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Transient response of viscoplastic rectangular plates

W. WOJEWODZKI and T. WIERZBICKI (WARSZAWA)

A LINEARIZED theory of thin rigid-viscoplastic plates of arbitrary shape is postulated, The theory
is shown to describe adequately such phenomena as mode transition in the initial phase of the
motion, and propagation of rigid zones in the terminal phase of plate motion. In particular,
the theory proves useful for the determination of maximum permanent deflection and deflected
shape of plates subjected to impulsive or general pulse loading. As an illustration, a clamped
rectangular plate with uniform initial velocity is considered. The results obtained are compared
with experiments on aluminium and mild steel plates recently reported in the literature,

Zaproponowana jest liniowa teoria sztywno-lepkoplastycznych plyt o dowolaym ksztalcie.
Pokazano, ze teoria ta opisuje w zadowalajacy sposob zmiang postaci pola predkosci w czasie
oraz propagacje sztywnych stref w koficowym etapie procesu. W szczegblnodci teoria okazuje
si¢ przydatna do okreSlenia maksymalnych trwalych ugieé oraz ksztaltu ugietych plyt pod-
danych obcigZeniu impulsowemu o nieskonczenie krotkim lub skoficzonym czasie trwania.
Jako przykiad rozwazana jest zamocowana plyta prostokatna z danym rozkltadem poczatko-
wej predkosci, Otrzymane rezultaty poréwnane sa z ostatnio opublikowanymi w literaturze wy-
nikami dodwiadczeni dla plyt z aluminium i migkkiej stali.

ITpenmoykena JMAEHAAA TCOPHA YHECTKO-BAIKOIUIACTHYECKHX IUIACTHHOK IIPOM3BONIBHOTO BHIA.
ITokasano, uTO HaHHasA TEOPHA ONMHCBIBAET MOCTATOYHO XOPOUIO HIMEHECHHA IIONA CKOpOCTeit
BO BPEMEHH M PAaCOpPCCTPAHEHHE YKeCTKHX ob/acreil B KOHEYHOM 3Tane mpolecca Aedopmupo-
BaHMA TUIACTHHKHM. B YacTHOCTH, MaHHAA TEOPHA NPHIOJHA [UIA ONPEAENeHHA MAKCHMAasTBHLIX
OCTATOUHBIX TpOruboB M npoduna nporuba MIACTHHOK, NOMBEPTHYTHIX MMITYJIECHBIM Harpys-
KaM B OECKOHEYHO KOPOTKOM MJH KOHEYHOM TIPOMEXKYTKEe BpemeHH. B KauecTBe mpumepa
PaccMOTDEHA SaKPEIUICHHAA NPAMOYTOJbHAA IUIACTHHKA C 3aJaHHBIM HAYQJBHBIM pacupe-
OeneHreM cxopocteil. [TonyueHHEIE pe3ysBTaThl CPABHHBAIOTCA C ONYONHMKOBAaHHBIMH B [O-
crefHee BpeMA B JIMTEPATYPe DE3YJILTATAMHM ONBITOB, NPOMSBEJCHHBIX HA TIACTHHKAX H3
AMOMMHMA H MATKCH CTami.

