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Plastic torsion and tension of naturally uniformly twisted bars 

M. ZYCZKOWSKI and M. GALOS (KRAKOW) 

THE PAPER deals with the problem of plastic torsion and tension of twisted rods made of per
fectly plastic materials. The considerations are based on the Huber-Mises-Hencky yield condi
tion, the Hencky-Ilyushin (or Levy-Mises) plasticity theory and the de St. Venant principle. The 
problem is solved in an original, curvilinear and oblique reference frame~. 1}, C, the stresses and 
strains being considered in a locally orthogonal coordinate system~. 1], z. Such procedure enab
les us to find a relatively simple solution. In the co-ordinate system introduced all the fundamental 
equations are written, i.e., the geometric relations, the compatibility conditions and the equations 
of equilibrium. The paper is illustrated by examples concerning the plastic torsion of a natu
rally twisted rod of square cross-section, and the plastic tension of such a rod. 

W pracy zaj~to si~ rozwiqzaniem plastycznego skr~cania z rozciqganiem pr~t6w zwitych, wyko
nanych z materialu idealnie plastycznego. Skorzystano z warunku plastycznosci Hubera-Misesa
Hencky'ego, teorii plastycznosci Hencky'ego-Iliuszina (lub Levy-Misesa) oraz zasady de St. Ve
nanta. Problem rozwi<tzano w nowo wprowadzonym, krzywoliniowym, ukosnokqtnym ukla
dzie odniesienia ~. 1J, C, przy czym napr~i:enia i odksztalcenia rozpatrywano w lokalnie ortogo
nalnym ukladzie wsp6lrz~dnych ~. 1}, z. Takie post~powanie pozwolilo na stosunkowo proste 
rozwiqzanie zagadnienia. Dla nowo wprowadzonego ukladu wyprowadzono wszystkie podsta
wowe r6wnania, a wi~ zwi<tzki geometryczne, warunki nierozdzielnosci i warunki r6wnowagi. 
Pra~ zilustrowano przykladami plastycznego skr~nia pr~ta zwitego o przekroju kwadrato
wym, oraz plastycznego rozciqgania takiego pr~ta. 

B pa6oTe pemeHbi 3a~atiR rmaCTW-IecKoro Kp~eHIDI c paCTH»<eimeM BllTbiX CTep>KHeH:, Bbi
noJIHeHHbiX ll3 H~eam.Ho-UJiaCTHqecKoro MaTepl{ana. 11cnom.3oBaHI>I ycJIOBilH IIJiaCTWmoCTH 
ry6epa-MH3eca-reHKH, TeopHH IIJiaCTI{qHOCTH reHKH-11m.10illHHa HJII{ neBil-MH3eca ll npHH
UHII CeH-BeHaHa. 3a~atiR pemaroTCH B HOBOBBe~eHHoit KpHBOJII{HeitHoit HeopTOrOHaJThHOit 
CHCTeMe KOOp~aT ~' 1], C, npl{qeM HanpH>ReHHH H ~e4>opMaQHI{ paCCMOTpeHbi B JIOKaJThHO 
opToroHam.Hoii CHCTeMe ~' 1], z. TaKoit no~o~ no3BOJIHJI no~Tb OTHOCHTeJibHO npoCTbiM 
nyTeM pemeHHe 3a~atiR. B npHHHToH: CHCTeMe BbiBe~eHbi Bee ocHOBHbie ypasHeHHH, T. e. reo
MeTpl{qeCKHe COOTHOilleHHH, YCJIOBHH Hepa3pbffiHOCTH H ypaBHeHHH paBHOBeCHH. 11JIJiro
CTp~eit MeTo,qa HBJIHIOTCH pemeHI{H ~aq o IIJiaCTW-IecKoM Kp~eHilll BI{Toro CTep>RHH 
KBa,qparuoro ceqeHilH H o IIJiaCTI{qeCKoM paCTHmeHilll 3Toro CTep>RHH. PemeHHH nonyqeHI>I 
no MeTo~ MaJioro napaMeTpa. IIoKa3aHo, qTQ ~ame npllMeHIDI MeTo~ MaJioro napaMeorpa, 
Tpy~o nonyqi{Tb 34>4>eKTHBHbie pe3ym.TaTbi, ~HTbiBaiOIIUie Bee ypaBHeHHH. IIo3TOMY ~aHbi 
npH6JIHmeHHbie pemeHIDI, y~oBJieTBOPHIOII.Uie ypasHeHHHM pasHoBecHH, yCJioBHIO TeKY
qeCTil, KpaeBbiM yCJioBHHM H ycJioBHHM Henpep~:.mHoCTH, qTo cooTBeTCTByeT CTaTHqeCKH 
~onyCTilMoMy pemeHI{IO . .Il:aHI>I 34>4>eKrnBHI>Ie 4>opMyJibi ~ pacqeTa Hec~eH: cnoco6Hocrn 
npll KpyqeHHH H npll paCTH>ReHilH BHToro CTep>RHH KBa,qparnoro ceqeHHH. 

