asks of geoslalislic approximalion is presenled 
and same ca/c1t!a1ion resul!s are enclosed. 

Keywords: Space approximation. kriging algorithms. mathematical modeling. 
environmental measuremcnts. 

1. Introduction 

In this paper we will look at ordinary kriging, a method that is often associ
ated with the acronym B.L.U.E. for "best linear unbiased estimator". Ordinary 
kriging is linem· because its estimates are weighted linear combinations of the avail
able data; it is unbiased since it tries to have the mean error mR equal to O; it is best 

because it aims at minimizing ak, the variance of the errors. In ordinary kriging we 

do not know mR and therefore cannot guarantee that it is exactly O. Nor do we 

know ak ; therefore we cannot minimize it. 

• The paper is a result of the research project of the Polish Ministry of Education and Science 
No. 429/P04/2003/25 
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The best we can do is to build a model of the data we are studying and work 
with the average error and the error variance for the model. We use a model in 
which the bias and error variance are calculated and then chose weights for nearby 
samples that ensure that the average error for our model r11R is exactly O and that 

our modeled error variance aj is minimized. 

2. The Random Function Model and Error Variance 

For any point at which we attempt to estimate the unknown value our model 
is a stationary random function that consists of n sample locations V (x1 ), ••• , V <xn) 

and one for the unknown value at the point we are trying to estimate, V (x0 ). Each 

of this random variables has the same probability law; at all locations the expected 
value of the random variable is E{ V) . 

Every value in this model is seen as the outcome of a random variable; the 
samples are outrnmes of random variables as well as the unknown true value. Our 
estimate is a weighted linear combination on the random variables at the available 
sample points: 

- n 
V(x0) = L w; -V(x;) 

i=I 

Similarly the estimation error 

R(x0) = V (x0 )-V(x0 ) 

is also a random value as the difference between the estimate and the random value 
modeling the true value. Substituting the previous equation we obtain: 

Il 

R(x0) = L w;· V(xi )-V (x0) 
i=I 

We can ensure that the error at any particular location has an expected value 
O by applying the formula for the expected value to the above equation: 

E{R(x0)) = E{f wi -V(xi)-V(x0 )} = 
1=) 

Il 

= L H\E{V(xi )}-E{V(x0 )} 
i=I 

We have already assumed that the random function is stationary, which al
lows us to express all the expected values on the right-hand side as E{V) : 
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11 

E{R(x0 )) =Iw;· E{V)- E{V) 
i=I 

Settling the expected value to O to ensure unbiased ness results we obtain: 

11 

E{R(x0 )) =O= E(V) I w; - E{V) 
i-I 

11 

E(V) I W;= E{V) 
i=I 

n 

Iw;=I 
i-I 

So it is a condition of unbiased ness. 
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Now we will try to present a set of estimates for which the variance of the er
rors is minimum. 

The error variance <Jk of a set of k estimates can be written as 

where r; = v; - v; is the difference between the estimated value and the true value 

at the same lncation and the average error is: 

I k I k -
mR=- Ir;=- I(v;-v;) 

k i=l k i=l 

If we are willing to assume that we have a mean error mR equal O then we 

can simplify this equation to the formula: 

2 I~ 2 1~- 2 
<JR=- L,(r;-0) =- L,(v;-v;) 

k i=l k i=l 

We cannot get very far with this equation for the error variance because 
it ca lis for knowledge of the true va lues . 

To get out of this unfortunate situation we will again tum to random function 
models. To form our estimate we use a weighted linear combination of available 
samples: 
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~ n 
V (x0 ) = L w; · V (x;) 

i=I 

Our error will be the difference between the estimate and the corresponding 
true value: 

~ 
R (x0 ) = V (x0 )-V(x0 ) 

We will minimize the variance of our modeled error R(x0) by finding the ex

pression for the modeled error variance ci°f? and setting to zero the panial deriva

tives of this expression. 

We can express the variance of the error as: 

Var {R(x0 )} = 

=Cov{V(x0 )V(x0 ) }-cov{V(x0 )V(x0 ) }-

- Cov { V (x0 ) V(x0 ) }+ Cov{ V(x0 ) V(x0 ) }= 

= Cov { V (x0 ) V (x0 ) }- 2Cov { V (x0 )V(xo) }+ 

+Cov{V(x0)V(xo)} 

The above formula is a sum of three terms. Using the another formula for the vari
ance of a weighted linear combination 

we obtain the first term of Var{R(x0 )} as 

Cov{V(x0 )V(x0 ) }=Var{V(x0 ) }= 

The third term of Var{R(x0 )) is Cov{V(x0 )V(x0 )} , which is the variance of 

V (x0 ). lf we assume that all of our random varia bies have the same variance ci2 

this third term can be expressed as 

Cov{V(x0 )V(xu) }= ci2 

Remembering, that 

Cov(X, Y) = E(XY)- E(X) E(Y) 
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the second term of Var { R (x0)} can be written as 

