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On sphering therm.oelastic annuli 

HENRY J. PETROSK.I (AUSTIN) 

THE DEGREE to which a certain controllable state of elastic heat conductors provides constitutive 
information is discussed, and it is shown how such information may be employed to solve a prob­
lem in nonlinear thermoelasticity. In particular, the tractions, heat fluxes, and other fields neces­
sary to hold an initially flat annulus in the configuration of a heated, pierced spherical cap 
are exhibited. 

Przedyskutowano stopien, do kt6rego pewien kontrolowany stan spr~tzystych przewodnik6w 
ciepla zapewnia konstytutywn~ informacj~t i pokazano, jak ta informacja moze bye wykorzystana 
do rozwi~nia problemu w nieliniowej termospr~tzystosci. W szczeg6lno8ci wyspecyfikowano 
sily powierzchniowe, strumienie ciepla i inne pola konieczne do utrzymania wst~tpnie plaskiego 
pierscienia w konfiguracji azurowo sferycznego kubka. 

06cym~eH BOnpoc 0 nonyqeHJU~ HH<i>OpM~ 0 Me:xaHHtlecKHX CBOHC'l'BaX TepMOynpyrHX 
MaTepnanos, ~e<PopMHpyroumxc.a B yCJJoBIDIX TeiiJionposo~OCTH. IIoKaSaHo, trro ~aHHYlO 
HH<l>OpMainfiO MO>KHO HCllOJib30BaT& ;:tJVI pemeHil.H 3a~aq HeJIHHeHIIOH TepMOynpyrOCTH. 
B t~aCTHcCTH, nonyqeHbi 3Ha'tleHHH nosepxu:OCTHbiX CHJI, nOTOKOB Tenna H ~pyrHX BeJIH'tiHH, 
Heo6XO,IUlMbie ,ItllH llOMep>KaHHH nepBOHa'tla.JlbHO llJIOCKOrO TepMoynpyroro KO.Jlb~a B c<Pe­
pHtleCKH ~e<l>opMapOBaHHOM COCTOHHHH. 

Introductioa 

EXACT solutions to problems in coupled theories of nonlinear thermoelasticity are few 
not only because the mathematics is complicated but also because the nonlinear beha­
viour of the material is often unknown. It is usually assumed, however, that any material 
response functions necessary, to characterize a given material, may be ascertained by some 
experiment or other, and thus, an analyst proceeds shackled only by his mathematical 
limitations. If he is asked to produce an experiment sufficient, at least on paper, to charac­
terize the material in question, the analyst is wont to direct the inquirer to the control­
lable states of the class to which the material belongs. Since a controllable state is possible 
in all materials of a class, a particular material of the class may be subjected to a control­
lable state for the purpose of determining its characteristics. E.g., arbitrary homogeneous 
deformations can be effected in all perfectly elastic materials by the suitable application 
of surface tractions, and it can easily be seen that they are general enough to characterize 
completely these materials. It is therefore reasonable to assume that the elastic strain 
energy function is known when analyzing any noncontrollable state. 

This is not the case with thermoelastic materials. It has been shown [l] that there is 
such a paucity of controllable states of these materials that controllable-state experiments 
cannot be relied upon to provide all the information that may be necessary for the solution 
of problems involving seemingly simple, but noncontrollable, states. 

2* 

http://rcin.org.pl



S48 H. J. PlmtosK 1 

Nevertheless, it is possible to exploit the limited information obtained by subjecting 
an elastic, heat conducting material to the most general thermoelastic controllable state. 
We illustrate this below by demonstrating expressions which give the surface tractions, 
heat fluxes, body forces and heat supplies necessary to deform an originally flat circular 
plate with a hole into a pierced spherical cap. We shall study this deformation coupled 
with a steady-state heating pattern which includes radial flow and latitudinal flow as spe­
cial cases. We shall consider such states in homogeneous and isotropic incompressible 
materials with thermoelastic coupling whose free energy function is assumed to be of 
a generalized Mooney-Rivlin type and whose heat flux response coefficients are taken 
to be constants. 

The surface and volume distributions we demonstrate are known exactly once the 
material's response has been determined from the single controllable state experiment. 
Such possibilities as freeing the spherical surfaces of stress or insulating the edges of the 
cap may be readily investigated by means of our formulas. The practicability of sphering 
a particular annulus may be determined from our results. 