1. Introductory remarks 

As A NATURALLY uniformly twisted bar we understand a bar created by simultaneous 
shift and proportional rotation of an arbitrary cross-section about a straight axis. The 
corresponding coefficient of proportionality {}0 will be called "unit angle of natural twist". 

The problem under consideration may be applied to determine the limit carrying capa
city of naturally twisted bars e.g., spiral drills (which- usually made of brittle materials
show at elevated temperatures tendencies to plastic collapse), airscrews etc. This problem 
gives also a certain approximation for straight prismatic bars, subject to torsion and with 
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1040 M. ZYCZKOWSKI and M. ALOS 

geometry changes taken into account, since most effects are here similar (cf. W. 0LSZAK 
[9, 10]. 

Elastic torsion of naturally twisted bars was analyzed by G. Yu. DZHANELIDZE [2], 
and G. Yu. DzHANELIDZE and A. I. LuRIE [3]. They derived the basic equation of the 
problem and solved some simple examples. DzHANELIDZE analyzed also the case of tension. 
He determined normal stresses accompanying torsion and shearing stresses accompanying 
tension of naturally twisted bars. Elastic stability of such bars was investigated by L. S. LEI
BENZON [7], and A. I. LURIE [8]. N. A. CHERNYSHEV [IJ considered a similar problem for 
helical springs. 

The investigations in the plastic range are very scarce. We mention here only an approx
imate analysis of fully plastic state of a helical bar, given by D. D. IVLEV [5]. B. R. SETH 
[11] considered finite plastic torsion of a straight bar of circular cross-section. 

The present paper gives general equations describing plastic simultaneous torsion and 
tension of naturally uniformly twisted bars, and some particular solutions. The assumptions 
are as follows: Huber-Mises-Hencky yield condition, incompressibility, theory of small 
elastic plastic deformations (Hencky-Ilyushin; the Levy-Mises theory leads here to the same 
results), finally de Saint-Venant's principle. A new, convenient curvilinear system of coordi
nates is introduced. The lines ~, 'YJ, C (described subsequently by the equations 'YJ = const, 
C = const; C = const, ~ = const; ~ = const, 'YJ = const) are not locally orthogonal, but 
we refer stresses and strains to the locally orthogonal system~' 'YJ, z. All the basic equations 
are derived and solved using this approach. 

2. System of coordinates 

For a naturally uniformly twisted bar with unit angle of natural twist {)0 we introduce 
the following curvilinear system of coordinates: 

(2.1) ~ = x · cos {)0 z + y · sin {)0 z, 'YJ = - x · sin{) 0 z + y · cos {)0 z, C = z. 

In these coordinates the problem of torsion with tension is reduced to a two-dimensional 
case, since all the derivatives of stresses and strains with respect to C vanish. 

To derive basic equations of the theory of plasticity in the coordinates ~' 'YJ, C we trans
form the stresses, strains and displacements to the locally orthogonal system ~' 'YJ, z and 
transform the differentiation with respect to x, y, z into differentiation with respect to 
~' 'YJ, C (Fig. 1). Such an approach, used e.g, by DzHANELIDZE, seems to be the simplest 
in the case under consideration. Thus we express (]x, (]y, (]z, Txy, Tyz, Tzx in terms of(]~;, 
(]TJ' (]n T;,, r,z, Tz~· The transformation of stresses and strains (or strain rates) is a two
dimensional tensorial one: 

(2.2) 
(]x = (]; cos2

{)0 C + (], sin2
{)0 C- 2-r;, sin {)0 C cos {)0 C, 

and the displacements are transformed as ·vectors: 

(2.3) 
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FIG. 1. 

The differentiation is transformed as follows: 

y 

a a a~ a on a at; a . . a 
ox = 8[ax+8r} ox +a[ax = cosD0 t;8[ -smD0 .,a:;j", 

(2.4) ~ = sin D0 t; :~ +cos Dot; 0~ , 
a a a a 

Tz = Do rJ 8[- Do~ a:;}+ -0?; . 

