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Moving load on a solid-solid interface: supersonic regime 

T. C. KENNEDY and G. HERRMANN (STANFORD) 

THE PAPER is devoted to the problem of a moving point force on as solid-solid interface. The steady
state solution for supersonic load velocities was obtained through the use of DeHoop modifi
cation of Cagniard's technique, and the displacements in the two solids are presented. 

Rozpatrzono problem poruszajllcej sict sily punktowej, dzialajl!cej na powierzcbni styku dw6ch 
cial stalych. Otrzymano stacjonarne rozwill:laJlie dla nad<Jiwictkowych PrctdkoSc:i ruchu obcil!Ze
nia. Zastosowano modyfikacjct DeHoopa metody Cagniarda. Podano przemieszczenia w obu 
cialach. 

PaccMoTpeHa a~aqa o nepeMe~aro~eMcH cocpegoroqeHHoM ycllJIHH, BoageiiCTByro~eM Ha 
noBepXHoC'l'h KOHTa.KTa gsyx mepg~>IX Ten. IIonyqeHo CT~oHapHoe peme:HHe gJIH CBepx-
3BYKoBoii CKOpOCTH gBIOKeHWI Harpy3KH. IlpH pemeHHH npHMeHeH MeTOg Kam.npa B MOgl'l
$~pOBaHHOM BHge, npegno>KeHHoM .II:e XonoM . .Il:aHLI nepeMe~eHHH B o6oroc Tenax. 

1. Introduction 

IN SEVERAL previous studies [I , 2, 3], the authors have considered the response of a fluid
solid interface to moving point disturbances. The present investigation is devoted to the 
problem of a moving point force on a solid-solid interface. The steady-state solution for 
supersonic load velocities was obtained through the use of DeHoop's [4] modification 
of Cagniard's [5] technique, and the displacements in the two solids are presented. 

2. Statement of the problem 

Consider a normal point load of magnitude P moving along the plane interface between 
two different elastic solid half-spaces which have been bonded. The interface lies in the 
x, y-plane of a rectangular Cartesian coordinate system as shown in Fig. I. The load P 
moves with a constant velocity V in the positive x-direction and is considered positive when 
acting in the positive z-direction. The solid which extends in the positive z-direction will 
be referred to as solid I and the other as solid 2. It is assumed that the solids possess 
different densities and elastic properties. 

After the load has been moving for some time and the transient effects have dissipated, 
the displacements will appear stationary in a coordinate system moving with the load. 
Expressions for the displacements for this steady-state problem will be presented for 
supersonic load velocities. 
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Flo. 1. Moving load on a solid-solid interface. 

2.1. Equations of motion 

The equations of motion for the two solids are 

(2 ) V2 - 1 o2f!Ji V2·'· = _I_ o2~t 
.1 f/Jt - cid ot2 ' 't't c;e ot2 ' 

where 

cid = ().~c+2P,t)/(}k, cie = P,~c/(}~:, 
(2.2) ~t = 1p~~;xek+'f/J~c1 e,+"Pkze., V· ~1 = 0, fork= 1, 2. 

The subscript k = 1 refers to solid 1 and k = 2 to solid 2. f/Jk and 1p1 are the Lame poten
tials; Ctd and c~ce are the dilatational and equivoluminal wave speeds, respectively; At and 
f.tt are Lame's constants; (}t is the density of the solid; and e.n e,, and e. are unit vectors 
in the x, y, and z directions, respectively. The displacements and stresses may be expressed 
as 

(2.3) u" = ukxe.x+uk,e,+ubez = Vf!Jt+V x c.JI1 , 

C1kmn =At V. uk6m,.+P,k(ukm,n+uk,.,m), for m, n =X, y, z and k = 1, 2, 

where Ut is the displacement in solid k, a km,. is the stress, and 6m,. is the K.ronecker delta. 

