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1 . Introduction

Improved theories of heterogeneous shells are required as a background for the modeling of guided waves in
functionally graded thin-walled structures. The finite element simulation remains the main numerical method
[2] while one of the most efficient analytical approaches uses the orthogonal series expansion together with
Legendre polynomials [4, 9]. At the same time the generalized shell theory [5] allows the unified variational
problem formulation as well for the traditional interpretation of refined 2D shell models as for the finite element
discretization across the thickness. The convergence of approximate normal wave frequencies and waveforms
based such 2D solutions was analyzed in [3] for homogeneous elastic systems. An improvement of the theory
consists in the accounting for the boundary conditions on the faces interpreted as constraints for the 2D varia-
tional problem [6,7]. The dynamic equations accounting for the full boundary reflection can be obtained by the
Lagrange multiplier method or as extended Voronets’ equations for constrained continuum system. The normal
waves in power graded systems are studied here on the basis of various formulations of the shell theory [6, 7].

2 . Basics of the extended higher order shell theory

A shell is interpreted as a material surface S furnished by the mechanical properties following from the varia-
tional solution of the dimensional reduction problem [5]. The shell model is defined on the 2D manifold within
the configuration space Ω = {u(k)i }, k = 0 . . . N , i = 1 . . . 3, where the field variables of the first kind are
defined as biorthogonal expansion factors for the displacement vector: u(k)i = (ui,p

(k))1, with the base system
p(k)(ζ) depending on the thickness coordinate ζ∈[−1, 1] [5] (Legendre polynomials, trigonometric functions, or
compact functions resulting in the ”finite layer model”), the Lagragian density (1) and the constraints (2) [6,7]:
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Here h is the shell thickness, bαβ is the curvature tensor, ∇α are covariant derivatives on the tangent bundle
TMS, Aβ··α are parallel shifting tensors [5]. The constraints (2) follow from the boundary conditions on the shell
faces S± [6,7], and the initial conditions closing the variational problem statement (1, 2) are written as follows:
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3 . Spectral problems for graded shells and plates based on the Nth order theory

Let us consider a two-constituent isotropic power graded plate with Young moduliE1,2 and mass densities ρ1,2:
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Let the waves propagate along the axis Ox1, and let us introduce the dimensionless variables: τ = tc2/h,
ξ = x1/h, ũ(k)i = u

(k)
i /h. We obtain hence the dynamic equations following from (1) as Lagrange ones [5]:
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(m)
2 ;(5)

R(km)∂
2
τ ũ

(m)
2 = Ξ(km)∂

2
ξ ũ
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1 . The constraint equations (2) can be written for a graded plate as follows:
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Substituting u(k)=U(k) exp[i(κξ−ωτ)] into (5, 6), we obtain the spectral problem for the power graded plate.
The spectrum can be obtained as a solution of the constrained stationary values problem for two quadratic
forms [8] accordingly to [1], by means of the Lagrange multiplier method [7], or transforming the system
(5–7) to the generalized equations of Voronets type. The general formulation (5–7) is covariant, therefore it
allows one to use any function system being a basis in Hilbert space over [−1, 1] as p(k)(ζ). The convergence
of phase frequencies and waveforms computed for various wavenumbers and power law indices on the basis
of polynomial and compact expansion functions are compared. The analogous formulation for shells, e. g. for
cylindrical ones is slightly more complex; such equations are constructing using computer algebra software.
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