1041 

In what follows, the derivatives of stresses and strains with respect tc t; will be omitted. 

3. Basic equations of the continuum mechanics 

Substituting (2.2) and (2.4) into the equations of internal equilibrium without body 
forces uii.J = 0, we may write the two first equations in the general form 

(3.1) .Q tf ujj] sin D0 t; + .Q 2 [ ui1] cos D0 t; = 0, 

.Qt [O'tJ]cosDo t; -.Q2 [ai1]sin .00 t; = 0, 
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where !J1 and !J2 are some differential operators. Hence !J1 [O'ii] = !J2 [0';1] = 0 and finally, 
with the third equation added, we arrive at the following system: 

aO'E arE, {} ( arEz l: a-r;z ) - 0 
a~ + ---a7J + o 'YJ-ar-~,;---ar)- -r,z - , 

(3.2) arE, aO''l {} ( a-r~z l: a-r~z ) _ O 
ar+ a'YJ + 0 'Y]ar-~,;---ar)+T;z - ' 

a-r~z a-r'lz _Q ( aO'z _ l: aO'z) = O 
a~ + a'YJ + vo 'YJ a~ ~,; a'YJ . 

Similarly, substituting the formulas analogous to (2.2) for strains, (2.3) and (2.4), 

into the Cauchy equations, s;1 = ~ (u;,1+u1,;) we compare the coefficients of the cor

responding trigonometrical functions at both sides of subsequent equations and obtain 

au; au'l aue au'l 
se = ~-, s'l = a'YJ , Ye'~ = a'YJ + 8[' 

(3.3) 

auz {} (' auz l: auz ) 
Bz = ar + 0 'YJ a~ - 1,; a'YJ ' 

auz au, ( au~ au; ) 
Yez = a~ + 7Jf +{}o 'YJ a~ -~ O'YJ -u'l ' 

- au'Z au'l {} ( au'l l: au'l ) 
Y'lz - a'YJ + ac + 0 'YJ a~ -~,; a'YJ +u, . 

Continuing, we transform the compatibility conditions 

(3.4) Btj, kl + B kl,ij- B;k,jl- B jl, ik = 0 
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where the operators A and B are as follows: 

(3.6) a ( a a ) 
A= af 178[ -~arJ , 

For small angles of natural twist {}0 , the first compatibility condition refers to the two
dimensional problem in the plane ~1], the next three conditions - to the elongation ez, 
and the two last ones - to the problem of torsion. 

Finally, we derive the boundary conditions. If the boundary surface of the body is 
described by the equation F(x, y, z) = 0, the stress boundary conditions may be written 
in Cartesian coordinates as follows (W. KRzvs, M. ZYCZKOWSKI [5]) 

(3.7) 

where Pni denote surface tractions, i = x, y, z. Transforming these tractions according 
to (2.3), the stresses according to (2.2), the derivatives as indicated by (2.4), and bearing 
in mind that aFjaC = 0, we arrive at: 

±Pne y F? + F~2 + {}~(rJFe- ~F~)2 = 0' eFe + re11 F~ + {}o(rJFe- ~F~)Tez, 

(3.8) ±pnf1yF?+F~2 +D~(nFe-~F~)2 = re11 Fe+0'11 F~+{}o(rJFe-~F~)r,u 
±Pnz V F? + F~2 + {}~(rJFe- ~F~)2 = TezFe + T11zF~ + {}o(rJF'- ~F~) O'z. 

For a free surface the expressions on the right-hand side of these equations are equal to 
zero. 

4. Theory of plasticity. Discontinuity lines 

Since the stresses and strains are expressed in a locally orthogonal system, the physical 
equations of plasticity are- written in their classical form 

(4.1) D, = q;Da, 

where Da denotes the stress deviator; D. stands here for the strain deviator (the Hencky
Ilyushin theory) or, quite formally, for the strain-rate deviator (Levy-Mises theory). 

The condition of incompressibility yields 

(4.2) 

The Huber-Mises-Hencky yield condition will be written thus: 

(4.3) 

The problem of pure plastic torsion of prismatic bars results, as a rule, in a certain 
distribution of discontinuity lines. An analytical description of them is given by the present 
authors in [4]. It turns out, at least for bisymmetrical cross-sections, that this pattern of 
discontinuity lines remains unchanged in the case of uniformly naturally twisted bars 
with the same shape of the cross-section. 

