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Optimum design of vibrating beams under axial compression 

B. L. KARIHALOO and F. I. NIORDSON (LYNGBY) 

A solution is found to the problem of determining the shape of a simply supported laterally 
vibrating beam that has the highest possible value of the first fundamental frequency under 
a given axial compressive load. The length, volume and the material properties of the beam are 
assumed to be given. The cross-section is allowed to vary in such a way that the bending rigidity 
is proportional to the first, second or third power of the mass per unit length of the beam. 

Znaleziono rozwi~zania zagadnienia wyznaczania takiego ksztaltu swobodnie podpartych belek 
drgaj~cych W kierunku poprzecznym, dla kt6rego przy danej sile sciskaj~cej podstawowa CZC(S

tOSC drga.D. osi~a wielkosc maksymaln~. Dlugosc, obj((tosc i wlasnosci materialowe belki przy
j((to jako wielko8ci ustalone. Uwzgl((dniono takie zmiennosci przekroju poprzecznego belki, 
przy kt6rych sztywnosc zginania jest proporcjonalna do pierwszej, drugiej lub trzeciej pot((gi 
g<(stosci Iiniowej belki. 

HaH:,IJ;eHbi pernemm npo6JieMhi onpe,IJ;eJieHIDI Tal<OH <l>opMbi cBo6o,IJ;Ho no,IJ;nepTbiX KoJie6mo
IIUIXCH 6aJIOK B nonepe'lHOM HanpaBJieHHH, ,!J;JIH KOTOpOH - npH 3a,ZJ;aHHOH C.H<HMarow;e:H 
cHJie- OCHOBHaH llaCTOTll KOJie6aHHH ,!J;OCTHI'aeT MaKCHMaJIDHOH BeJnlllHHbl. ,Umma, o6'beM 
H MaTepHam.Hhie CBOHCTBa 6aJIKH npHHHThi KaK yCTaHOBJieHHbie BeJIHliHHbi. YllTeHbi TaKHe 
H3MeHeHHH nonepe'lHoro ce11eHHH 6aJIKH, npH KOTopbiX »<eCTKoCTb H3rH6a nponop~.U~omuiLHa 
nepBOH, BTOpOH HJIH TpeTeH CTeneHH JIHHeHHOH UJIOTHOCTH 6aJIKH. 

1. Introduction 

THE PRESENT paper is devoted to determining the shape of a simply supported vibrating 
beam that has the highest possible value of the first fundamental frequency w0 • The beam, 
which is made of a linearly elastic material, is undergoing small, harmonic vibrations in 
the lateral direction and is subjected to a given axial compressive load that may be less 
than, equal to or greater than the Euler buckling load for a corresponding beam of uniform 
cross-section. In particular, we are interested in evaluating the effect of axial compression 
on the shape of the beam, optimally designed in the above sense. 

Problems of the optimum design of vibrating elastic elements have received consider
able attention in recent years. NIORDSON [1], considering a simply supported beam with 
geometrically similar cross-sections, maximized the fundamental frequency of transverse 
vibrations by appropriate tapering of the beam. BRACH [2] considered a whole group of 
Bernoulli-Euler beams with all sets of homogeneous boundary conditions and optimized 
their shape with respect to the fundamental frequency of transverse oscillation. The cross- · 
section in these case was allowed to vary in such a way that the second area moment was 
linearly related to the area. In particular, it was shown that the fundamental frequency of 
a cantilever and a free-free beam is unbounded. This result has been verified for a cantilever 
beam by more elaborate mathematical and physical reasoning by KAlu:HALOO and NIORDSON 
[3] and VEPA [4]. In [3] the authors optimized the shape of a cantilever beam with respect 
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to its fundamental frequency, assuming the bending rigidity to be proportional to the 
first, second or third power of the mass per unit length of the beam. The first case was 
shown to .be degenerate in the absence of non-structural mass, which confirmed the 
above-mentioned result obtained by BRACH. Mention should also be made of the 
classical problem of finding the optimal shape of a Bernoulli-Euler column subjected to 
a compressive load. The correct solution to this problem was first arrived at by CLAUSEN 
and then, independently, by KELLER [5]. It was found that by appropriately tapering 
a column of circular cross-section its critical buckling load could be increased by 
one-third in relation to that of a uniform column of the same material, volume, length 
and cross-sectional shape. The case solved in [5] lies at one extremity of the present study, 
while the other is formed by [1]. Our analysis follows closely that of ref. [1] and [3], though 
the extension, we believe, is by no means trivial. However, some occasional repetition is 
unavoidable for the clarity of presentation. 