1. 1be basic equations 

We shall refer the undeformed annulus to a circular cylindrical coordinate system 
(X\ X 2

, X3) = (R, tP, Z) and the deformed body to a spherical coordinate system 
(x1

, x2 , x3) = ((!, (), q, ). Both these systems are to be tied into the same rectangular Car­
tesian coordinate system (E1

, E2
, E3) shown in Fig. 1. We shall use the notation of general 

tensor analysis. Repeated Roman indices should be summed over 1, 2, 3. 
The thermoelastic materials we shall consider belong to the class of elastic heat con­

ductors which are incompressible and unstressed and unheated in their homogeneous and 

Fio.l 

isotropic reference states and which are characterized by the following constitutive equa­
tions for the symmetric stress tensor tj and the heat flux vector qi: 

(1.1) tj = -pt5j+2eo[c]ia1V'-c}azV'l 

and 

(1.2) q' = [g_1c]i +got5j+g1cj}r·i. 

In these relations p = p(xi) is a hydrostatic pressure, 6) is K.ronecker's delta, f!o is the 
(constant) density of the body in the reference state, and r·' is the spatial temperature 
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gradient. The left Cauchy-Green deformation tensor c]i and its inverse cJ are derived 
from the deformation xi = xi(Xi) as follows: 

(1.3) 

and 

(1.4) 

where Gk1 and Gk1 are the contra- and eo-variant components, respectively, of the metric 
of the (cylindrical) Xi-coordinate system. 

The free energy 1p and the heat flux response coefficients gr (F = -1, 0, 1) are functions 
of the absolute temperature T = 10 and the independent scalar invariants 

(1.5) 

such that 

(1.6) 

and 

(1.7) 

I -li I - 1 (/2 -H-lj) 
t = ci ' 2 - 2 1 -ci ci ' 

In ( 1.1) we employ the notation 

01p 
Oa.VJ = iJla.' ex= 1,2. 

In discussing the sphering problem in Sec. 4, we shall consider the special case of these 
materials, where 

(1.6') 

with C0 , C1 , and C2 being constants and where the gr are constants, 

(1.7') gr = const. 

The field equations which all states of these thermoelastic bodies must satisfy, are 

(1.8) 

and 

(1.9) q~i- r = 0, 

where hi= bi(x1) is the body force per unit mass and r = r(xi) is the extrinsic heat supply 
per unit volume. The reader is referred to [4] for further discussion of these basic equations. 

2. The deformation and temperature fields 

An undeformed and unheated annular body may be considered bounded by the planes 
Z = Z 0 and Z = Z0 +h and the cylinders R = R 1 and R = R2 • We shall assume that 
such a body is subjected to a thermoelastic state in which planes Z = const become 
spherical surface e = const~ cylindrical surfaces R = const become conical surfaces 
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() = const, and planes t1> = const remain planes 4> = const. We can express this class 
of deformations analytically as 

(2.1) f! = /(Z}, 0 = g(R), 4> = t1>, 

where f and g are functions which we shall determine presently. 
For the deformation (2.1), we calculate 

(2.2) llcJill = l!cli"g"ill = diag[f'(Z)2 ,/(Z)2g'(R)2,R- 2/(Z?sin2 g(R}], 

where "diag" indicates that the non-zero terms of a diagonal matrix follow, where gi1 

are components of the metric of the (spherical) x"-coordinate system, and where a prime 
denotes differentiation with respect to the primed function's argument. 

Following a procedure similar to the one RIVLIN used [3] to study the problem offlexure, 
we now see what restrictions incompressibility places on the functions f and g. Since the 
deformation (2.1) is isochoric, if and only if, det(Cj') = I, we must have 

for all Rand Z within the annulus. Because R and Z are independent variables, this implies 

(2.3) /(Z)4j''(Z) 2 = a2
, R- 2g'(R) 2 sin2g(R) = 4, 

a 
where a is a constant. 

Equations (2.3) are easily seen to be satisfied by 

(2.4) /(Z) = (3aZ) 1'
3

, g (R) = cos-• { 1-~) , 
where we have not included constants of integration representing rigid-body motions. 