1. Introduction

AT PRESENT, many exact and approximate analytical methodes are available to treat
dynamic problems of inelastic plates under the condition of circular symmetry. A critical
review of existing particular solutions can be found for example in [5]. In extending a gen-
eral theory describing transient plastic and viscoplastic response of plates to non-sym-
metric problems, one is faced with several serious difficulties of both a conceptional and
a mathematical nature. First, the yield condition, expressed in terms of at least three dif-
ferent stress couples, can no longer be interpreted simply on the plane as in the case of
circular plates. Consequently, the flow rule cannot be linearized in a straightforward manner.
Next, the governing equations are reduced to the system of partial differential equations
in two space dimensions and time, whereas in axially symmetr;c problems only one space
variable appears. Considerations of strain rate effects also add to the complexity of the
problem,
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It is therefore not surprising that dynamic problems for inelastic plates of arbitrary
shape have received little attention in the literature. Cox and MORLAND [2] were the first
to study dynamic plastic deformation of a square plate. A similar problem for viscoplastic
plate was analysed in [10]. However, both these particular solutions could not be easily
extended to other plate geometry. JONES er al. [3] have recently undertaken an experi-
mental study into the dynamic behaviour of impulsively loaded clamped rectangular
plates. They measured the deflected shape of several aluminium and mild steel specimens,
and determined the relative importance of geometry changes and strain rate effect in the
reduction of permanent vertical deflections. In a subsequent paper, JONES [4] analysed one
of these effects and presented an approximate theory for perfectly plastic arbitrarily shaped
plates. The approach used in [4] was based on the yield line theory suitably modified to
take into account large displacements and transverse inertia terms. Good agreement with
experiments on strain rate insensitive plates was obtained. At the same time, the final
shape of plates was imposed through the assumption of a velocity pattern stationary in
time; hence, the predicted final displacements were far from reality.

In the present paper, an attempt is made to construct a linearized theory of viscoplastic
plates and to study the strain rate effect — a second factor which governs the transient
response of dynamically loaded structures. It is known from the analysis of beams [6, 9]
and circular plates [12] that the dynamic process in viscoplastic structures is characterized
by an appreciable mode change of the velocity fields in the initial phase of the motion,
and propagation of rigid zones during the terminal phase of the motion. Both these phe-
nomena are icorporated in the present theory. The method presented provides a conve-
nient means for the determination of the permanent shape of the plate and thus, in a sense,
complements previous works by JONES [4].

The material behaviour considered here is that of rigid-viscoplastic type. The lineari-
zation of constitutive equations is based on similar arguments as in the earlier study by
one of the present authors, devoted to axially symmetric shells [13]. All considerations
are restricted to infinitesimal strains and small displacements. By way of an example of
application, a particular case of fully clamped rectangular plate acted on by a uniformly
distributed impulse is studied in detail.

2. Linearization

In the theory of thin plates, the state of stress is essentially plane. Using the rectangular
Cartesian coordinate system x,,(a«, f# = 1, 2), the special case of constitutive equations
for rigid viscoplastic material due to PERZYNA takes the form:

s ]/72- Sup e
a,p_y(k -1 i for YT, >k,

@.1)
g =0 for VI <k,

1 @ g 4 i
where J, = = [30450us—02x055), K is a yield stress in simple shear, y denotes the viscosity
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constant, and §,5 = —;— [30us— 0y, 8ug]. An alternative manner of writing Eq. (2.1) is:

Eug = —E—[s@—s,}] for VJ,>k,
(2.2)

8 =0 for VI, <k,
where the new stress deviator s,p is defined by
5 Sat 1 .
(2.3) e T S N b
Vi V% %

In the case of plane strain, Eq (2.2) can be inverted and expressed in terms of o,z and &,4,
using the definition introduced for the stress deviations,

o k . -
(2.4) Oop— Oag = ;[ﬁaﬁ +&yy 0],
where 0,3 is related to o,5 by
o'
(2.5 Oy = k—2
) af ],/Jz

Integration of Eq. (2.4) across the plate section by means of the Love-Kirchhoff hypo-
thesis leads to the following flow rule:
3

i k . ]

where 24 is the plate thickness and %,z denotes curvature rates corresponding to bending

moments M,s. The flow rule (2.6) is not directly applicable, since A:{aﬂ is related to o5 by
means of the nonlinear expression:

9o 2dz.
V7

The above integration constitutes the main difficulty in transforming the flow rule (2.1)
to the space of bending moments and curvature rates. For circular plates, where principal
directions in all layers coincide, the integration (2.7) can be performed and M, is express-
ed in terms of M,; as

h
(2.7) Mo =k
gt |

T Y ME M M+ M

2.8) My

where Mo, = M,, Mg = M, denote respectively radial and circumferential bending mo-
ments and M.; = 0, « # f. For general plates, the relation of the kind (2.8) is no longer
true, but following [13] a simple method of linearization can be suggested. To this end
an initial-boundary value problem must first be formulated.