It is easy to show that if a rectangular cross-section has a fixed width and variable 
height, the bending rigidity is proportional to the cube of the mass per unit length. If the 
height and width vary with constant ratio (geometrically similar cross-sections), the bend
ing rigidity will be proportional to the square of the mass per unit length. Finally, if only 
the width varies, the proportion will be linear. We shall thus assume in the sequel that the 
bending rigidity El and the mass per unit length of the beam are related as follows: 

(1.1) 

where A is the area of the cross-section and c a constant depending implicitly upon n and 
n = 1, 2 or 3. It will subsequently become clear that for n = 1 and in the absence of axial 
compressive load, the optimum shape corresponds to the uniform beam, i.e. no increase 
in the fundamental frequency in relation to that of the uniform beam is possible. 

2. Transverse vibrations of a tapered beam 

From classical vibration theory, we know that a linear elastic beam subjected to an 
axial compression can vibrate harmonically in any one (or linear combination) of an 
infinite number of characteristic shapes. The differential equation of motion and the bound
ary conditions can be written in a non-dimensional form as: 

(2.1) (a" Y")" + Ky"- ay = 0, 

(2.2) 
y(O) = y(I) = 0, 

a" y" (0) = a" y" (1) = 0. 

Here, y denotes the amplitude of the lateral deflection, and a dash indicates differentiation 
with respect to the non-dimensional coordinate along the beam x = ~I I, where l is the 
length of the beam. The non-dimensional area function is denoted a = AI/V, where V is 
the total volume of the beam and is assumed to be given. Furthermore, the following 
non-dimensional parameters have been introduced: 

(2.3) 
yJ3+11 

A. = w2 EcV"-1 ' 
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(2.4) = pJ2+n ( = pJ2) 
K Ecvn El ' 

where c is the constant defined by the relation (1.1). 
Observe that for a uniform beam, K corresponding to the Euler buckling load equals 

Kor = n 2 • It is thus expedient to introduce another non-dimensional parameter in place 
of K, viz, K* defined by K* = K/Kor· 

From the definition of dimensionless area function et, it follows that 

1 

(2.5) J etdx = 1. 
0 

The variational method used here for solving the optimization problem is similar to 
that used in Ref. [I] and [3]. Our aim is to determine that non-negative function et(x), 
if one exists, which makes the first fundamental eigenvalue A. a maximum. 

If (2.1) is multiplied by y and integrated over the range 0 and 1, an expression of the 
following form is obtained for A.: 

1 1 

J etn(y'')ldx-K J (y')2dx 
(2.6) ., 0 0 

A= ------~1-----------

J ety2dx 
0 

To obtain the numerator in the above expression, integration by parts was carried out 
and the boundary conditions (2.2) were invoked. 

Note that the maximum attainable value of K is given by 

1 

J etn(y'')2dx 
(2.7) Kmax = _o.....,...l ----

J (y') 2dx 
0 

In determining an expression for et, we follow the variational procedure outlined in 
[I] and arrive at 

(2.8) 

which can be rewritten as 

(2.9) netn(y")2- A.ety2 = A.eta2, 

where a2 is a number independent of x. 
At this stage let us study the case when n = I, i.e. when the bending rigidity of the 

beam is linearly proportional to its mass per unit length. In this case Eq. (2.9) takes the 
form 

(y")2 -A.y2 = A,a2 

which, after integrating from 0 and I and together with (2.6), leads to 

1 1 

J A.a2dx = K J (y')2dx. 
0 0 
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It is thus clear that when K = 0, i.e. in the absence of axial compression, a2 = 0 and hence 

y" = ± y'Iy. 

In other words, for n = 1 and in the absence of axial compressive load, the optimum shape 
corresponds to the uniform beam, i.e. no increase in the fundamental frequency over that 
of the uniform beam is possible. 

This result obviously does not hold good if K =F 0. The problem in this case is identical 
to that of a cantilever beam with a non-structural mass at its end. This question has been 
studied in detail in [3]. 

Solving Eq. (2.8) for a, we get 

(2.10) 
= [!:_ a2 + y2 ]1/(11-1) 

a n (y")2 ' n > 1. 

Multiplying both sides of (2.8) by a and integrating over the range 0 and 1, we find 

1 1 

(n -1) J a11 (y")2dx+ K J (y')2dx 
(2.11) a2 = _____ o ____ ~~---o ____ __ 

A 

from which it follows that a2 is positive for all n ~ 1. Substitution of a [Eq. (2.10)] 
Eq. (2.1) yields the following nonlinear differential equation for y: 

(2.12) 
a y , , a y 

{[ 

2 + 2 ]
11
/(ll-1) }" K [ 2 + 2 ]1/(11-1) 

n(y")2 Y + All/(11-1) Y - n(y")2 Y = 0. 

into 

Let us assume that the solution y(x) is symmetric with respect to x = 1/2. Instead 
of the boundary conditions at x = 1, we then have the following at the mid point: 

(2.13) {
·[ 2 + 2 ]1/(11-1) }' 

y'(l/2) = ~(y'~2 y" X=lf2 = 0. 

