
Archives of Mechanics • Archiwum Mcchaniki Stosowancj • 24, 5-6, pp. 1083-1088, Warszawa 1972 

BRIEF NOTES 

A note on finite elastic-plastic bending 

J. MIELNICZUK (POZNAN), A. SAWCZUK (WARSZAWA) 

Finite bending of a hyper elastic-plastic strip is considered. A continuous transition from 
hyperelastic solution to perfectly plastic one is obtained. The results are compared with 
the available solutions of the strip bending problem. 

1. Introduction 

ELASTIC-PLASTIC deformations are usually studied within the framework of infinitesimal 
theories. Displacements are then assumed to be small so that the initial configuration 
and the configuration at yielding do not need to be discerned. Situations when yielding 
starts and continues at large elastic strains call, however, for an appropriate analysis. 

There are two aspects in the analysis of large elastic-plastic deformations, regarding 
respectively the constitutive law and the yield function. The main problem of a finite elastic
plastic strain theory consists in developing a suitable set of constitutive relations. The 
second, uncomparably simpler problem is that of transition of a nonlinearly elastic material 
into the plastic state. This question was not studied so far within the concepts and notions 
of nonlinear theories. Available studies account for large deformations through the loga
rithmic strain measure, but otherwise preserve the structure of a linear theory. 

The present note concerns finite bending of a hyperelastic-plastic strip. The material 
is assumed to yield when the true stress satisfies an appropriate yield condition. Under 
continued bending plastic zones develop and spread out. A continuous transition from 
the hyperelastic solution, GREEN and ZERNA [5], to that of bending of a perfectly plastic 
circular segment, HILL [6], is obtained. The results are compared with the available solu
tions of the strip bending problem by DE BOER [1), BRUHNS [2], BRUHNS and THERMANN [3) 
and CELEP and HARTUNG [4], where the Hencky stress-strain relation was used in the 
elastic range (i.e., when logarithmic strains are related to physical stress by Hooke's law). 
As regards the elastic response, the analysis is kept within the hyperelastic model for the 
stored energy function of the Murnaghan type [7, 8]. 

2. Basic relations 

We consider a plate strip of incompressible hyperelastic-plastic material. The strip 
of initial geometry as shown in Fig. 1 a is bent into a cylindrical sector in conditions of 
plane deformation, Fig. 1 b. The problem is considered in convected coordinates. The 
metric tensor in a current configuration is denoted by Gii, whereas the initial state has 
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FIG. 1. Strip geometry in bending: a) initial configuration, b) current configuration. 

the metric tensor g;1. The notations used are essentially those of GREEN and ZERNA [5] 
and of Fig. I. 

For the considered deformation of an incompressible material, the metric tensors are 

Gij = n 0 

H 
l A 2

r
2 0 

01 (2.I) r2 
gij = ~ A-2 

0 ' 
0 0 I 

where 

(2.2) A=~ 2 2 • rl-r2 

The strain invariants entering the stored energy function W = W(/1 , / 2 , / 3 ) have the form 

·· 2 2 I 
/ 1 = g'JG. · = A r +--+I = I 

IJ A2r2 ' 
(2.3) 

. . 2 I 
/2 = G'Jg;113 = A 2r + A 2r2 +I =I, 13 = detGiJfdetg;1 = I. 

The stresses in an incompressible hyperelastic material express in terms of the stored 
energy function W = W(/1 , / 2 ) to within a hydrostatic pressure p as follows 

(2.4) 

where 

(2.5) 
aw 

l/1 = 2 -a~~-, 

In the considered deformation ljJ = 1p in view of (2.3). 
In the motion studied the physical stress components take the same numerical values 

as the mixed stress components aj 

(2.6) 
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These guaranties will be used when studying the outset of yielding. The yield condition 
will be referred to current configurations and expressed therefore in terms of the true 
stresses in form of a scalar function 

(2.7) f ( aL aj a{, aj a~ ai) = 0 . 

The stress field is subjected to the equilibrium requirements. In the considered case 
the only relevant relation is 

(2.8) 
dal a~- a~ --+ = 0, dr r 

if expressed in terms of the mixed stress components (2.6) (representing the physical com
ponents as well). Moreover, the following stress boundary conditions are imposed 

(2.9) 

For further reference, we write the following geometrical relations, applicable in the 
case of considered incompressible deformation and straightforward to obtain (Fig. 1) 

(2.10) 
2h0 a. 

-2--2 = -1 ' 
rl -r2 o 

ho 
S=-

/o ' 

3. Outset of yielding 

Within the hyperelastic range the stresses (2.4), subjected to the requirements (2.8) 
and (2.9), take eventually the form 

(3.1) 
2 ,I,.( 2 2 1 ) a2 = 2o/ A r - A2r2 + W- Wo, 

where C = - W0 = - W(r1) = - W(r2 ). It appears that on surface (} = ±a./2 the 
stress resultant vanishes while the stress couple (per unit length) acting on each of the 
surfaces initially at x 2 = ± /0 /2 is 

r1 r2 

(3.2) M = J a~ (r - r 0 ) dr + J a~ (r- r 0 )dr . 
ro ro 

The physical components of the stress deviator s1i are found to be 

(3.3) 
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The solution (3.1) applies until the stresses remain within the yield surface (2.7). To 
be specific we assume that the considered hyperelastic material complies with the Huber
Mises criterion 

(3.4) sfsl. = 3._~0 
J ' 3 ' 

where Go stands for the yield stress in the deformed configuration i.e. the "true" yield 
stress in tension. 