Then, in addition to the deformation 

(2.5) (! = (3aZ)1
'
3

, 8 = cos-•( 1- ~ ). q, = <11, 

we shall assume that the deformed annulus is heated in such a way that the temperature 
field has the form 

(2.6) T = To +he+kfJ, 
where T 0 , h, and k are constants. 

We can calculate the components of the deformation tensors (1.3) and (1.4) from the 
deformation (2.5) and its inverse 

(2.7) R = y2a(l-cosfJ), t1> = 4>, 

We get for the matrices of mixed components 

(2.8) and 
IICJ'II = diag [ :: 

llcJII = diag[:: 
a(l +cosfJ) 

a(l + cosfJ) 
2ez 

(!3 
Z=-. 

3a 
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and for the components of the gradient of the temperature field 

(2.9) T'
1 

= (h, 12• 0) and T,i = (h, k, 0). 

We can now calculate the invariants (1.5). They are, for the deformation (2.5) coupled 
with the temperature field (2.6), 

a2 2e2 e2 (l +cos 0) 
It=~+ + -----e a(1+cos0) 2a ' 

I _ -~~ + a (I+ ~osO) + 2a 
2- a2 2e2 e2(1 +cosO)' 

k2 
I3 = h2+-z, 

e 
(2.10) 

h2a2 2k2 

h = !/ + a(l +cosO) ' 

I h2e4 ak2 (1 + cos 0) 
s = -az-+ 2e4 

We shall now interrupt our discussion to observe that if either h or k is zero these 
invariants are in the same ratios to each other at a given point (e, 0, </>) as the invariants 
of a deformation and temperature field that have been shown [1] to comprise a controllable 
state. This means that certain information about the free energy and heat flux response 
functions may be considered knowable through a controllable-state experiment on a par­
ticular material to a degree pertinent to the present problem. This is of interest because 
the controllable states of materials obeying (1.1) and (1.2) are not general enough to 
characterize completely the functions 1p and gr, i.e., the controllable states do not allow 
arbitrary independent variation of the arguments la. of 1p and gr. 

3. The pertinent controllable state 

The special homogeneous deformation 

(3.1) X= (C/yA)X -(DjyB)Y, y = (D/yA)X +(C/yB)Y, z = yABZ, 

where points (X, Y, Z) in the undeformed and (x, y, z) in the deformed body are referred 
to the same rectangular Cartesian coordinate system and where A > 0, B > 0, C, and D 

are constants with C2 + D2 = 1, coupled with the linear temperature field 

(3.2) !' = !' 0 + uz , 

where r 0 and u are constants, has been shown [1] to be a controllable state of materials 
characterized by (1.1) and (1.2). In [2] the constant invariants of this state are exhibited as 

(3.3) 
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The stress field corresponding to (3.1) and (3.2) has the components [2] 

t~ = Po + ~e; [(BC2 +AD2 -A2B 2 )ot 1p-(A2BC2 +AB2D2 -1)o2 tp}, 

(3.4) t: = Po + ~e; [(AC 2 +BD2 -A2B2 )ot tp- (AB2C2 +A2BD2 -l)o2 tp}, 

and all other tj = p 0 ~~, where p 0 is a constant. Measuring any three of t~, t;, t:, t; in the 
state (3.1)-(3.2) suffices to determine 

(3.5) 

where, however, the arguments are always in the ratios of (3.3). 
The only non-zero component of the heat flux field corresponding to (3.1) and (3.2) is 

qz = (ABg_t +Ko+gtfAB)" 
(3.6) = G" = const, 

where 

(3.7) 

since the Kr are functions of / 1 through / 5 with the /(% given by (3.3). Measurements of 
qz in the controllable state (3.1 )-(3.2) therefore give us the values of the function (3. 7) 
but known only for arguments whose ratios are the same as in (3.3). 

To observe that the sets of invariants (2.10) and (3.3) are in the same ratios when 
h = 0, e.g., just let A = e4 /a2

, B = 2af(e2 +e2 cos0), and"= kfe. A similar comparison 
shows us that these ratios are maintained also for the case k = 0. 