The nonlinear differential Eq. (2.12), together with the boundary conditions at x = 0 
and x = 1/2, constitutes the transformed (nonlinear) eigenvalue problem for the new 
parameter a2 (the eigenvalue). 

Substitution of a from (2.10) into (2.5) and (2.12) leads to the following system of 
implicit equations for determining a2 and A (n > 1) 

1 

J
. {!:_ a2+y2 }1/(11-1) _ 

n ( y")2 dx - 1 
0 

(2.14) 
1{A 2 2}1/(11-1) 

(n-1) [ n ~y~~ (y") 2dx+K(y')2dx 

A 

Here we will consider two specific cases, namely those corresponding to n = 2 and 3. 
It is expedient in such optimization problems to analyse the behaviour of the solution 

near x = 0 before attempting to solve the differential Eq. (2.12). The procedure is similar 
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to that used in [3]. The solution y(x) near x = 0 is assumed to be expandable in a power 
series of x with a characteristic term bx". This term is substituted in the differential Eq. 
(2.12), and the coefficient of the leading term is equated to zero for evaluating the smallest 
non-integer value of k. The calculations give 

( -nk+2p-k+2)( -nk+p-k+3) = 0, n > 1. 

Specifically for n = 2 and 3, we have, respectively 

k = 5/3 and 3/2. 

It is easily verified that a solution of the form 

(2.15) y = a1 x+a2 x 2 + ... +bx + ... 
satisfies the boundary conditions (2.2) at x = 0. 

3. Solution by successive iterations 

It is not possible, in general, to obtain a solution of the nonlinear differential Eq. (2.12) 
in a closed form, and hence some sort of a numerical technique has to be used. The method 
of successive iterations applied here is essentially similar to that employed in [3] and is 
based on a formal integration of the differential equation, satisfying one of the boundary 
conditions at each integration stage. The iteration procedure is elucidated here with respect 
to n = 3, while the results are reported for both n = 3, n = 2. 

Integrating (2.12) twice and satisfying the boundary conditions at x = 1/2, we get 

( a2;y2 )3/4 
(3.1) y" (x) = --=-------::--;-;:--_.;__---~--=-=--

[ 

x 112 1( a2+y2 )"
2 

J ]
1

'

2 

• 

[ [ ~" y- A!2 y dxdx 

Care has been taken here to separate the differential operator of the highest order on the 
left-hand side "in order to assure convergence of the successive iterates. 

Because of the square root type of singularity exhibited by y" near x = 0, the iterations 
cannot be carried out directly, but as indicated by the expansion formula (2.15) we can 
define a finite function g(x) in the closed interval 0 ~ x < 1/2 as follows: 

(3.2) g(x) = -x1
'
2 y"(x). 

The iterative procedure to give cx(x) and A is carried out in the following sequence 
1/2 

y~(x) = J g(x)x- 1
'
2dx, 

X 

ii y,.(x) = J y~(x)dx, 
0 

iii A = ---:-:-=-----0_.2_5 __ _ 

[
1/2 ]1/2 ' f A:(x)x112 dx 
u 
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1/2 2 2 1/2 

4A312 J A*(x)x1' 2 a +y,., dx+2K J y~dx 
0 

3 
0 a2- ---------=--------" - A 

where 

(3.3) A*(x) = a,.+y,. -. 
[ 

2 2 ]1/2 1 
3 g,. 

Observe that the expressions for a2 and A are implicit and the parameters a2 and A 
are therefore determined in a substage within the main iteration loop. 

iv 

X 1/2 

M.+' (x) = J J { A:(x)x1
'
2y.(x) + A !2 g.(x)x-''2} tfx2, 

0 X 

V 

[
a2+y! ]3J4 

·c ) _ _ "C ) 112 _ _ 112 3 
g,.+t X - y,. X X - X -=±=-~-M-,.-+-1(--=x=-)j-::-1/~2 • 

In the above expression, the sign before the braces is chosen such as to make g,.+ 1(x) 
positive in accordance with our sign convention. 

The iterations were started with an arbitrary regular function g(x). The functions g, 
A*, y' and y were obtained within a few iterations. y" was calculated from the relation (3.2). 

