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Transient response of viscoplastic rectangular plates 

W. WOJEWODZKI and T. WIERZBICKI (WARSZAWA) 

A LINEARIZED theory of thin rigid-viscoplastic plates of arbitrary shape is postulated. The theory 
is shown to describe adequately such phenomena as mode transition in the initial phase of the 
motion, and propagation of rigid zones in the terminal phase of plate motion. In particular, 
the theory proves useful for the determination of maximum permanent deflection and deflected 
shape of plates subjected to impulsive or general pulse loading. As an illustration, a clamped 
rectangular plate with uniform initial velocity is considered. The results obtained are compared 
with experiments on aluminium and mild steel plates recently reported in the literature. 

Zaproponowana jest liniowa teoria sztywno-lepkoplastycmych plyt o dowolnym ksztalcie. 
Pokazano, i:e teoria ta opisuje w zadowalaj~~:cy spos6b zmian~ postaci pola pr~dkosci w czasie 
oraz propagacj~ sztywnych stref w koncowym etapie procesu. W szczeg6lnosci teoria okazuje 
si~ przydatna do okre8lenia maksymalnych trwalych ugi~ oraz ksztaltu ugi~tych plyt pod­
danych obci!li:eniu impulsowemu o nieskonczenie kr6tkim lub skonczonym czasie trwania. 
Jako przyklad rozwai:ana jest zamocowana plyta prostok~~:tna z danym rozkladem POCZ~~:tko­
wej pr~dkosci. Otrzymane rezultaty por6wnane s~~: z ostatnio opublikowanymi w literaturze wy­
nikami doswiadczen dla plyt z aluminium i mi~kkiej stali. 

IIpeAJXO>KeHa romemuUI TeopiDI >KeCTKO-BH3KOIIJiaCTJiqeCKIO{ nJiaCTHHOK npoH3BO.m.Horo BH~a. 
I1oKa3aHO, ~ ~a.H TeopHH OllliCbiBaeT ~OCTaTO'tiHO XOpoliiO H3MeHeHIDI IIOJJH CKOpoCTeH 
BO BpeMeiDI H pacnpt'CTpaHeHHe >KeCTKHx o6JJaCTeH: B KOHe~moM :nane npoQecca ~eq,opMHpo­
BaHHH nJiaCTHHKH. B qaCTHoCTH, ~aHHaH TeOPHH npiU'O~a ~ onpe~eJJemm MaKCHMaJibHbiX 
oCTaTOqHbiX nporH60B H npoq,a.IDI npom6a wxaCTHHoK, no~eprHYTbiX HMUY.m.CHbiM Harpya­
KaM B 6eCKOHe'tiHO KOpOTKOM HJJH KOHe'tiHOM npoMe>KYTKe BpeMeHH. B KaqeCTBe npHMepa 
paccMOTpe:aa 3aKpeWieHHaJI npHMoyro.m.HaH IIJiaCTHm<a c ~aHHbiM ~~aqa.m.HbiM pacupe­
~eJieHHeM CKOpocTeH. Ilo~eHHbie peay.m.TaTbi cpaBHHBaiOTCH C Ony6JW<OBaHHbiMH B 110-
CJie~ee BpeMH B JJHTepazype peay.m.TaTaMH OIIbiTOB, npOHSBe~eHHbiX Ha tmaCTHHKax . H3 
aJIIO.MIIHIDI H MHrKOH CTaJIH. 