2Cov{V (XQJV(XQ) )= 2Cov{(~ w;· V; )v0} = 

= 2E{± w;V; · V0 }-2 E{± w;V;} · E{V0 ) = 
1=1 1=1 

n n 

= 2I w;· E{V; -V0 }-2I w;· E{Vi}· E{V0 } = 
i=I i=I 

n n 

= 2 I w; · Cnv{ V;, V0 }= 2 I w; · C;o 
i=I i=I 
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Combining these three terms again we have the following expression for the 
. { } -2 error vanance Var R (xo) = crR: 

n n _ n _ 

iii'? = if 2 + I I w; w j Cu - 2 I w;· C;o 
i=I j=I j=I 

- 2 If we try to tackle the minimization of a R as an unconstrained problem, 

we run into difficulties. Setting the n partia] first derivatives of ii ~ to O will 

produce n equations and 11 unknowns. The unbiased ness condition will add an
other equation without adding any more unknowns. This leaves us with a system of 
n+ 1 equations and only n unknowns. To avoid a problem we introduce another 

unknown into our equation for ii ~ . The new variable is called µ and it is the 

Lagrange parameter. The technique of Lagrange parameters is a procedure for con
verting a constrained minimization problem into an unconstrained one. 

n 

Remembering the condition of unbiasedness L w;= 1 we can write 
j=I 

n n _ 

iii'? = ii2 + I I w; wj Cu -
i=I j=I 

- 2 f w; · C;o + 2µ [ f w; - 1J 
i=I J=I 
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where 2µ [± wi - Il= O. 
J=I 

The addition of this new term, which does not affect the equality, is all we 
need to convert our constrained minimization problem into an unconstrained one. 
The error variance is now a function of n+ I variables, the n weights and the one 
Lagrange parameter. By setting the n+ I partia! first derivatives to O with respect 
to each of these variables, we will have a system of n+ I equations and n+ I un
knowns. Setting the partia! first derivative to O with respect to µ will produce our 

unbiased ness condition. Since the solution of those n+ I equations will produce the 

set of weights that minimizes ćf f? under the constraint that the weights sum to I. 

A value µ , as we see later, is useful for calculating the resulting minimized error 

vanance. 

The differentiation of ćf f? with respect to the weights and setting to O pro

duces the following equations: 

n ~ ~ n ~ ~ 
= 2L w1c11 -2C10 +2µ =O • L w1CIJ + µ = C10 

................ i.:':\ ........................................... t':! ........................... . 

cJ(o-i) 
--= 

n ~ ~ n ~ ~ 
= 2 I w 1cu - 2ci0 + 2µ =o • I w 1c u + µ = ciO 

................. /.~.1 .......................................... /:':l ........................... . 

tl ~ ~ tl - ~ 
= 2L w)Cnj -2Cno +2µ =O • L W)Cnj + µ = Cno 

)=I )=l 
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This system of eąuations can be written in matrix notation as 

C 

- -
C11 C111 

- -
C111 Cnn 

(n+ 1 )*(n+ I) 

The set of eąuations has a form: 

C*w=D 
and 

w=C- 1 -D 

is the sol uti on vector of weights. 

I 

o 

* w D 

-w C10 

* = -w n Cno 
fi 

(n+l)*l (n+l)*I 
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Multiplying each of the n eąuations of the set by w; produces the following 
res u lt: 

( 

n - ; -w; L w1 Cu + µ = w; C;o 
j=I 

for i=l, . .. ,n 

Summing these n eąuations leads to 

n n ......, n n _, 

L W; Lwi ci/ + L W;µ= L W; C;o 
i=I j = l i=I i=I 

This fomrnla can be written as 

n 11 _ n _ n 

Lw; Lwi Cu= Lw;C;0 - Lw; µ 
i=l j=I i=l i=l 

Since the weights sum to I, the last term is simply µ, which gives us 

11 11 _ 11 _ 

L W; Lwi ci/ = L W; C;o - 11 

i = I j=I i=l 

~2 
Substituting this into eąuation for a- R allows us to express the minimized error 

variance as 
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We have assumed chat all the random variables in our random function model 
had the same mean and variance. These two assumptions allow us to develop the 
following relationship between the model variogram and the model covariance: 

ru =½EU V; -vjf }= 

=½E{v? }+½E{v/ }- E{ V;. vJ= E{v? }- E{v; -vJ 

= E{v? J-m2 -(E{vi · vJ-m2
) = a-2 -i\ 

Now we will show chat the ordinary kriging system 

n ~ ~ 
2.,wjCiJ+µ=C;o for i=l, ... ,11 

j=I 

can be written in terms of variogram as 

n 

L,WjYu-µ=r;o for i=l, . .. ,n 
j=l 

with the modeled error variance given by : 

n 

a-~ = 2.. wi · r;o + µ 
i=l 

So because: 

~ ~2 ~ ru =a -Cu 
we can write: 

~ ~ ~2 Cu =-ru +a 



and from: 

we obtain: 

Then : 

and then: 

11 
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n - -
'f.wjCu+µ=C;o 
j=I 

n 

'f.wj(-J\j+5
2

) +µ=-r;o+5 2 

j=I 

11 

L,((-WjYij)+ wj52) + µ =-r;o + 52 
j=I 

11 n 

- 'f.(wjYij)+52'f.wj) +µ=-r;o+52 
j=I j=I 

Because , w . = t 
L, .I 
j = l 

hen we obtain: 

and from here: 

11 

- L WjYi_i + 5
2 

+ µ = -r;o + 5
2 

j=I 

11 

I i-1·jri.i - µ = r;o 
J=I 

what is the wanted formula. 