Consider, for example, a square bar (Fig. 2). For a prismatic bar the discontinuity 
lines coincide with the diagonals. Suppose that for a naturally twisted bar their position 
is changed as shown by the solid line. However, looking at the same cross-section from 
the other side we arrive at the same problem of torsion with the discontinuity lines shown 

25 Arch. Mech. Stos. nr 5-li/72 
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Fio. 2. 

by the dashed line. This fact is contradictory, thus the discontinuity lines must coincide 
with the diagonals. 

To derive the conditions of equilibrium along the discontinuity lines (discontinuity 
surfaces}, we may use boundary conditions (3.8). Across the discontinuity lines the tractions 
must be continuous. Denoting the stresses in the two neighbouring zones (I) and (II) by 
~I) , ~I) , ... and a!11> ~11> , ... , and the equation of the discontinuity line by F(E, 'YJ) = 0, 
we obtain from (3.8) 

c~I>-a~11>)Fe + ('r~~>- T~~I>)F~+ Do(T~~>- T~~I>)('YJFe-EF~) = o, 
(4.4) (T!~>-T!~I))Fe+(~I)_~n>)F~+Do(T~~>-T~~>)('Y}Fe-EF~) = 0, 

(T!!>- T!~I>)Fe+ (T~~>- ~~~>)F~+ DoCo1I>-o111>)('1}Fe-EF~) = o. 

5. Application of the perturbation method 

The problem under consideration is described by 16 equations [three equations of equilib
rium (3.2}, six geometrical Eqs. (3.3}, six physical Eqs. (4.1) and (4.2) and the yield con
dition (4.3)] with 16 unknowns (stresses, strains or strain rates, displacements or velocities, 
and the function fP}. In the limit state it is assumed that these equations hold for the body 
as a whole. 

To obtain a relatively simple solution of the problem, we apply the perturbation method 
with 1?0 being a small parameter. Thus the zeroth-order approximation refers to the 
prismatic bar. The solution of the problems of pure torsion and pure tension are here 
well known; the problem of combined torsion with tension was examined in detail by 
M. WNUK [12]. 

We present the solution in the form: 

00 00 

a11 = J; a11, 11'&, ei1 = 2 eiJ,Do, 
(5.1) n=O n=O 

00 

u1 = 2 ui,-IJ'&, 
n-0 
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In the zeroth-order approximation, ueo = u110 = Te11o = 'Yho = 0; the equations may 
be reduced here to one second-order nonlinear partial differential equation for the dis
placement w, [12]. For the higher-order approximations n ~ 1, we obtain the following 
system of equations, linear with respect to subsequent unknowns: 

(5.2) 

25* 

au,, + OT~'I" - OT~z(n-1) + t: OT~z(n-1) + -ar --aT}- -rJ oE !> OrJ T'1%(n-1)' 

a2ez, B[ ] a'YEz<n-1> A[ ] t:B[ ] arJ2 = 'Y'lz(n-1) + arJ - rJ E'l(n-2) - !> EE(n-2) 

2 ( 
a'Ye11cn-2) t: a'YE11(n-2) ) + rJ aE -!> arJ +e~<n-2>-e,<n-2> , 

2 0
2
Ez, _ A [ ] B[ ] or,zcn-1> oyez<n-1> 

oEorJ - 'Y,z<n-1> + 'YEz<n-1> - OrJ + oE 

A[ ] z:B[ ] 4 (oeecn-2> oe,<n-2>) - rJ 'Y~'~<n-2> + \0 'Ye11<n-2 > - rJ oE - oE 

+4E( OE;(n-2) - oe,(n-2)) +4 
01J OrJ 'Ye,<n-2) , 

0
2

'Y17zn _ 0
2
'Yezn = _ 2B[e ]+A[ ]+2 (oe;(n-1) _ oe,<n-1) + O'}'e11(n-1)) 

oE2 orJoE E<n-t> 'Ye11<"- 1' oE oE orJ ' 

0
2

'Y11zn _ 0
2
'YE:n = 2A[ ] -B[ J- 2(oE;(n-1) _ OE11(n-1) _ O'}';,(n-1)) 

oEorJ OrJ2 e,<n-
1> 'Ye11<"- 1

' orJ orJ oE ' 

, 
E:n- E;n = .2: tp;( Uz(n-i)- U;(n-i)), 

i=O 

n 

Ezn- E'ln = .2: tp;( Uz(n-i)- C111(n-i)), 
1=0 

n 

'YE11n = 2.2: (/JITE'I(n-i)' 
i=O 
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11 

'YfJZrl = 2 4 ({l(ff/!.(11-i)' 
1=0 

11 

'Y;zn = 2 2 ({1(7:;z(n-i)' 
1=0 

11 

M. ZYCZKOWSKI and M. GALOS 

2 [O';i O';(n-f) + O''lf O'fJ(rt-f) + O'zi O'z(n-f)- O';i O''l(n-i)- O''li O'z(n-i) 
1=0 

- O'ztO';(n-f) +3T;'lt'fefJ(n-i) + 3T;z(t'b(n-t)+ 3T,z(t'fJ:(n-i) = 0. 