1. Introduction 

AT PRESENT, many exact and approximate analytical methodes are available to treat 
dynamic problems of inelastic plates under the condition of circular symmetry. A critical 
review of existing particular solutions can be found for example in [5]. In extending a gen­
eral theory describing transient plastic and viscoplastic response of plates to non-sym­
metric problems, one is faced with several serious difficulties of both a conceptional and 
a mathematical nature. First, the yield condition, expressed in terms of at least three dif­
ferent stress couples, can no longer be interpreted simply on the plane as in the case of 
circular plates. Consequently, the flow rule cannot be Iinearized in a straightforward manner. 
Next, the governing equations are reduced to the system of partial differential equations 
in two space dimensions and time, whereas in axially symmetr;c problems only one space 
variable appears. Considerations of strain rate effects also add to the complexity of the 
problem. 
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It is therefore not surprising that dynamic problems for inelastic plates of arbitrary 
shape have received little attention in the literature. Cox and MORLAND [2] were the first 
to study dynamic plastic deformation of a square plate. A similar problem for viscoplastic 
plate was analysed in [10]. However, both these particular solutions could not be easily 
extended to other plate geometry. Jo~Es et al. [3] have recently undertaken an experi­
mental study into the dynamic behaviour of impulsively loaded clamped rectangular 
plates. They measured the deflected shape of several aluminium and mild steel specimens, 
and determined the relative importance of geometry changes and strain rate effect in the 
reduction of permanent vertical deflections. In a subsequent paper, }ONES [4] analysed one 
of these effects and presented an approximate theory for perfectly plastic arbitrarily shaped 
plates. The approach used in [4] was based on the yield line theory suitably modified to 
take into account large displacements and transverse inertia terms. Good agreement with 
experiments on strain rate insensitive plates was obtained. At the same time, the final 
shape of plates was imposed through the assumption of a velocity pattern stationary in 
time; hence, the predicted final displacements were far from reality. 

In the present paper, an attempt is made to construct a linearized theory of viscoplastic 
plates and to study the strain rate effect- a second factor which governs the transient 
response of dynamically loaded structures. It is known from the analysis of beams [6, 9] 
and circular plates [12] that the dynamic process in viscoplastic structures is characterized 
by an appreciable mode change of the velocity fields in the initial phase of the motion, 
and propagation of rigid zones during the terminal phase of the motion. Both these phe­
nomena are icorporated in the present theory. The method presented provides a conve­
nient means for the determination of the permanent shape of the plate and thus, in a sense, 
complements previous works by ]ONES [4]. 

The material behaviour considered here is that of rigid-viscoplastic type. The lineari­
zation of constitutive equations is based on similar arguments as in the earlier study by 
one of the present authors, devoted to axially symmetric sheils [13]. All considerations 
are restricted to infinitesimal strains and small displacements. By way of an example of 
application, a particular case of fully clamped rectangular plate acted on by a uniformly 
distributed impulse is studied in detail. 

2. Linearization 

In the theory of thin plates, the state of stress is essentially plane. Using the rectangular 
Cartesian coordinate system xoc,(e<, p = 1, 2), the special case of constitutive equations 
for rigid viscoplastic material due to PERZYNA takes the form: 

(2.1) 

. (V 12 ) SIX{J Eocp = y -k- -I Y
12 

for v 12 > k, 

Eocp = 0 for 

where 12 = ! [3uiXfJO'IX{J-O'IXIXO'tJp], k is a yield stress in simple shear, y denotes the viscosity 
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TRANSIENT RESPONSE OF VISCOPLASTIC RECTANGULAR PLATES 589 

constant, and Srxp = {- [3acxp- an l5rxp]. An alternative manner of writing Eq. (2.1) is: 

• 'Y ~ 1 Ecxp = k[Scxp-Srxp for 

(2.2) 
Bcxp = 0 for Vl2 ~ k, 

where the new stress deviator Scxp is defined by 

(2.3) 

In the case of plane strain, Eq (2.2) can be inverted and expressed in terms of O"cxp and Ecxp, 

using the definition introduced for the stress deviations, 

(2.4) 0 k r· . .i O"cxp-O"cxp =- Eap+Eyyurxp}, 
y 

where O"cxp is related to O"ap by 

(2.5) 0 k O"rxp 
O"rxp = -=-

J1 J2 . 

Integration of Eq. (2.4) across the plate section by means of the Love-Kirchhoff hypo­
thesis leads to the following flow rule: 

(2.6) 0 4h3 k . . .i ) 
Mcxp-Mcxp = -

3
-Y(Ucxp+u,1 ucxp , 

where 2/z is the plate thickness and Ucxp denotes curvature rates corresponding to bending 

moments Mcxp· The flow rule (2.6) is not directly applicable, since Mcxp is related to O"rxp by 
means of the nonlinear expression : 

h 

M;p = k J .. ~ap zdz. 
-h r J2 

(2.7) 

The above integration constitutes the main difficulty in transforming the flow rule (2.1) 
to the space of bending moments and curvature rates. For circular plates, where principal 
directions in all layers coincide, the integration (2.7) can be performed and M«P is express­
ed in terms of M«P as 

o Map 
Map= Mo .. ! 2 2 • r Mcxcx-McxcxMpp+Mpp 

(2.8) 

where Macx = M,., Mpp = M 8 denote respectively radial and circumferential bending mo­
ments and Mrxp = 0, a.#= p. For general plates, the relation of the kind (2.8) is no longer 
true, but following [13] a simple method of linearization can be suggested. To this end 
an initial-boundary value problem must first be formulated. 