2.2. Interface conditions 

At the interface (z = 0), the normal stress is 

(2.4) C11zz = -P6(y)6(x-Vt)+a2u, 

where 6( "')is the Dirac delta function. Since the solids are bonded, the shear stresses must 
be identical 

(2.5) 

and the displacements are also equal, 

(2.6) U1 m = U2m for m = x, y, z. 
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2.3. Steady-state equations 

As was done in earlier studies, e.g. by COLE and Hum [6], the equations of motion 
are expressed in terms of the moving coordinate system (X= x- Vt, y, z) as 

o2q;" o2q;" = (M2 -1) o2q;" 
oy2 + oz2 k4 o;2 ' 

o2"'" o2"'" = (M2 - 1) o2"'" cor k 1 2 oy2 + oz2 1ce o;2 ' 11 = ' ' 

(2.7) 

where 

(2.8) M 11 = Vfct1 for j = d, e and k = 1, 2. 

Each of the steady-state equations is either elliptic or hyperbolic depending on whether 
Mt1 is less than or greater than one. That is, as the load velocity passes from sub-wave 
speed to super-wave speed, the appropriate equation changes from elliptic to hyperbolic. 
In this problem the relationship between the wave speeds is chosen such that M 2 e > M 1e > 
> M 24 > M 14 • Also, the Stoneley interface wave is assumed to exist. The conditions 
under which the Stoneley wave will exist can be found inCh. 4 of [5]. 

3. Solution for the supersonic regime 

3.1. Method of solution 

When the velocity of the load is greater than all the wave speeds, the steady-state 
equations are all hyperbolic; and it may be assumed that the displacements are all zero 
ahead of the load (i.e., for x > 0). It is now convenient to introduce another change of 
variable 

(3.1) x 1 = -:X= -x+Vt 

so that the displacements vanish for x 1 < 0. This permits a more conventional use of the 
Laplace transform on x 1 with a Fourier transform on y. 

After proceeding in the usual way, the transformed displacements may be obtained 
but will not be presented here. Their inversion may be accomplished through DeHoop's [4) 
modification of Cagniard's [5] technique. The essence of Cagniard's method is to deform 
the path of integration of the Fourier inversion integral in such a manner that the Laplace 
transform inversion may be performed by inspection. Illustrations of this method may be 
found in previous studies [1, 3) by the authors. 

3.2. Displacements-Solid 1 

The displacements in the interior of solid 1 may be expressed as follows: 

_ Pfftt { [Utrru~{Lti-x)) dL1d(-X)J -
(3.2) u1m(X, r, 0)1nt = 4n(I-p,) Re A(Ltd( -x)) dx H( -x-Btdr) 

R [
Ulme(Lte( -X)) dL1e( -X}] H( - B ) + e · -x- 1er 
L1s(Lte( -x)) dx 
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+ Re[Utme(Ltdle( -X}) dLldteC -X}] [H(-- _- ) urv 
L1s(Ltdle(-X}) . dX X Xtdle n\X 

+x24 1e)H(sin0-BttJ!Bte)+H( -X-XztJ 1e)H(X 

+B1.r)H(sin0-B,./B1.)]} for m = x, y, z, 

where H("') is the Heaviside step function and 

(3.3) 
r = y 2 +z2

, () = tan- 1 (y/z), 

fi = ftzfftt' 

Utxib) = 2[(1-ji)(b2 -l)+Mtel(b2 -l-nzdn2e)-jiM'ff:e(b2 -1 +n1en2d), 

UzxtJ(b) = [2(1-ji)(b2 -l)-;t:tMie](b2 -l-ntdnte)+Mfe(b2 -l +ntdn2e), 

u1xe(b) = -nte[2(1-ji)(b2 -!-n2dnze)nld-jiMze(nu+n2d)], 

Uzxe(b) = -nze[2(1-ji)(b2 -1-ntdnte)n2d+Mfe(nld+n2d)], 

Uty1(b) = ibua1 for j = d, e and k = 1, 2, 

Utzd(b) = - ( -l)a:nkdukxd for k = 1, 2, 

Uk:ze(b) = -(-J)A:(b2 -l)u'kxe/nke for k = 1, 2; 