The operators A and B are here determined by (3.6). In some cases it is more convenient 
to replace the compatibility conditions by the relations (3.3), which may be expanded into 
power series without any trouble. 

The boundary conditions (3.8) at the free lateral surface of the bar yield 

(5.3) 

O';,.Fe+ T;,,.F~ = - (rJFe-~F~) Tez<n-1>, 

T;,,.Fe+O''I,.F~ = -(rJFe-~F~)Tf'jz<n-1)' 

T;znF~+Tf'JznF~ = -('Y}Fe-~F~)O'z(n-1)• 

Similar conditions along the discontinuity lines may be obtained from (4.4). Effective 
solutions of the system (5.2) with boundary conditions (5.3) depend on the shape of the 
cross-section of the bar. 

Extemalloadings, determining the limit carrying capacity of the bar (plastic interaction 
curve in the combined case) are given by the formulas 

00 

N = 2 D~ j j O'zn dA, 

(5.4) 
n=-0 A 

00 

M= 2 D~ f f (Tf'JZri~-T;zn'YJ)dA, 
11=0 A 

A being the cross-sectional area of the bar. 

6. Example of pore torsion 

6.1. Basic equations 

As the first example, let us consider pure torsion of a bar with square cross-section 
with the side 2a. The zeroth approximation, corresponding to a prismatic bar, is here very 
simple. In view of the fourfold symmetry of the cross-section, let us consider only the 
octant I, 0 ~ ~~a, 0 ~ 'YJ ~ ~' and conditions along the borders with zones 11 and Ill 
(Fig. 3). The symmetry conditions lead namely to the following ~elations between the 
stresses and strains inside the zones I, 11, and Ill. The functions O'e, O'f'J, O'z, Tzf'J' the cor
responding strains and ({'being symmetrical with respect to the axis~' thus fulfil the rela
tion f<n> (~, 'YJ) = f(l> (~, -rJ). The functions Tz;, T;f'J' 'Yze and 'Ye'l are antisymmetrical 
ones, thus f(IIJ (~, 'YJ) = - f(l> (~, rJ). Further, the solution for the zone Ill may be obtained 
from the zone 11 by a simple rotation of the bar. Thus O'~m> (~, 'YJ) = 0'~11 > ('YJ, -~),and 
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similarly ez and p, a~m) (~,'f)) = a~n) ('f), -~),and similarly arJ, TzrJ' e~, e11 , and "Yz11 , finally 
r~~II) (~,'f)) = - r1~1 > {'f), -~), and similarly Tz~' y~rJ and "Yze· 

For the octant I of the prismatic bar we have in this case 

T;zo = 0, 

(6.1) 

O'~o = a,o = O'zo = e~o = e,o = Ezo = 0. 

In these formulas {} denotes the unit angle of twist, due to the action of the twisting mo
ment M (Hencky-Ilyushin theory; in the limit state we have to assume here {} -+ oo ), or 
the rate of the unit angle of twist (Levy-Mises theory). 

Discussing now the first approximation, n = 1, we may split the system (5.2) into 
three parts. The third, eigth, ninth, fourteenth, fifteenth and sixteenth equations form 
a linear homogeneous system with respect to the unknowns: T;z1, r,z1, "Ybt, "Yrrzl and 
p 1 ; the corresponding third boundary condition (5.3) is also homogeneous, thus TEz1 =. 