Suppose the viscoplastic plate is loaded by a pressure P(x«, t) variable in space and 
time. Equations of motion with transverse inertia terms have the form: 

(2.9) 
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where Ta. is shearing force, p, is mass density per unit area of the plate middle surface, and w 
denotes the vertical component of the displacement vector. Differentiation with respect 
to space and time variables are indicated respectively by a comma and a dot. In the bend­
ing theory of plates, the geometric relations are: 

(2.10) 
. . 
'Xap = - w ,a{J• 

The solution of the dynamic problem stated above is characterized by time variable fields 
of moments MafJ(t), velocities w(t) and accelerations w(t). It was found in [11] that while 
the moment MafJ(t) changes appreciably in the course of a deformation process following 
a certain trajectory which lies outsi'de the static yield surface, the moment Ma.p stays always 
on the static yield surface and changes very little with time. Consequently, Ma.p can be 
taken as constant in a given problem and may be approximated by for example, the mo­
ment distribution M:p of the similar static problem. The validity of this procedure was 
checked several times on examples of circular plates and rotationally symmetric shells; 
detailed presentation is given in [13], where the introduced approximation of Ma.p by M:p 
was interpreted on the basis of a non-associated flow rule. 

The same approach is extended now to general plate problems in the form of a hypo­
thesis. The present hypothesis not only leads to a full linearization of a flow rule (2.6) 
but also enables the tensor quantity M~ to be replaced by a single scalar quantity P*, 
which can be identified with a load-carrying capacity of the considered plate made of rigid 
perfectly plastic material. 

Subtracting the equation of static equilibrium 

(2.11) M~,afl+P* = 0 

from the equation of motion (2.9), we obtain 

(2.12) (MafJ- M~),afJ +(P-P*) = pw. 
Substituting now the linearized flow rule (2.6), with M~ replaced by M~, and the geomet­
rical relations (2.10) into (2.12), we obtain the final form of the equation describing mo­
tion of a viscoplastic plate 

(2.13) V4w+aib-b(P-P*) = 0, 

where the Laplace operator V4w = w,afJfJ and the material constants are a = 3yp/8h3k, 
b = 3yf8h3k. 

3. Properties of the governing equation 

Before discussing the general properties of Eq. (2.13), it should be noted that this 
equation applies only in regions of viscoplastic flow. In view of the unloading criterion, 
the dynamic problem for a rigid-viscoplastic plate includes in general also rigid regions. 
The location of the boundary between two regions of distinct behaviour is determined 

by the requirement y 12 = k. 
Thus, the unloading condition is still nonlinear, whereas the flow rule itself has been 

linearized. In fact, PRAGER [8] started the linearization procedure by linearizing the non-

linear loading criterion y 12 > k and replacing it by a set of linear inequalities. 
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As regards the plate problem, the material becomes rigid if the stress point reaches 
the static yield surface in the space of moments Ma.p· To be consistent with the linearized 
flow rule, we have to assume that unloading starts when Ma.p = M:p. According to (2.6), 
this means that ~a.{J + uyylla.{J = 0, which is equivalent to the requirement that ~a.p = 0. 
In general, we cannot expect that all three components of the curvature rate tensor vanish 
simultaneously, and hence the unloading criterion can be satisfied only in an approximate 
manner. 

In structural problems for rigid viscoplastic materials solved in velocities, it is advan­
tageous to use a slightly different interpretation of the unloading criteria. Since the model 
of the material considered is entirely dissipative, the motion of an arbitrary point will 
cease if a finite value of the energy has been introduced to the body. Usually, we are in­
terested in the moment at which a given point is brought to rest- i.e., w = 0. 