Making use of (3.3) and of the last relation (2.1 0), we obtain 

(3.5) 3,1,.2('1'2 ' 2 )
2 
_ 2 'Y _2____ -Go. 

r r1r2 

An analogous relation is obtained when the criterion of maximum shear stress is used, 
except that the right-hand side constant takes a different numerical value. 

To obtain explicitly the stresses and to evaluate the shape of the strip at the outset 
of yielding, the stored energy function W has to be specified. For simplicity, we assume 
a truncated form of the Mumaghan potential, namely 

(3.6) 

where A and f.l denote the Lame constants of an infinitesimal theory. The relation (3.6) 
means that the strain energy function is of the form known from the linear elasticity (i.e., 
it is quadratic in terms of the strain tensor components), except that the strains are no 
longer considered infinitesimal. The potential (3.6) defines the considered hyperelastic 
material. 

In the case of strip bending, Eq. (3.6) takes the form 

(3.7) 

and it follows further from (2.5) that 

(3.8) t/> = A~2fl (Azrz+ A;r, -2)+1'· 
The yield condition (3.5) becomes 

(3.9) (~+f.l)(A4r4 __ 1_)+(A+J.t)(A2r2 ___ 1 ) = ±k, 
2 A 4r 4 A 2r2 

where k = a0 f'V3. It can be established that (3.9) takes extremal values simultaneously 
at r 1 and r2 • The outer fibers thus yield at the same instant. 

The strip geometry at the outset of yielding is specified by the relation 

(3.10) ( A )(d '~) ('1 '2) -+J.t -y----z +(A+f.l) --- = k. 
2 r2 r1 r2 r1 

In view of the relations (2.10) and denoting 

(3.11) p = 2(A+J.t) 
A+2f.l ' 

2k 
Q = A+2f.l' 
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the following equation is eventually obtained, involving the initial slenderness s and the 
sectional angle cx0 at yield 

(3.12) x4 -Px3 -Qx2 +Px-1 = 0. 

The results computed for two sets of material constants A.,!-' and k are plotted in Fig. 2. 

FIG. 2. Outset of yielding: 1) stell, 2) aluminum. 

The bending moment within the elastic range is found from (3.3), while making use 
of (3.1), (3.6) and (3.8) 

(3.13) M= A.+2,u (B3+B-3)- 4A.+5,u (B2+B-2)+ 7A.+ 10,u (B+B-1)- A.+2p X 

h~ 8s2 cx2 8s2 cx2 8s2 oc.2 10s2oc2 

4. Elastic-plastic bending 

In bending to an angle ex > cx0 plastic zones develop within the range (h ~ r ~ r1 

and r2 ~ r ~ e2 , Fig. 1. The yield condition (3.4) allows to integrate the equilibrium 
equation (2.8) in the plastic zones since af- a~ = const. Under the stress boundary con
dition (2.9) the results are, HILL [6], 

1 k r1 a 1 = -2 ln-
r ' 

(4.1) 

af = -2kln~, 
r2 

and 2a~ = af + a~ . 

~ = 2k{t-ln '; ), e1 ,; r,; r1 , 

~ = -2k{ I+ In;.), r2 ,; r,; e2, 

Within the elastic zone the stresses are to be determined from the strain energy function. 
The formulas (3.1) apply for e2 ~ r ~ e1 , except that the constant has to be appropriately 
evaluated from a condition on the elastic-plastic interface. At r = e1 and r = e2 the 
radial stress continuity requirement, [af] = 0, and the yield condition (3.5) furnish the 
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necessary relations to determine the radii of elastic-plastic boundaries and the respective 
constant in (3.1), 

(4.2) fh = !!!__~, (!2 = ~ ~, c = -2kln2- W(e 1), 
(X ~ ~ (>1 

where ~2 = x and x denotes the solution of (3.12). 
Computations show that there is no tensile force on the faces() = ± cx/2 in the elastic

plastic range as well. The resulting stress couple of pure bending is given by the following 
expression 

(4.3) M= _k_ [2t/s2 cx2 +1-(~2 +~-2)+(e+3~- 2 -8~- 1 +4)ln ~-] 
h~ 2s2 a2 VB 

+ 2+2,u (~6 +~-6)- 2+2,u (~5 +~- 5)- 42+5,u(~4 +~-4)+-;.-(~3 +~- 3) 
8s2 cx2 10s2 cx2 8s2 cx2 6s2 a2 

where B as in (3.13). 
The above result passes into (3.13) when e1 ----+- r 1 and (> 2 ----+- r2 • If e1 ----+- e2 the bending 

moment tends asymptotically to the value 

(4.4) 
kh2 

M=-2 ' 

corresponding to a perfectly plastic material, HILL [6]. 
The strip changes its thickness according to the law 

(4.5) h = l!!__(ysa+yl~-V -sa+ y1 +s2 cx2
) 

(X 

as originally established by BRUHNS [1]. The variation of thickness is independent of the 
strain energy function. 
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