Finally, the area function a(x) (which to a suitable scale also represents the depth 
variation along the length) of the optimum beam was computed for various values of the 
non-dimensional axial compression K from the following expression [obtained by putting 
(3.3) into (2.10)]: 

(3.4) a(x) = (A)1'2A*(x)x1'2• 

We derive below certain expressions that will be useful subsequently. 
Substitution of (2.15) into (2.10) shows that the area function a is proportional to 

x 2
'
3 for small values of x when n = 2, and the linear dimension - or diameter- of the 

cross-section is thus proportional to x1
'
3 near x = 0. Similarly, for n = 3, the linear dimen

sion (or height) is proportional to x 1
'
2

• The proportionality factor can be evaluated from 
Eq. (3.4) for ·n = 3 and from a similar expression for n = 2. In fact, for n = 3, the factor 
is directly given by 

(3.5) C = (A)1f2A*(x) = - a +y x . (
A )112 ( 2 2( ))112 

3 g(x) 

For n = 2, the corresponding proportionality factor of the linear dimension ( a1
'
2

) is ex
pressed by 

(3.6) 

Furthermore, let us express Cl in terms of its percentage deviation relative to C0 cor
responding to K* = 0. Subscript attached to C refers to the particular value of K*. The 
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expression for the percentage . variation in Cl near x = 0 has the following form: 

(3.7) {Cx~~Co} x 100 = 100[( t*)"2

{ ai:;:i* . iJY~ r -1]. n;. I. 
In particular, at x = 0, (3. 7) reduces to 

(3.8) {CK*- Co} x 100 = too[( A.K* )1'2 aK* • Ko* -1] ' n ~ 1. 
Co x=O Ao ao KK x=o 

As in Ref. [1] and [3], numerical integration was carried out by sub-dividing the inter
val 0 ::::;; x ::::;; 1/2 into a sufficient number of equal parts and applying the trapezoidal rule. 

FIG. 1. Percentage variation in radius 
for various values of K* relative to 
reference shape K* = 0,0 for n = 2 

(Fig 2). -3.0 

The mesh length d was suitably varied so that the result could be extrapolated to d = 0 
by means of Newton's rule. 

Figures 2 and 4 show the variation of one half of the linear dimension of the cross
section (radius or one half of the depth depending upon n) as a function of the non-dimen
sional x for K = 0. The parameter K has been scaled with respect to KcrC = n2

) correspond
ing to the Euler buckling load of a uniform beam with the same volume, material and 
length (indicated by dashed lines in the figures) as the optimum beam. Similar diagrams 
could be drawn for other values of K*. However, the variation in the optimal shape with 
a change in K* proves to be small in relation to the optimal shape for K* = 0. Thus, it 
was found convenient to exhibit the percentage change in one half of the linear dimension 
of cross-section relative to the reference shape corresponding to K* = 0. These percentage 

FIG. 2. Reference shape x• = 0,0 
n = 2. ·-t-· -·-+-·-+---·+-·-· -·-·-+--· 

0 1.0 
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FIG. 3. Percentage variation in depth 
for various values of K• relative to 

reference shape x• = 0,0 for n = 3. 

FIG. 4. Reference shape x• = 0,0 
for"= 3. 

variations are shown in Figs. 1 and 3, respectively. Here it is necessary to add a word of 
caution regarding the percentage variation in the linear dimension near x = 0 and, in 
particular, at x = 0. It should be noted that, although the absolute value of the linear 
dimension tends to approach 0 as x -+ 0, its percentage variation relative to the linear 
dimension forK* = 0 increases to a finite value as x-+ 0. This follows from an analysis 
of the Eq. (3.7). In order to appreciate this fact, the respective percentage variations at 
x = 0 have been tabulated in Table 2 for n = 2 and 3 and for various values of non
dimensional axial load parameter K*. 

Table 1. Ratio of V A (Acr = n4 ) for various values of K• (value of Kmax 
Acr 

noted in each case) 

~I 0 0.25 0.5 1.0 1.33 1.37 

2 1.066 0.960 0.842 0.533 (kmaJ 
3 1.119 1.012 0.901 0.607 0.257 (kmaJ 
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The ratio of the optimal lowest frequency ro0 to that of the uniform beam with the same 
volume, material and length as the optimal beam is presented in Table I for n = 2 and 
3 and for various values of K*. 

Table 2. Percentage variation in one half of the linear dbnension for various values of K* at x = 0 

~I 0 0.25 0.5 1.0 1.33 1.37 

2 0 6.19 12.25 24.05 
3 0 3.04 6.02 11.42 15.31 

Finally we note that optimum shapes corresponding to K = 0 and K = Kmax for the 
beam with geometrically similar cross-sections (n = 2) approximate almost exactly the 
results of Refs. [1] and [5], respectively. However, for n = 3 the maximum value of K 
(Kmaz = 1.37) attained by us in a successive incremental procedure is less than that obtain
ed in [6] by about 3%. In [6] the result was arrived at in a closed form by a direct analysis 
of an expression of the type (2. 7). 
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