(3.4) L15 (b) = (b2 -1)[(b2 -l)+-!(Mte-/iMze)/(1-ji}]2 

+ (b2 -l)ntdn2dntenze-nunte[(b2 -l)--!,UMie/(l-ji)]2 

-n2dnze[(b2 -1)+1Mfe/(1-ji)]2
- (lf4)jiMfeM'i:e(nunze+n2dn1e)/(l-ji)2

; 

nkJ = (b+Bf1) 1
'
2 for j = d, e and k = 1, 2, 

B~:1 = (Mf1-1)1
'
2 for j = d, e and k = 1, 2; 

Lkj (-X) = - ( -J)k[(X/r)2
- Bf1]1 12cos0 

+ i(Xfr)sinO for j = d, e and k = I, 2, 

Luk1(-X) = i{[Bf1-(X/r)2 ]1 12cos0+(Xfr)sin0} for j = d, e and k = 1, 2, 

xkJk'J' = r[- ( -J)k(Bt'J'- BkJ)112cosO + Bk1sin0] 

for j,j' = d, e and k, k' = 1, 2. 

The step functions in the displacement expression signify the locations of the wave 
fronts. H( -x-Bur) corresponds to the dilatational wave, H( -x-B1er) to the equivolu
minal wave, il(-x-xld 1e)H(X+x2111 e)H(sin0-B1d/B1e) to the head wave generated 
by the incidence of the solid 1 dilatational wave at the interface, and H( -x-x241 e)x 
xH(X+B1er)H(sin0-B211/B1e) to the head wave generated by the incidence of the solid 2 
dilatational wave at the interface. 
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3.3. Displacements - Solid 2 

The displacements in the interior of solid 2 may be expressed as 

(3.5) -Pfp.t { [U2m4(L211( -x)) dL211( -X)] _ 
U2m(x,r,0)1nt= 4n(I-fi) Re Lls(L

2
d(-X)) dx H(-x-B2dr) 

+R [
U2me(L2e( -X)) dL2e( -X)]H(-- -B ) 

e Lls(L2e(-X)) dx X ler 

+ Re[u2md(Ltd2d( -x)) dL14211( -X)] ne -x 
Lls(Ltd2i -X)) dx 

- ) c- ) ( . (J I [U2me(Ltd2e( -X)) dL!d2e( -x)] [H( -
-Xtd2d H x+B2dr H sm -Bid B2d)+Re Lls(Ltd2e( -X)) dX -x 

-:X1d 2e) H(x +x211 2e)H(sin0- Bld/Bze) 

+ H( -x-x2d2e)H(X+x1e2e)H(sin0 -Bzd/B2e) 

+H( -X-X1,,.)H(X+B2 ,r)H(sin0-B1,/B2,)J} for m = x, y, z. 

Again, the wave fronts are signified by the step functions. H(X-B211r) corresponds to the 
solid 2 dilatational wave, H(X-B2 er) to the equivoluminal wave, H( -x-x1d 2d)x 

xH(x+B2dr) H(sin0-B1d/B211) and H( -X-Xtdze) H(X+x2dze) H(sin0-Btd/B2e) to the 
head waves generated by the incidence of the solid I dilatational wave at the interface, 
H( -x-x2d2e) H(X+x 1e2 e) H(sin0-B2d/B2 e) to the head wave generated by the incidence 
of the solid 2 dilatational wave at the interface, and H(-x-x1e2e) H(x+B2 e) H(sin0-
-B1e/B2e) to the head wave generated by the incidence of the solid I equivoluminal 
wave at the interface. The whole system of wavefronts for both solids is shown in Fig. 2. 

Equivoluminal 
wave Front 

Dilatational 
wave Front 

Sol,ic/=11:2 
Solic/#1 

Eq,uivoluminal 
wave Front 

Dilatational wave 
Front 

FIG. 2. Wave front system. Supersonic regime. 
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The displacements at the interface may be expressed as 

(3.6) Um(X' y' 0) = u tmCX' r' O)int lo=n/2 

_ P/p,1 lm[Ulmd( -iBs)+Utme( -iBs)l t5( -x-B ) 
4(1-p,) dL1s(b) I sY ' 

db b=-iB. 

for m= x,y, z, 

where 

(3.7) 

Cs is the velocity of the Stoneley interface wave. 
A more detailed treatment of this and related problems can be found in a forthcoming 

Ph. D. dissertation [7]. 
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