Return now to Eq. (2.13), which is a linear partial differential equation of the parabolic 
type. Its structure is formally analogous to the equations describing forced vibrations of 
elastic plates. The difference is in the definition of the stiffness coefficients a and b, and above 
all in the time derivative of the first term. In the classical elasticity, instead of the velocity 
V4 w we have the displacement Vw4 • Consequently, the time process is of periodic char­
acter and vibrations take place. By contrast, the deformation of a rigid-viscoplastic 
body is associated with the irreversible dissipation of e'nergy which excludes the occurrence 
of vibration. This property reflects in Eq. (2.13), where additional time derivative in the 

first term makes the time process to be exclusively of periodic nature, exp (- ;.} t ). To be 

more specific, we shall show this by performing a mode analysis of Eq. (2.13). For simplic­
ity, let us assume that the "forcing" term P(t) is held constant. Physically, this corre­
sponds to a rectangular pulse or ideal impulse loading. Under this restriction, the solution 
to the inhomogeneous Eq. (2.13) can be sought in the form: 

(3.1) 

where f(xcx) satisfies 

(3.2) 

00 00 

w(xcx, t) = .rJ: Ai1(t)'l'ii(x«) -f(xa.), 
1=1}=-l 

V4f-b(P-P*) = 0, 

and approximate boundary conditions. The eigenfunctions 1Jlii(xcx, J.iJ) form a complete 
orthogonal system satisfying 

(3.3) V4 VJiJ + J.tVJii = 0, 

and the boundary conditions. The above equation is identical with the case of free vibra­
tion of plates; thus, eigenfunctions in the solution of a dynamic problem of a viscoplastic 
plate are simply natural modes of vibration of elastic plates. Similarly, the eigenvalues J.iJ 
in (3.3) would correspond to those from elastic solution, provided the boundary condi­
tions for velocities and displacements are the same. 

The equation for the time function J.tA + aA = 0 immediately yields the solution: 
-4 

- ~·ij t 

AiJ(t) = AiJ(O)e a (3.4) 
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which is clearly of the aperiodic type. Coefficients Aij(O) should be so chosen as to satisfy 
the initial conditions imposed. The decay of the eigenfunctions depends on }.ii, and each 
is different. Hence, the solution (3.2) describes a mode transition during the plate motion. 

The time at which a given point on the plate middlesurface is brought to rest is de­
termined by the condition w = 0. Since each eigenfunction in the original non-homo­
geneous Eq. (2.13) vanishes at different time t6, the plate will never stop at all its points 
simultaneously. On the plane x(X, there exists a moving interface separating regions of 
viscoplastic and rigid behaviour. 

Despite its simplicity, the Eq. (2.13) derived, together with the unloading condition, 
describe a variety of mechanical phenomena such as plastic and viscous effects, propaga­
tion of rigid zones and mode change during the plate motion. A solution to Eq. (3.2) 
provides a quick method of finding maximum permanent deflection and deflection shape 
of the structure considered. 

4. Impulsive loading of rectangular plate 

The second part of the present paper is devoted to a detailed analysis of an exemplary 
boundary value problem using the method of solution described above. 

Consider a fully clamped rectangular plate with dimensions shown in Fig. 1 subjected 

y 

13 ff4 15 

ifl ft1 12 
~ 
(7 8 g 

'4 5 6 

'----
1 __ l_ _ !. 

a X 

FIG. 1. Dimensions of rectangular plate. 

to a uniformly distributed transverse impulse /. The undeformed plate is flat so that the 
initial conditions are: 

(4.1) w(x, y, 0) = _!_, w(x, y, 0) = 0. 
ft 

The boundary conditions are expressed as: 

x =±a, w = 0, 8w = o 
ox ' 

(4.2) 

y = ±b, w = 0, ow = 0 ay . 
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In the impulsive loading problem, to pressure loading term is identically equal to zero, 
P = 0, and Eq. (2.13) is reduced to 

. 2 v4· .. P* o L(w)=-
3 

w+w+-=, 
ex p, 

(4.3) 

where the Laplace operator in the rectangular Cartesian coordinate system is defined as 
a4w a4w a4w -

V4W = ax4 + 2 ox2 oy2 + oy4 and the coefficient ex denotes ex = V 3y{J2 p,a4 /2h3 (] 0. As 

the static load-carrying capacity of a rigid-perfectly plastic plate we take an approxi­
mate expression derived by Wooo [14] in the case of uniformly distributed pressure: 