Suppose the viscoplastic plate is loaded by a pressure P(x,, ) variable in space and
time. Equations of motion with transverse inertia terms have the form:

2.9) Toat+P = pih, Myga= T,
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where T, is shearing force, u is mass density per unit area of the plate middle surface, and w
denotes the vertical component of the displacement vector. Differentiation with respect
to space and time variables are indicated respectively by a comma and a dot. In the bend-
ing theory of plates, the geometric relations are:

2.10) g =g

The solution of the dynamic problem stated above is characterized by time variable fields
of moments M4(t), velocities @(¢) and accelerations #(r). It was found in [11] that while
the moment M,(?) changes appreciably in the course of a deformation process following
a certain trajectory which lies outside the static yield surface, the moment M,; stays always
on the static yield surface and changes very little with time. Consequently, M, can be
taken as constant in a given problem and may be approximated by for example, the mo-
ment distribution Mg of the similar static problem. The validity of this procedure was
checked several times on examples of circular plates and rotationally symmetric shells;
detailed presentation is given in [13], where the introduced approximation of My; by M¥;
was interpreted on the basis of a non-associated flow rule.

The same approach is extended now to general plate problems in the form of a hypo-
thesis. The present hypothesis not only leads to a full linearization of a flow rule (2.6)
but also enables the tensor quantity MJ; to be replaced by a single scalar quantity P*,
which can be identified with a load-carrying capacity of the considered plate made of rigid
perfectly plastic material.

Subtracting the equation of static equilibrium

(2.11) M¥% +P*=0
from the equation of motion (2.9), we obtain
2.12) (Mg — M), 05+ (P— P*) = pi.

Substituting now the linearized flow rule (2.6), with Mg, replaced by M2, and the geomet-
rical relations (2.10) into (2.12), we obtain the final form of the equation describing mo-
tion of a viscoplastic plate

(2.13) Vi +aib—b(P— P*) = 0,

where the Laplace operator V4% = @ q.ps and the material constants are @ = 3yu/8h°k,
b = 3y/8h°k.

3. Properties of the governing equation

Before discussing the general properties of Eq. (2.13), it should be noted that this
equation applies only in regions of viscoplastic flow. In view of the unloading criterion,
the dynamic problem for a rigid-viscoplastic plate includes in general also rigid regions.
The location of the boundary between two regions of distinct behaviour is determined
by the requirement }/.T = k.

Thus, the unloading condition is still nonlinear, whereas the flow rule itself has been
linearized. In fact, PRAGER [8] started the linearization procedure by linearizing the non-

linear loading criterion /J, > k and replacing it by a set of linear inequalities.
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As regards the plate problem, the material becomes rigid if the stress point reaches
the static yield surface in the space of moments M,;. To be consistent with the linearized
flow rule, we have to assume that unloading starts when M., = M. According to (2.6),
this means that %3+%#,,0. = 0, which is equivalent to the requirement that ., = 0.
In general, we cannot expect that all three components of the curvature rate tensor vanish
simultaneously, and hence the unloading criterion can be satisfied only in an approximate
manner.

In structural problems for rigid viscoplastic materials solved in velocities, it is advan-
tageous to use a slightly different interpretation of the unloading criteria. Since the model
of the material considered is entirely dissipative, the motion of an arbitrary point will
cease if a finite value of the energy has been introduced to the body. Usually, we are in-
terested in the moment at which a given point is brought to rest —i.e., & = 0.