3. The directional variogram 

In the above picture we have the following relations: 
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lf we calculate the model with range value I in the point hla then we obtain 
the same value as for the model with range value a in the point h. So we can re-
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duce the model with range value a to the equivalent model with range value I sub
stituting the distance h by h/a. 

----------~----------.,,,.,,, : 
/ ' ------,,-------

/ 
/ 

/ 

/: 
/ 

Iz/a h 

Figure 1. An example of the variogram. 

or 

The equivalence can be written as: 

r1(hla)=ruUz) 

If h1 = Iz I a then: 

a 

Concluding, each directional model with range value a can be reduced to 

standarized model with range value I substituting value /z by reduced value /z/ a . 

The idea of balanced model can be extended for two dimensions. If a x is 

a range value in x direction and a y is a range value in y direction, then the anisot

ropic model of variogram can be written as : 

where 

where hx is the component of h along x axis and Izy is the component of /z along 

y axis . 
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Similarly, the anisotropic variogram model in three dimensions, with ranges 
ax-a _v and a -;:, can beexpressed as : 

and the reduced distance '11 is given by: 

where hy , hy and /zz are the components of h in x, y and z directions of the ani

sotropy axes and y1 (h1) is the equivalent model with a standardized range of 1. 

4. Variogram models 

The empirical variogram is calculated as a half of average squared difference 
between the paired data values: 

I ~ 2 y(h)=-- L..,(vi- vj) 
2N(lz) (U)h,=h 

This empirical variogram is modeled using the following most popular models 
(see Fig. 2): 

-- ------------- exponential 
- - - - - - - - - - - - - - - - - - - - - - - Gaussian 

spheric;il 

Iz 

Figure 2. Three exemplary functions for modeling the variograms. 
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• Spherical model 

y(h) = {l,Sh/ a -~,5(hl a)3 

• Exponential model 

3h 
y(h) = 1-exp(--) 

a 

• The Gaussian Model 

3h2 
y(h) = 1-exp(--) 

az 

for h ~ a 

otherwise 

5. Computer calculations of kriging approximation 

For the above algorithm of kriging approximation a computer program has 
been developed and some calculation of the approximation of yearly rainfall values 
for the area of Poland were performed . 

.811100 

,,.., 
,,.., r:;:;;;:=========:::; 
... ., 
21000 

,.,., 

o ' ' . 1 a II to 

::: ~;::::;:;;:::::;::'======== /', 
450!)'.I 

:38000 

21000 

2 S 4 5 li J ·ł il 10 

tc~~ł'~A.a•!l,llll'.A• o~ PJ:tOl'•·ą~3ll.~i1 

8._\000 

720110 

,.,.,}-;:::::::;====::.:::=:====~ 
""' 
""" 
""" 
27000 

'"" -.._...,.........,..--,-,--..,-,,..,.........,~;...,.....,-
e o u1 

"""' ~-----~-----~ 
. . . . ~ . '. ~~ --:-'.~-~ 

-"""' 
'""" 

3 i 5 t, 1 

·1c "!IJ!ł7•.•-~. a -- -a :~.~• '1f.(J_Oll"T(O!'I • 11;ii1~ ~1.l 

_.j Il .ó 

Figure 3. The program screen for model fitting with four different modeling func
tions (from left to right and form up to down: exponential, Gaussian, 
quadratic and wavefunctions). 
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An exemplary screen of the program developed with four functions of eight 
on the whole that are used to model the empirical variograms calculated with the 
measurement data is shown on Fig. 3. 

Some calculation results for three measurement which were firstly collected 
and then approximated with the kriging algorithm are shown in Tables I and 2. The 
measurement values ranged from the minimal value to the maximal one in the whole 
area investigated. 

Table 1. Data for making the kriging approximation. 

Point of Coordinates Param eter Para me ter 
measurement value range 

I 17,09 53,39 89 min. 

2 19,59 49,14 2241 max. 

3 19,24 53,15 759 medium 

Table 2. Results of the Kriging approximation for rainfall data. 

Model Point 1 Point 2 Point 3 
Error in% Error in% Error in% 

Gaussian 806 1092 758 

(900 %) (51 %) (-) 

Quadratic 776 1141 776 

(870 %) (49 %) (2 %) 

Linear 755 1032 722 

(840 %) (53 %) (4 %) 

Spherical 719 1365 792 

(800 %) (39 %) (4 %) 

Exponential 760 1191 779 

(850 %) (46 %) (2 %) 

The conclusion resulted from these calculation is that the kriging algorithm 
can approximate quite we Il only the values which are similar to the average value of 
the measurements taking into consideration by the approximation. On the other side 
the kriging approximation is very deceptive by the calculation of the values which 
are extremely different from these average ones. This conclusion is justified at least 
by approximating the rainfall data or the data with very varying values. 
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