(4.4) P* _ ----· 12M0{J2 _ 
- b2(y3 + lj{J2 -1f{J2) 2 

' 

where {3 = b/a denotes an aspect ratio. 
It is known from the theory of vibrations of elastic plates that in the case of the clamped 

end condition, an effective solution cannot be reached by the eigenvalue method, since 
it is not possible to express the solution to (3.3) and (4.2) in terms of elementary functions. 
However, the double series representation of the solution can still be applied by assuming 
a complete system of functions 'f/Jij(x, y) satisfying the boundary conditions. The unknown 
set of time functions A;j(t) will be determined using the familiar Galerkin procedure 

a b 

(4.5) J J L(w)tpk1dy = 0, k, l = 1, 2, ... , n. 
0 0 

We choose now the function "Pii(x, y) as a product of two functions depending respec­
tively on x and y 

(4.6) 

where ~ = xfa and 'YJ = yfb denote dimensionless coordinates. In what follows, we shall 
retain only four terms in the expansion (3.2), namely: 

(4.7) 

The above functions were used in [1] adequately to predict the static deflection profile 
of elastic clamped plates. 

After substituting (4.6) and (4.7) into (4.5), and time-consuming but straightforward 
calculation, a system of four linear first order differential equations is obtained for the 
time variable amplitude A(t): 

· 1 P* 
AA + - r ({3) A+ - cfJ = 0, 

ex p, 
(4.8) 

where A is a column vector with the components [A 11 , A 12 , A 21 , A 22], A and r denote 
square matrices of numerical coefficients, and c1J is again a column vector. A short deriva-

5 Arch. Mech. Stos. nr 4/72 
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tion of ( 4.8) and definition of all matrices and vectors appearing in ( 4.8) and the two 
following equations are given in the Appendix. 

The system of Eqs. (4.8) should be reduced to the normal Cauchy form, convenient 
in numerical computations: 

(4.9) 
· 1 P* A+ -0({3) +-er-' = 0, 

ex JJ 

where 0({3) = r({3)A- 1 and cl»' = ~A-1 • 

Initial conditions for A are found by expanding the uniform initial velocity in double 
series: 

(4.10) 

and using the orthogonal properties of functions given by (4.6) and (4.7). It is found that 
components of. A(O) have the form: 

A11 (0) = 0.71336/ff', A22 (0) = 31.14181/,u, 
(4.11) 

Au(O) = A21 (0) = 4.1407 lfp. 

In order to integrate numerically the system ( 4.9), all geometrical and mechanical con­
stants appearing in the definitions of ex, P* and ,u should be fixed. To enable comparison 
with existing experimental data, we choose dimensions and parameters of mild steel spec­
imen No. 14 tested by JoNES et al. [3] 

Table 1 

l1o (! 2h Vo a b 

lb lbsec2 

in 
ft 

in in 
in2 iiT sec 

3.38·102 7.68·10-4 0.098 231.13 1.5 2.53125 

The initial value problem (4.9) and (4.11) was solved using the Runge-Kutta-Falson 
method of integration of the seventh order. All computations were carried out on an ODRA 
1204 electronic computer. The main results obtained for three different values of the 
viscosity constant are presented in Figs. 2-4. It is seen that all amplitudes of the modal 
function A 11 essentially diminish from the same prescribed initial values to zero. We ob­
serve a nearly exponential decay for y = 50 and y = 200 as predicted by the general 
eigenvalue analysis (formula ~.4) and almost linear variation for y = 10000, similarly 
as in the single mode solution for perfectly plastic material [7]. The plots of the functions A11 

and A 12 in Figs. 2-3 exhibit an initial rise for small times, contrary to what might be ex­
pected from the general discussion regarding aperiodic motion. This is attributed to the 
approximate character of the solution, which retains only four terms in the expansion. 
In fact, the rise observed is not large, but to describe adequately the sudden change in the 
slope of the A 12 curve, a numerical procedure of greater accuracy had to be introduced. 
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FIG. 2. Time variation of the amplitudes Aij(l) for y = 50. 

10~A;; 
'J 86.314 

FIG. 3. Time variation of the amplitudes AIJ(t) for y = 200. 

[595] 
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FIG. 4. Time variation of the amplitudes A;j(t) for y = 10000. 