Return now to Eq. (2.13), which is a linear partial differential equation of the parabolic
type. Its structure is formally analogous to the equations describing forced vibrations of
elastic plates. The difference is in the definition of the stiffness coefficients @ and b, and above
all in the time derivative of the first term. In the classical elasticity, instead of the velocity
Ve we have the displacement Vaw*. Consequently, the time process is of periodic char-
acter and vibrations take place. By contrast, the deformation of a rigid-viscoplastic
body is associated with the irreversible dissipation of energy which excludes the occurrence
of vibration. This property reflects in Eq. (2.13), where additional time derivative in the

i ; - A4
first term makes the time process to be exclusively of periodic nature, exp ( - —‘—:-J- r). To be

more specific, we shall show this by performing a mode analysis of Eq. (2.13). For simplic-
ity, let us assume that the “forcing” term P(¢) is held constant. Physically, this corre-
sponds to a rectangular pulse or ideal impulse loading. Under this restriction, the solution
to the inhomogeneous Eq. (2.13) can be sought in the form:

@3.1) @ (xer 8) = D, D) Ay(t)py(%a) —f (%),
i=1j=1

where f(x,) satisfies

(3.2) V4f—b(P—P*) = 0,

and approximate boundary conditions. The eigenfunctions y;;(x,, 4;;) form a complete
orthogonal system satisfying

(3.3) Vi + A, = 0,

and the boundary conditions. The above equation is identical with the case of free vibra-
tion of plates; thus, eigenfunctions in the solution of a dynamic problem of a viscoplastic
plate are simply natural modes of vibration of elastic plates. Similarly, the eigenvalues A;
in (3.3) would correspond to those from elastic solution, provided the boundary condi-
tions for velocities and displacements are the same.

The equation for the time function 23A+a/f = 0 immediately yields the solution:

-4
I.l'j

(3.4) Ay(t) = Ay,
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which is clearly of the aperiodic type. Coefficients 4;;(0) should be so chosen as to satisfy
the initial conditions imposed. The decay of the eigenfunctions depends on 4;;, and each
is different. Hence, the solution (3.2) describes a mode transition during the plate motion.

The time at which a given point on the plate middlesurface is brought to rest is de-
termined by the condition @ = 0. Since each eigenfunction in the original non-homo-
geneous Eq. (2.13) vanishes at different time #;, the plate will never stop at all its points
simultaneously. On the plane x,, there exists a moving interface separating regions of
viscoplastic and rigid behaviour.

Despite its simplicity, the Eq. (2.13) derived, together with the unloading condition,
describe a variety of mechanical phenomena such as plastic and viscous effects, propaga-
tion of rigid zones and mode change during the plate motion. A solution to Eq. (3.2)
provides a quick method of finding maximum permanent deflection and deflection shape
of the structure considered.

4. Impulsive loading of rectangular plate

The second part of the present paper is devoted to a detailed analysis of an exemplary
boundary value problem using the method of solution described above.
Consider a fully clamped rectangular plate with dimensions shown in Fig. 1 subjected

FiG. 1. Dimensions of rectangular plate,

to a uniformly distributed transverse impulse I. The undeformed plate is flat so that the
initial conditions are:

@1y W60 =~ B(3,0) =0,
The boundary conditions are expressed as:
z 12
Xx=da, w=0, ox %
4.2)
ymkl; Al b,
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In the impulsive loading problem, to pressure loading term is identically equal to zero,
P = 0, and Eq. (2.13) is reduced to

*

'y —_ 2 ‘. o) L —

where the Laplace operator in the rectangular Cartesian coordinate system is defined as
Foa 7 o*w line )

dgy —
s dx* +26x23y2 is ay*
the static load-carrying capacity of a rigid-perfectly plastic plate we take an approxi-

mate expression derived by WooD [14] in the case of uniformly distributed pressure:

and the coefficient « denotes a = J/3yf2ua*[2h%0,. As

T e i
4 TR T
where f = b/a denotes an aspect ratio.