We shall henceforth assume that the material response of the annulus is known to the 
degree delineated in (3.5) and (3. 7), and we shall show how this information may be employ­
ed in the sphering problem. 

4. Stress and heat flux fields for a sphered aru~ulus 

The stress field is gotten simply by using (2.8) in ( 1.1 ). The only non-zero physical 
components are 

(4.1) 
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where the hydrostatic pressure may be determined from the requirement that this stress 
field satisfy the law of balance of momentum (1.8). We note that it is possible to free the 
spherical surfaces of tractions by taking 

but then a rather complex body-force field would be necessary to balance momentum. 
These complications are in contrast to the controllable state (3.1)-(3.2), where, by defi­
nition, the stress field (3.4) satisfies the law of balance of momentum regardless of the 
material function 1p' s dependence on the invariants and without requiring that any body 
force act. 

For materials which behave according to the constitutive relation (1.6'), balance of 
momentum (I .8) requires that 

(4.2) 

where the summation convention is suspended where indices are underlined. Carrying 
out the covariant differentiations on (2.8), we get the following differential equations 
for determining p = p (e, 0, 4>) : 

(4.3) 

op 
0(! 

_op = ( 4 + 3cos ()- 3cos20- 3cos30- cos40) 
0 

2c 
1 ao a sin() (1 +cos 0) 2 (! (! 

op · ob• olj> = (!o(! sm , 

( 
1 + 4cos ()- 3cos20-2cos30) aeoC2 b9 

+ sin() (1 +cos 0) -(!-2 - + (!o (! ' 

where (be, b9
, b•) are the physical components of the body force field. If b41 = 0, (4.3h 

tells us that p = p((!, 0) only, and the stress field is axisymmetric. Since the material 
constants C1 and C2 may be considered known, as discussed in Sec. 3, the Eqs. (4.3) 
are the defining differential equations for the hydrostatic pressure p which must be present 
for a given body force field (b(}, b9, bl/1). For the general case of independent constants 
C1 and C2 and a constant g gravity-field body force (be, b9

, b•) = (-gcosO, gsinO, 0), there 
exists no smooth solution to ( 4.3). This is merely an expression of the fact that momentum 
cannot be balanced in a given body for arbitrarily chosen deformation (i.e., stress) fields 
and body force fields. Nevertheless, given specific values of C1 , and C2 , it may be possible 
to integrate ( 4.3) for a realistic body force field. 
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We shall now consider the heat flux field necessary to sphere the annulus. The compo­
nents of qi are gotten by using (2.8)-(2.9) in (1.2), and therefore 

[ a
2 

rl J q(! = 7K-1 +Ko + Q2Kl h, 

(4.4) 8 [ 2(/ a ( 1 + cos 0) J k 
q = a(1+cos0) K-I+Ko+ 2e2 e' 
q• = 0 

are the physical components. We observe that at any point (e, 0, </J) the material constants 
gr occur in exactly the combination of (3.6). 

For the case of constant Kr which we are considering, an experiment based on the 
controllable state discussed in Sec. 3 will yield the values of the individual gr. In fact, 
we need only record the heat flux qz corresponding to three different pairs of the inde­
pendently variable temperature gradient x and deformation measure AB in (3.6). Thus, 
we may consider the Kr known from here on. 

Now energy is not automatically balanced with the heat flow (4.4), and an extrinsic 
heat supply r may have to be provided. We may check this point by noting that the balance 
of energy expression (1.9) requires a heat supply field r whenever qi is not solenoidal. 
Thus, we have, using ( 4.4) in (1.9): 

(4.5) r = J _ 2a
2
h + 2k }g 

1 
+ ,~~ + kcos~-}Ko l (! 5 a sin 0 (1 +cos 0) - e e2 sin 0 

1
6he 3 ak (2cos20 +cos 0- 1) } 

+ -2- + 2 4 · O K1 · a e sm 

In general, this does not vanish identically. Thus, considering the material constants Kr 
determined from the controllable state of Sec. 3, (4.5) is the heat supply necessary to 
effect the deformation (2.5) and the temperature field (2.6) in that material. 

Global heat fluxes, forces, and moments necessary to sphere a particular annulus may, 
of course, be computed from the local fields ( 4.1) and ( 4.4). 
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