= Trrzl = "Yez 1 = "Yrrzt = cp 1 = 0. This result is very important, since it turns out that: 
the natural twist has no influence on the limit torque in the first approximation, its effect 
will be seen only through the second-order terms. The fifth, sixth and seventh equations 
determine the strain Ez 1 - namely: 

(6.2) 

Hence, after substitution and integration: 

(6.3) 
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The remaining seven equations form a system analogous to that describing the plane problem 
of the theory of elasticity with body forces: 

(6.4) 

'YErrl = 2qJ0r;,h E;1 +e,1 +ezt = 0. 
We introduce the stress function cp 1 , 

o2c/J1 o2c/J1 o2c/J1 
(6.5) O'el = arj2, O'rrt = ~, Terrl = - O~O'YJ +k'Y} 

and express O'z 1 and the strains in terms of cp 1 ; substituting them into the compatibility 
condition, we obtain the following linear partial differential equation of the fourth order: 

(6.6) (~-"')V4t/> 1 +2(~:~ - :'I) V'tf>t = 4k. 
This equation must be satisfied within the triangle 0 ~ ~ ~ a, 0 < 'YJ < ~. The boundary 
conditions (5.3) are here as follows: 

a2~ a2~1 
(6.7) _'l'_l = 0 'I' 2k 1 t: O'YJ2 ' a~a'YJ = 'YJ' a ong ~ = a. 

The continuity conditions ( 4.4) along 'YJ · = 0 yield at first 

(6.8) 

now, -re, is an antisymmetrical function of 'YJ, thus simply r;, 1 = 0 along 'YJ = 0, and the 
second condition is fulfilled automatically in view of the symmetry of a,. The conditions 
(6.8) may be rewritten in the form 

(6.9) 
02

4> 1 = 0 along 'YJ = 0. 
a~a'YJ 

The continuity conditions ( 4.4) along ~- 'YJ = 0 yield at first 
0'(1) _ 0'(111) _.,.(I) + op(lll) + 21'J('P(I) _ T(Ill)) - 0 

El El "Eifl "Errl ·t. "E:zo e:zo - ' 
T(I) - 'P'(III)- O'(I) + O'(III) + 21'l(T(J) - T(III)) = 0 

Elfl "e"t ,1 rrt ., ,zo .,zo • 
(6.10) 

Expressing the stresses in the zone Ill by those in the zone 11, and subsequently in the 
zone I, we find agn>(~, 'YJ) = a~~1 >('YJ, - ~) = a~?('YJ, ~), similarly a~\u>, and Tgi1>(~, 'YJ) = 
-r!~?('YJ, -~) = T!~H'YJ, ~);further T!~6 = T~~~> = 0, r~~~> = -k, r~~b = k, and both Eqs. 
( 6.1 0) give the same result 

(6.11) a!P- a~ V+ 2'Yjk = 0 

or 

(6.12) 

The Eq. (6.6) with the boundary conditions (6.7), (6.9) and (6.12) determines the distri
bution of the first-order corrections in the naturally twisted bar. 
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As already indicated these corrections have no influence on the limit torque. To evaluate 
this influence we have to discuss the second approximation, at least. Considering this 
approximation, we find the situation quite opposite to that at the stage of the first one. 
Now, the system of the first, second, fourth, fifth, sixth, seventh, tenth, eleventh, twelfth 
and thirteenth Eqs. (5.2) is a linear homogeneous system with respect to the unknowns 
a12 , u,2, O'z2, -r1, 2 , Ee2, e,2, Ez2 and Ye,2; the corresponding boundary conditions are 
also homogeneous thus all these unknowns are equal to zero. 

The remaining second-order corrections are determined by the remaining equations. 
The last equation - the expanded yield condition - makes it possible to evaluate directly 
the stress Tz112 , namely: 

(6.13) 

The third equation of equilibrium may now be used to determine Te212 : 

(6. 14) ih:ez2 _ i31:z,_~ = _'YJ OO'zl +e OO'zt 
oe O'YJ ae a"~ · 

This equation is furnished with the boundary condition 

(6.15) 

The remaining compatibility conditions may be rearranged (making use of the compati
bility condition joining eu, e,1 , and Yl17 1) and integrated subsequently with respect to 
e and "'· Then they are reduced to one common equation 

(6.16) 0)1'1:2 0)1;:2 - 2 OE;l 2e oe'11 e 0)1:'11 0)1;'11 c ar-- a:YJ- - "~a:YJ- ----ar + arJ +'f}ar + , 

which together with the remaining physical equations 

(6.17) 

determine the unknowns Ye: 2 , Y'1:2, and q;2 • 

The formulas for T;:2 and_-r'1:2 make it possible to find the second-order correction 

for the limit twisting moment M. 
In the odd higher-order terms we have always T;:n = Tz'~" = Yezn = Y'l:n = q;,. = 0, 

and in the even ones we have u;,. = u'l,. = 0'2111 = T;'~" = e;,. = e'l" = Ez" = Ye'~" = 0. 