It is known from the theory of vibrations of elastic plates that in the case of the clamped
end condition, an effective solution cannot be reached by the eigenvalue method, since
it is not possible to express the solution to (3.3) and (4.2) in terms of elementary functions.
However, the double series representation of the solution can still be applied by assuming
a complete system of functions y;;(x, y) satisfying the boundary conditions. The unknown
set of time functions A;;(7) will be determined using the familiar Galerkin procedure

ab
(4.5) [[ L@ypudy =0, k1=12..,n.
0o

We choose now the function ;;(x, y) as a product of two functions depending respec-
tively on x and y

(4.6) vi (&) = Xi(@) Y; (),

where & = x/a and 5 = y[b denote dimensionless coordinates. In what follows, we shall
retain only four terms in the expansion (3.2), namely:

X, = (£-1)3 Yy = (n*-1)%

%)
X, = (-1 Y, =@n-1)*%

The above functions were used in [1] adequately to predict the static deflection profile
of elastic clamped plates.

After substituting (4.6) and (4.7) into (4.5), and time-consuming but straightforward
calculation, a system of four linear first order differential equations is obtained for the
time variable amplitude A(z):

(4.8) AA + él‘(ﬁ)A+ %«b =0,

where A is a column vector with the components [4,,, 4,2, A2, 455}, A and T' denote
square matrices of numerical coefficients, and @ is again a column vector. A short deriva-

5 Arch. Mech. Stos. nr 4/T2
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tion of (4.8) and definition of all matrices and vectors appearing in (4.8) and the two
following equations are given in the Appendix.

The system of Egs. (4.8) should be reduced to the normal Cauchy form, convenient
in numerical computations:

4.9) A+ %n(ﬁn i;iqr =0,

where Q(f) = T'(f)A~! and &' = dA-,
Initial conditions for A are found by expanding the uniform initial velocity in double
series:

(4.10) i(£,7,0) =V, = % =D 4,0x7,,

and using the orthogonal properties of functions given by (4.6) and (4.7). It is found that
components of. A(0) have the form:

A3 (0) = 0.713361/u,  A22(0) = 31.14181/u,
Alg(O) = A;;(‘D) = 41407!]#.
In order to integrate numerically the system (4.9), all geometrical and mechanical con-
stants appearing in the definitions of «, P* and x should be fixed. To enable comparison

with existing experimental data, we choose dimensions and parameters of mild steel spec-
imen No. 14 tested by JONES et al. [3]

(4.11)

Table 1
% e 2h Vo a b
b Ibsec? " ft : s
o e in . in in
3.38-10% 7.68-107* 0.098 231.13 1.5 2.53125

The initial value problem (4.9) and (4.11) was solved using the Runge-Kutta-Falson
method of integration of the seventh order. All computations were carried out on an ODRA
1204 electronic computer. The main results obtained for three different values of the
viscosity constant are presented in Figs. 2-4. It is seen that all amplitudes of the modal
function A;; essentially diminish from the same prescribed initial values to zero. We ob-
serve a nearly exponential decay for = 50 and p = 200 as predicted by the general
eigenvalue analysis (formula 2.4) and almost linear variation for y = 10000, similarly
as in the single mode solution for perfectly plastic material [7]. The plots of the functions 4,
and A, in Figs. 2-3 exhibit an initial rise for small times, contrary to what might be ex-
pected from the general discussion regarding aperiodic motion. This is attributed to the
approximate character of the solution, which retains only four terms in the expansion.
In fact, the rise observed is not large, but to describe adequately the sudden change in the
slope of the 4,, curve, a numerical procedure of greater accuracy had to be introduced.
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FiG. 3. Time variation of the amplitudes A;;(r) for ¥ = 200,

[595]
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FiG. 4. Time variation of the amplitudes A;;(t) for ¥ = 10000.