5. Discussion and comparison with experiments 

Having found the time variable amplitude Aii(t) of the subsequent mode functions 
1p;j{x, y), the velocity of an arbitrary point of the middle surface of the plate can be obtained 

2 2 

by computing L L A;{tp;1, according to (3.2). This has been done numerically at fifteen 
i=l i=l 

points of the plate indicated in Fig. I. The variation of velocities with time is shown in Figs. 
5-7. It is now clear that different points in the plate are brought to rest at different times, 
hence, the intersections of velocity curves with the axis il/ = 0 determine the propagation 
of rigid zones. For example, in the case of y = 200 first stop points on the outer edge 
(curves labeled 15, 14) while the centre of the plate is the last to stop (curve Jabeled 1). 
Note that the velocity of the centre of the plate is equal to the plot of the function A 11 (t). 

Values of time to rest of all points considered are gathered in Table 2. For comparison, 
also given is a response time found from approximate analysis (next paragraph). 

Permanent plate deflections are easily found through the integration of velocity dia­
grams. Numerical values are given in Table 2, together with the approximate solution 
referred to above. A graphical representation of the deflection profiles at five sections y = 

= const and three sections x = const is shown in Fig. 8. A full line represents the present 
solution with four-term approximation, while the broken line denotes a similar solution 
with only one term retained in the expansion. Experimentally measured deflection pro­
files are indicated by crosses [3]. Fairly good agreement can be noted over the central 
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FIG. 5. Velocities and time to rest of different plate points for 
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FIG. 7. Velocities and times to rest of different plate points for y = 10000. 

FIG. 8. Theoretical and experimental deflection profiles of a rectangular plate. 

[598) 
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Table 2 

No. points of the plate 

i WJ[in] (four terms) 

~ WJ [in] (one term) 
0 fJ [tJ.sec] (four terms) 11"1 

" ?-.. \ IJ [tJ.sec] (one term) 

i' WJ[in) (four terms) 
~ WJ [in] (one term) ell 

8 IJ [tJ.sec] (four terms) N 

11 

?-.. IJ [!J.sec] (one term) 

i WJ [in] (four terms) 
~ 

~ 
WJ [in] (one term) 

IJ [!J.sec] (four terms) 

~ [ IJ [!J.Sec] (oneterm) 

2 

0.4094 0,3245 

0.4551 0.3596 

280.02 278.08 

0.8805 0.6982 

0.9946 0.7858 

530.65 522.8 

0.8345 0.9400 

1.7359 1.3715 

813.5 732.85 

- ~--

3 4 5 6 7 

0.1282 0.3989 0.3136 0.1222 0.3406 

0.1405 0.4203 0.3321 0.1297 0.3241 

272.86 275.27 273.10 266.37 261.46 

0.2758 0.8532 0.6782 0.2667 0.5088 

0.3070 0.9185 0.7257 0.2835 0.7083 

499.05 512.10 503.00 475.10 465.00 

0.7085 0.9580 1.0370 0.8093 1.1680 

0.5358 1.6030 1.2666 0.4948 1.2363 

663.40 810.25 724.18 648.72 805.68 

8 9 10 11 12 13 14 15 

0.2722 0.1136 0.2364 0.1920 0.0810 0.0920 0.0764 0.0342 

0.2561 0.1000 0.1916 0.1514 0.0591 0.0642 0.0508 0.0198 

258.27 248.85 242.39 237.84 224.35 221.19 215.44 197.75 

265.67 

0.4058 0.2563 0.5391 0.4507 0.1971 0.2272 0.1876 0.0855 

0.5597 0.2186 0.4187 0.3308 0.1292 0.1404 0.1109 0.0433 

452.53 416.000 409.05 394.08 352.40 362,46 347.70 406.98 

480.23 

1.3000 0.9680 1.090 1.2120 0.9040 0.5343 0.5885 0.4371 

0.9768 0.3816 0.7308 0.5774 0.2255 0.2450 0.1936 0.0756 

711.40 627.00 802.86 703.40 613.20 801.34 698.90 604.88 

729.60 
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part of the plate but systematic deviations are observed near the clamped edge. All tests 
reported in [3] dearly show the occurrence of plastic hinges along the plate circumference. 
Such discontinuities in the slope of the deflection profile are not admissible in the present 
theory of viscoplastic plates; hence, the boundary condition ( 4.2) of the zero slope was 
assumed as w' = 0. As regards the deflection profile of circular clamped plates, somewhat 
similar discrepency between theory and experiment was observed in [12]. 

The inconsistences indicated above call for a suitable modification of the theory of 
rigid-viscoplastic materials to allow for zones of localized permanent deformations. 