6.2. A statically admissible solution 

Even in spite of the perturbation method applied, the solution of the system of linear 
equations obtained is complicated. For example, the fourth-order partial differential 
Eq. (6.6), singular along the line e-"1 = 0, is to be solved with the boundary condition 
(6.12) along this line. To obtain a simple analytical solution we apply here a statically 
admissible approach, solving only the equations of equilibrium, yield condition, the 
boundary conditions, and the conditions of continuity along the discontinuity lines. At 
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1050 M. ZYCZKOWSKI and M. GAWS 

each stage we have four equations with six unknown functions (stresses), thus two functions 

will be chosen arbitrarily. The limit twisting moment M obtained then gives a lower estim
ation of the exact solution. 

The zeroth-order approximation is determined exactly, (6.1). Proceeding to the first
order approximation we find first the only statically admissible distribution of T~z1 and 
r 17z1 -namely, TEz1 = T1Jz1 = 0. The remaining equations do not contain the unknown 
C1z1 , which will appear only in the equations of the second approximation. Thus we 
may choose here only one function arbitrarily. We assume r~711 in the form: 

(6.18) Tt.1 = -fJk[x+{l-~)!]. 
where a is a free dimensionless parameter, to be found later from the condition of max
imal twisting moment; the corresponding boundary condition (6.7) is already satisfied. 

Integrating the equations of equilibrium and making use of the boundary condition 
for a~1 and of the continuity condition along ~ -n = 0, we find 

O'lt = k[ {I+ ~)(~-a)+ {1- ~) ~22a a2]. 

a.1 = 2k~ +k[ {I+~)(~ -a)+ (I-~) '1
2

;:a
2J (6.19) 

Starting with the second-order approximation, we assume first a~2 = a'l2 = r~1J2 = 0. 
Although these functions are determined only by the two first equations of equilibrium 
and one of them may be chosen arbitrarily, the assumed choice is the best one, since
as we found in sec. 6.1. -it is exact. The remaining two equations contain az1 , T~z2 , 

and r
17

z2 • The distribution of the stress l1z 1 must correspond to zero normal force N1 = 0. 
We assume, quite arbitrarily, O'z 1 = 0, then the yield condition (6.13) determines T1Jz2 : 

(6.20) 
k [ (1 cx) 2 

T'7z2 = -6 4~2+ ~2 (~4+n4+a4+ 11~21'J2-~2a2-n2a2) 

1-cx2 

+ ~ce+n2~-ea-n2a-2~a2 +2a3)+2(1 +cx)(e-~a) 

The third equation of equilibrium and the boundary condition (6.15) determines finally 
Tez2: 

(6.21) k [(1- a)2(4 3 I: 4 3 22 t:3 22 3 t: 2 2 3) rez2 =- --- 17 ~- 17 a+-1]c; --na -2n~a + na 
6 4a2 3 3 

I- cx 2 I-a 
+ -2- cne -na2

- 2r;~a + 2na2
) + --(2ne- 2na2

) a a 

l-ex J +6a-a-(1'J~2 -na2)+6cx2 (r;~-na) . 
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PLASTIC TORSION AND TENSION OF NATURALLY UNIFORMLY 1WISTED BARS 1051 

Thus the second-order approximation of the statically admissible solution is fully determin
ed. The most interesting stresses -r'lz and -r~z are shown in Fig. 4 in the zeroth and in the 
second approximation for {}0 a = 0.3. 

~Tqz[k] ----------:::-;.i 
-- - , .... r1"'1 

1.0 ~-.--~ "":/' .,...., I 
..... ~ ?( 
~ ,....._~~ /7" -- , ........ ,...,...,...__ / "' 

as ~,...-,... ~~ ,..., 

Q6 

Q2 

a 

FIG. 4. 

The limit twisting moment M is given by the integral (5.4) taken over the considered 
octant and multiplied by 8: 

(6.22) 

The optimal value of the parameter ex corresponds to the maximal moment M, thus to the 
minimal value is in the bracket; we obtain ex = -3.74, and the best approximation is 
as follows: 

(6.23) 

This moment cannot be smaller than the limit moment for the circular bar with the radius a 

(inscribed in the considered square bar), M 0 = ~ nka3 • The last value may be regarded 
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1052 M. Zvczx:oWSKI and M. GALOS 

as asymptotic, good for 1J0 --+ oo. To improve the accuracy of the series (6.23) we propose 
a certain approximation, which takes into account also the asymptotic value. Assume, 
namely, the following approximate formula: 

(6.24) M = _!_k 3 1 +B1J~ 
3 a 1+C1J~ · 

The requirements of the agreement of the expansion of (6.24) with (6.23) and of the given 
asymptotic value determine B and C. Thus for practical application we propose the formula 

(6.25) M= _!_k 3 I +0.1701J~a2 
3 a 1 +0.2161J~a2 • 

The dependency of the limit twisting moment M on the unit angle of natural twist 1J0 

is shown in Fig. 5. 