5. Discussion and comparison with experiments

Having found the time variable amplitude A;;(t) of the subsequent mode functions
yi;(x, y), the velocity of an arbitrary point of the middle surface of the plate can be obtained

2 2
by computing )| Y 4iv;;, according to (3.2). This has been done numerically at fifteen
i=liml

points of the plate indicated in Fig. 1. The variation of velocities with time is shown in Figs.
5-7. It is now clear that different points in the plate are brought to rest at different times,
hence, the intersections of velocity curves with the axis @ = 0 determine the propagation
of rigid zones. For example, in the case of y = 200 first stop points on the outer edge
(curves labeled 15, 14) while the centre of the plate is the last to stop (curve labeled 1).
Note that the velocity of the centre of the plate is equal to the plot of the function A, (¢).
Values of time to rest of all points considered are gathered in Table 2. For comparison,
also given is a response time found from approximate analysis (next paragraph).
Permanent plate deflections are easily found through the integration of velocity dia-
grams. Numerical values are given in Table 2, together with the approximate solution
referred to above. A graphical representation of the deflection profiles at five sections y =
= const and three sections x = const is shown in Fig. 8. A full line represents the present
solution with four-term approximation, while the broken line denotes a similar solution
with only one term retained in the expansion. Experimentally measured deflection pro-
files are indicated by crosses [3]. Fairly good agreement can be noted over the central
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Fic. 7. Velocities and times to rest of different plate points for y = 10000.
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FiG. 8. Theoretical and experimental deflection profiles of a rectangular plate.
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Table 2

No. points of the plate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y = 50 sec™!

wylin] (four terms)
wy [in] (one term)
ts [sec] (four terms)

0.4094 0,3245 0.1282 0.3989 0.3136 0.1222 0.3406 0.2722 0.1136 0.2364 0.1920 0.0810 0.0920 0.0764 0.0342
0.4551 0.3596 0.1405 04203 0.3321 0.1297 0.3241 0.2561 0.1000 0.1916 0.1514 0.0591 0.0642 0.0508 0.0198
280.02 278.08 272.86 27527 273.10 26637 261.46 258.27 248.85 24239 237.84 22435 221.19 21544 197.75

tr [sec] (one term)

265.67

y = 10000 sec™* | y = 200 sec™!

wylin] (four terms)
wy [in] (one term)
tr [wsec] (four terms)

0.8805 0.6982 0.2758 0.8532 0.6782 0.2667 0.5088 0.4058 0.2563 0.5391 04507 0.1971 0.2272 0.1876 0.0855
0.9946 0.7858 0.3070 0.9185 0.7257 0.2835 0.7083 0.5597 0.2186 0.4187 0.3308 0.1292 0.1404 0.1109 0.0433
530.65 522.8 499.05 512.10 503.00 47510 465.00 452.53 416.000 409.05 394.08 35240 362,46 347.70 406.98

tr [sec] (one term)

480.23

wy [in] (four terms)
wy [in] (one term)
tr [psec] (four terms)

0.8345 0.9400 0.7085 0.9580 1.0370 0.8093 1.1680 1.3000 0.9680 1.090 1.2120 0.9040 0.5343 0.5885 0.4371
1.7359 1.3715 0.5358 1.6030 1.2666 0.4948 1.2363 0.9768 0.3816 0.7308 0.5774 0.2255 0.2450 0.1936 0.0756
813.5 732.85 663.40 810.25 724.18 648.72 805.68 711.40 627.00 802.86 703.40 613.20 801.34 698.90 604.88

ty [psec] (one term)

729.60
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part of the plate but systematic deviations are observed near the clamped edge. All tests
reported in [3] clearly show the occurrence of plastic hinges along the plate circumference.
Such discontinuities in the slope of the deflection profile are not admissible in the present
theory of viscoplastic plates; hence, the boundary condition (4.2) of the zero slope was
assumed as @’ = 0. As regards the deflection profile of circular clamped plates, somewhat
similar discrepency between theory and experiment was observed in [12].

The inconsistences indicated above call for a suitable modification of the theory of
rigid-viscoplastic materials to allow for zones of localized permanent deformations.