6. A single mode solution 

It is possible to obtain a closed form solution to the initial-boundary value problem 
(4.1)-(4.3) by considering only one term in the expansion (3.2). Such solutions are often 
of practical value, since they identify certain important parameters and enable discussion 
of the influence of the viscosity constant on the final central deflection of the plate. 

Applying the Galerkin method to the one term approximation, the following ordinary 
differential equation for the amplitude A 11 (t) is obtained: 

(6.1) fAu + cA11 + gP* = 0, 

where f = 165.119{Pa4p, c = 1307.91 M 02h/y3y; g = 284.444fFa4
• Similarly, the initial 

condition is now given by: 

(6.2) 
I 

A 11 (0) = 1.723-. 
f' 

Equation (6.1) has a simple analytical solution and by means of the separable form (3.2) 
the velocity of an arbitrary point of the plate can be determined. However, the values we 
are mostly interested in are response time t 1 and permanent deflections w 1 . In the case of 
a one-degree-of-freedom velocity field, the plate comes to rest at all its point simulta­
neously and the response time, found from the condition w(O, 0, t1) = 0, is equal to: 

(6.3) _ Au (O)f{}J ( 1 _]__) 
tl- gP* n + D ' 

where {} = gP* /A 11 (0) · c. The permanent deflections, determined by integrating veloci­
ties within the limits [0, t1], is found to be: 

(6.4) w1(~. tJ) = 1~!~<.?) [ 2.?-2.?2 In( 1 + ~)] (l-eJ
2 

(1-1)2
)

2
• 

Both (6.3) and (6.4) resemble similar expressions obtained in [12] for a damped circular 
plate. Terms in brackets involving the parameter {} describe the influence of strain rate 
sensitivity and are responsible for the reduction of the response time and central deflection, 
Fig. 9. In the limiting case of perfectly plastic material, y and hence {}tend to infinity and 
the expressions for t1 and w1 reduce to 

(6.5) I. /A 11 (0) = _!_ = Voa
2
p ·,/IjfJ2 3 _ 1/{1)2. 

,_:~ 11 = gP* P* I2M0 (JI + 

http://rcin.org.pl



TRANSIENT RESPONSE OF VISCOPLASTIC RECTANGULAR PLATES 601 

(6.8) 

The approximate solution for t 1 (6.5) agrees with the time bound computed by JoNEs [3] 
(formula 8), while the maximum central deflection (6.6) differs by a numerical factor 
0.865 from Jones's estimate. 

For all finite values of y, the viscosity diminishes the plate deflections relatively to the 
rigid-perfectly plastic solution. Comparison of present results (full lines) with experiments 
on mild steel plates and the approximate solution reported in [3] is presented in Fig. 10. 

w c 111 PerFectly plastic solution 
1.0 _hli.<>:!L ____________ _ 

a4 
az 

7J!n(1+-?,) 

2 3 4 5 6 1 
7f 

FIG. 9. Reduction of response time and per­
manent deflections of a rectangular plate due 

to viscosity of the material. 

4 

3 

2 

200 

---Experimental [3] 
Mild steel 

o 2h•Q064 in 
c 2h•Q098 in 
A 2h•Q173 in 

-----]ones estimate [3] 
---Present solution For 

diFFerent 0 

400 600 

FIG. 10. Central deflection versus applied impulse. 
Theoretical curves for different y and experimental 

points. 

Some curves drawn (y = 50) closely follow the trend of experimental points over the 
entire range of the impulse applied. Since th~ present analysis disregards the important 
effect of geometry changes and the resulting strengthening of the plate due to membrane 
action, the correlation cannot be made by considering viscous effects alone. The present 
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theory is valid for small deflection - say of the order of the plate thickness. In this range, 
a reasonable value of the viscosity constant would be r = 200, and this agrees with the 
value of r previously found in the case of circular plates [12]. 

7. Conclusions 

It is shown in this paper that an extremely simple linearly-viscoplastic model of material 
behaviour proves satisfactory for the description of certain important features of transient 
response of non-circular plates subject to high intensity loading. It was assumed that 
permanent deflections and response time can be predicted by considering the medium of 
entirely dissipative character. Such a behaviour was ensured by imposing unique relations 
between stresses and strain rates and introducing a suitably formulated unloading condi­
tion. In the case of an impulsively loaded rectangular plate, the linearized governing 
equation was shown to yield satisfactory qualitative and quantitative results. However, 
the occurrence of plastic hinges in experiments on strain rate sensitive plates indicates 
that the existing theory of viscoplastic behaviour should be revised to allow for such 
discontinuities. 