0 

-Q=~~~----------' ' 8 3 ' 5 t · 
M-1.nka3 ', M-9 ka-a124ka z1'o 

3 \ 

Fio. 5. 

\ 
\ 
\ 
\ 

\ 
\ 

7. Example of pore tension 

As the second example we consider pure tension of a naturally twisted bar with square 
cross-section. The perturbation method combined with the statically admissible approach 
will be used. 

The zeroth approximation refers to a prismatic bar, thus Uzo = u0 , and the remaining 
stresses vanish. 

The first approximation in stresses is determined by four homogeneous equations 

(7.1) 

with the boundary conditions, some of which are non-homogeneous: 

(7.2) 
uu = 0, re'1 1 = 0, rez1 = -rJU0 for ~ = ±a, 

u111 = 0, re111 = 0, r 11: 1 = ~u0 for 'Y) = ±a. 

http://rcin.org.pl



PLASTIC TORSION AND TENSION OF NATURALLY UNIFORMLY TWISTED BARS 10S3 

We assume O'e1 = a,1 = 0'1:1 = Te,1 = 0 (this assumption may be proved to be exact), 
further 

(7.3) 

( 
7}2_ 0 2) 

T'lz1 = Ea0 1 +ex 02 . 

The coefficient ex cannot be regarded here as free, since we have to impose the condition 
of no twisting moment M 1 = 0 (condition of external equilibrium) hence ex = 3/2. The 
first approximation has no influence on the limit normal force N. 

The second approximation in stresses is determined by the following four equations: 

oae2 oTe'~2 _ 3 t: 37J2
- E2 

8r + ---a:r} - TO'os- a2 ' 

(7.4) 
OTEf]2 00''12 3 3E2

- TJ2 
8r + ---a:r} = 20'oTJ a2 ' 

}Tez2 + OT'Iz2 = 0 
ae aTJ ' 

[
9E2 TJ2 1 (27E2TJ2 ) J 2a.2-0'e2-a,2 = O'o ~- 4 ~- -3 (E2+7}2) , 

with the boundary conditions 

O'e2 = 'YJ
20'o, 

( 3 712_a2) 
Tez2 = 0 for E =±a, Te,2 = - TJDO' o 1 + 2 a2 ' 

(7.5) 
( 3 e-a2) a,2 = E20'o, Te,2 = -Ea0'0 1 + 2 02 , T'1z2 = 0 for 'YJ =±a. 

We assume Tez2 = T'lz2 = 0 (this assumption may be proved to be exact), further, to 
satisfy the boundary conditions, 

(7.6) ( 
3 e2+TJ2 ) 

Te,2 = -ETJO'o 2~ -2 • 

The equilibrium equations with the remaining boundary conditions determine now the 
stresses O'e2 and a,2 : 

(7.7) 
"u = "•[i:2 (9~2-7a2)-(~2-a2)J. 
"•2 = "•[ ;2 (91]2 -7a2)- ('12-a2) l 

and the yield condition gives the distribution of 0' z 2 : 

(7.8) 
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1054 M. ZYCZKOWSKI and M. GALOS 

Integrating the stresses a. over the cross-sectional area we find the limit normal force 

N =I I uz</A = 4a2 u0 ( 1- ! D~a2 + ... ). 
..4. 

(7.9) 

This force cannot be smaller that the limit force for the circular bar with the radius a (inscri
bed in the square bar considered), N 0 = na2 a0 • Treating the last value as an asymptotic 
one, we assume the following approximation 

= l+BD~ 
(7.IO) N = 4a

2
Go I+ CD~ 

the requirements of the agreement of the expansion of (7 .1 0) with (7 .9) and of the given 
asymptotic value determine B and C. Thus for practical applications we propose the 
formula 

(7.11) 
N _ 

4 2 I +0.733D~a2 

- a ao I +0.933D~a2 

The dependency of the limit normal force Non the unit angle of natural twist D0 is present
ed in Fig. 6. 
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