6. A single mode solution

It is possible to obtain a closed form solution to the initial-boundary value problem
(4.1)~(4.3) by considering only one term in the expansion (3.2). Such solutions are often
of practical value, since they identify certain important parameters and enable discussion
of the influence of the viscosity constant on the final central deflection of the plate.

Applying the Galerkin method to the one term approximation, the following ordinary
differential equation for the amplitude 4,,() is obtained:

(6.1) fA.“_ +CA.11 +3‘P* = 0:
where f = 165.119 8%a*u, ¢ = 1307.91 Mo2h/)y 3y; g = 284.444 f%a*. Similarly, the initial
condition is now given by:

6.2) 4,,(0) = 1.723%.

Equation (6.1) has a simple analytical solution and by means of the separable form (3.2)
the velocity of an arbitrary point of the plate can be determined. However, the values we
are mostly interested in are response time #; and permanent deflections w;. In the case of
a one-degree-of-freedom velocity field, the plate comes to rest at all its point simulta-
neously and the response time, found from the condition @(0, 0, t;) = 0, is equal to:

A4 0 1
63) g ‘g‘}f*’f ﬂln(l-!-—ﬁ-‘—),

where & = gP*/4,,(0) c. The permanent deflections, determined by integrating veloci-
ties within the limits [0, #/], is found to be:

2
(6.4) wet,n) =+ ‘;;;ff) [2:9—2192111(1 + iﬂ)] (1-&* (1 =),
Both (6.3) and (6.4) resemble similar expressions obtained in [12] for a clamped circular
plate. Terms in brackets involving the parameter ¢ describe the influence of strain rate
sensitivity and are responsible for the reduction of the response time and central deflection,
Fig. 9. In the limiting case of perfectly plastic material, y and hence # tend to infinity and
the expressions for 7, and w; reduce to

i _JA1u©) I Vodp  sm—a 1o
(65) mtf——g'ﬁ*—'—-ﬁ_ IZMO (l/lfﬁ2+3 Uﬁ)
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; ub*vi e
(6.8) lim (wy/2h) = ~-—2-0.865()/1/8> +3—1/B)%.

St 12M,
The approximate solution for #; (6.5) agrees with the time bound computed by Jongs [3]
(formula 8), while the maximum central deflection (6.6) differs by a numerical factor
0.865 from Jones’s estimate.

For all finite values of y, the viscosity diminishes the plate deflections relatively to the

rigid-perfectly plastic solution. Comparison of present results (full lines) with experiments
on mild steel plates and the approximate solution reported in [3] is presented in Fig. 10.

— —— Experimental [3]
. : Mild steel
by  Perfectly plastic solution o 2he0064 in
wk ¥ L o 2h=0098 in
1 T a 2h=0173 in
s Binfteg) Al Jones estimate [3]
46 - ~——— Present solution For
different y
04 |-
ozl pb%z
—= L 1 L | — _Ho__
1 2 3 4 5 5§ 1 | I ] 1 | o
* 200 400 600

Fi1G. 9. Reduction of response time and per- Fic. 10. Central deflection versus applied impulse.
manent deflections of a rectangular plate due Theoretical curves for different y and experimental
to viscosity of the material. points,

Some curves drawn (y = 50) closely follow the trend of experimental points over the
entire range of the impulse applied. Since the present analysis disregards the important
effect of geometry changes and the resulting strengthening of the plate due to membrane
action, the correlation cannot be made by considering viscous effects alone. The present
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theory is valid for small deflection — say of the order of the plate thickness. In this range,
a reasonable value of the viscosity constant would be = 200, and this agrees with the
value of y previously found in the case of circular plates [12].