Appendix 

Substituting ( 4.6) and ( 4. 7) into ( 4.5), we obtain a system of four equations involving 
68 coefficients. These coefficients can be expressed in terms of 11 constants: 

1 1 1 1 

aiJ = f X,XJd~ = f YiYJdrJ, b;1 = f XiX)' d~ = f Y;X/' dr], 
0 0 

1 1 
(A.1) 

0 0 

1 1 

Cij = f x,xjvd' = f YiY]Vd'YJ, d; = f Xid' = f Y;d1J. 
0 0 0 0 

Numerical values of ail, b;1, c;1 and di are: 

(A.2) 

128 
au = 3-105 ' 

-128 
hu = ---ro5, 

128 
au = a21 = 33·105 ' 

b12 = b21 = 0, b22 = 
-128 

128 
143-105' 

11· 105 ' 

64 64 3·64 8 8 
ell = 5' C12 = C21 = 35' C22 =~, dl =15, d2 = 105. 

The components of a symmetric square matrix A and the column vector Cl» are: 

r6S.119 15.011 15.011 1.363] [2M,«4] 
(A.3) A= 15.011 5.464 1.365 0.315 40,635 

15.01l 1.365 3.464 0.315 ' cl» = 40,635 ' 

1.355 0.315 0.315 .073 5,805 
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The square matrix r is also symmetric, but its components depend on the dimension 
ratio p: 

F 11 = 3467.126fJ2 + 1981,235+3467.126p-2
, 

r22 = 72.737 P2 + 180.112+ 1485.924p-2
, 

r33 = 1485.924fJ2 + 180.112+72.737 p-2
, 

r 44 = 31.173 fJ 2 + 16.374 + 31.173 p-2
, 

(A.4) Fu = F21 = 315.195P2 +495.303p-2
, 

rl3 = r31 = 495.303P2 +315.19sp-2
t 

r14 = r41 = 45.027 {J 2 +45.0271/fP = r23 = r32, 

r24 = r42 = 10.391 fJ 2 +45.027 p-2
, 

r34 = r43 = 135.083fJ2 + 10.391 p-2
• 

The matrix 0 is given by: 

(A.5) 

!J11 = 12.98762fJ2 +34.71693+ 12.98762p-2 , 

!J12 = 0.13412{J2 -14.6497-61.37868{J-2 , 

!J13 = -61.37868P2 -14.64970+9.13412p-2
, 

!J14 = 1.52501P2 +6.60058+8.84945,8-2
, 

!J21 = 2,09154{J2 -161.14832+87.85821{J-2 , 

!J22 = 11.98175 P2 + 158.42436 + 706.08737 p-2
' 

!J 23 = 19.94927 {J 2 + 72.65769- 1.20872 p-2
' 

!J24 = -73.59151{J2 -70.14372-93.4231p-2 , 

!J31 = 87.85821 P2 -161.14832+2.09154/J-2
, 

!J32 = -t.20872P2 +72.65760+ 19.94927 p-2
, 

!J33 = 706.08736P2 + 158.42436+ 1t.98175fi-2
, 

!J34 = -14.21532fJ2 -70.t4372-109.9t834P-2
, 

Q41 = -20.24409 {J2 + 798.85582-20.24409 p-2
' 

!J42 = 96.57476P2 -771.75236-196.81023 p-2
, 

Q43 = -196.81023{J2 -771.75236+96.57426p-2
, 

Q44 = 817.05963,82 + 746.93133 + 1202.91438/J-2
, 

whereas the components of the column vector cl»' are 

(A.6) cl»~ = 0.71336; ·~ = ct~; = 4.14047; •4 = 31.14185. 

For fixed value of the dimension ratio p = 1.6875, the components of the matrix n become: 

[ 

76.26204 -35.82150 -189.3876 14.05084] 
n = -124.34007 440.49383 129.04177 -312.51303 . 

89.77557 76.22106 217.32154 -149.22289 
734.09883 - 565.85313 - 1298.28582 3496.04656 

(A.7) 
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