7. Conclusions

It is shown in this paper that an extremely simple linearly-viscoplastic model of material
behaviour proves satisfactory for the description of certain important features of transient
response of non-circular plates subject to high intensity loading. It was assumed that
permanent deflections and response time can be predicted by considering the medium of
entirely dissipative character. Such a behaviour was ensured by imposing unique relations
between stresses and strain rates and introducing a suitably formulated unloading condi-
tion. In the case of an impulsively loaded rectangular plate, the linearized governing
equation was shown to yield satisfactory qualitative and quantitative results. However,
the occurrence of plastic hinges in experiments on strain rate sensitive plates indicates
that the existing theory of viscoplastic behaviour should be revised to allow for such
discontinuities.

Appendix

Substituting (4.6) and (4.7) into (4.5), we obtain a system of four equations involving
68 coefficients. These coefficients can be expressed in terms of 11 constants:

1 1 1 1
ay = fXIXJdE = inYJd??, bi.f = inXj’dE = fY.'Xj"dﬂ,
(A.1) 9 0 ¢ 5

1 1 : -
6y = fX{X}"d«E = [vypdy, d= [XdE= fY:d‘n—
0 0 o 0

Numerical values of a;;, b;;, ¢;; and d; are:

. 128 o =g 128 o 128
1 Ba0s " 12 = 721 = 7337105 ° 22 7 143.105°
—128 —128
(A.Z) bll arses _ﬁ‘s bu = bu = 0: b23 — W)

64 8
fu=-5» Cu2=0Cn =35 C2= 735 d1='F, dz=ﬁ5'-

The components of a symmetric square matrix A and the column vector ¢ are:

165.119 15.011 15011 1.363 284,444

15011 5.464 1.365 0. 40,635
(A3) A= o , &= i

15011 1.365 3.464 0.315 40,635

1.355 0315 0315 .073 5,805
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The square matrix I' is also symmetric, but its components depend on the dimension
ratio §:
I'yy = 3467.126 8% 4 1981,235 + 3467.126 2,
Iy, = 72.7375%+180.112 4 1485.924 872,
I'y; = 1485.924 82 +180.112+72.737 872,
I'yy = 31.1738% +16.374 +31.173 872,
(A.4) Iy, = I';; = 315.1958% +495.303 872,
Iyy = I'y; = 495.303% +315.195672,
Ty =Ty =450278%2+445.0271/8% = I'ys = I's3,
Ty = Iyy = 10.3915%2445.027 872,
I'y, = I'yy = 135.083 8%+ 10.391 872,
The matrix £ is given by:
0,4 = 12.98762 8% + 34.71693 4 12.98762 872,
2,, = 0.134128% — 14,6497 — 61.37868 2,
2,3 = —61.37868 82 — 14.64970+-9.134128 2,
Q,, = 1.52501 8% 4+ 6.60058 + 8.84945 52,
2,09154 % — 161.14832 + 87.85821 72,
11.98175 §2 + 158.42436 + 706.08737 72,
2,5 = 19.94927 2 4+ 72.65769 — 1.20872 2,

&P
o

(AS) 2,, = —73.59151 4% —70.14372-93.4231872,
. Q;, = 87.85821 f* —161.14832 + 2.09154 72,
Q;, = —1.20872% +72.65760 + 19.94927 72,

235 = 706.08736 8% + 158.42436 + 1198175472,
2,4 = —14.21532 8> —70.14372 - 109.91834 872,
41 = —20.24409 B +798.85582 — 20.24409 82,
4, = 96.57476 8% —771.75236 — 196.81023 52,
Q43 = —196.81023 82 — 771.75236 + 96.57426 2,
Q.4 = 817.05963 p2 +746.93133 + 1202.91438 872,
whereas the components of the column vector @’ are
(A.6) P = 0.71336; D, = P; = 4.14047; P = 31.14185.
For fixed value of the dimension ratio § = 1.6875, the components of the matrix £ become:
76.26204 —35.82150 —189.3876 14.05084
—124.34007  440.49383  129.04177 —312.51303

89.77557  76.22106 217.32154  —149.22289
734.09883 —565.85313 —1298.28582  3496.04656

A7) Q=
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