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Large deflections of viscoelastic anisotropic plates

J. BRILLA (BRATISLAVA)

In THE PAPER is considered the problem of relatively large deflections of viscoelastic anisotropic
plates, Deflections are assumed to be not small in comparison with the thickness of the plate
but small as compared with the other dimensions. The system of nonlinear integro-differential
equations has been obtained. This system can be solved by the method of successive approxi-
mations.

Rozpatruje si¢ zagadnienie stosunkowo duzych ugigé lepkosprezystych plyt anizotropowych.
Zaklada sig, Ze ugiecia nie s3a male w poréwnaniu z gruboscia plyty, ale pozostaja male w sto-
sunku do pozostalych wymiaréw. Otrzymano uklad nieliniowych réwnan catkowo-rozniczko-
wych, ktéry mozna rozwiazaé metoda kolejnych przyblizen.

Paccmorpena 3aauya o6 OTHOCHTENIBHO DOJBIMMX IPOrMGaX BA3KOYNPYTMX AHH3OTPONHBLIX
nnacturok. [lpeamonaraercsa, uro mporubel He Majbl MO CPAaBHEHWIO C TOMIIMHOM Ijac-
THHKH, HO 3HAYHTEJFHO MEHBINE OCTAaJbHBIX ee pasmepoB. [lony4ena cHcTema HeJIMHEHHBIX
uHTerpansHo-guddepeHHanbHbIX YPaBHEHMI, KOTOPYI0O MOMKHO PENIMTH IO MeTOAY Io-
CIeOBATENRHEIX MPHOINKEHNIT.

1. Introduction

THE MODERN nonlinear theory of viscoelasticity is marked by the utmost generality. It was
formulated by GREEN and RivLIN [1] and NoLL [2] in their papers on general stress-deform-
ation relations for materials with memory. The general constitutive equations express
the stress by an operator applied to the deformation history, the form of dependence being
restricted only by certain general invariance requirements. It is evident that these general
constitutive equations are too complicated for the solution of boundary value problems.
Therefore, it is necessary to deal with approximations of general operators. GREEN and
RivLIN [1] have shown that these operators may be expressed to any desired approximation
by the n-tuple integral operators.

The first-order approximation given by a single integral operator generalizes the infini-
tesimal theory of viscoelasticity to the finite deformation theory of viscoelasticity, in which
rotations and displacements can be large [3-5].

In this paper, we shall deal with further simplification of the theory for two-dimensional
bodies corresponding to the large deflection theory of elastic plates and shells. Thus we
shall assume that the deflections are not small in comparison with the thickness of the
plate but are still small as compared with the other dimensions.

2. Constitutive equations

Consider quasi-static problems in which inertia forces due to deformation are negli-
gible. The constitutive equation of an arbitrary linear non-polar viscoelastic material can
be written in the form:

(2. l) GU = Huﬂeu .
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where HY* represents a tensor operator. In the case of non-polar materials, this operator
is symmetric and positive definite. It can have a differential or integral form. In the case
of the differential form, the constitutive equations (2.1) assume the following form [6-7]:

(2.2) H"o" = HiYey,
or
23) 0"y = Offud",
where
T/ o T( 0

(- = " — 2
24) H I_I[ ( : +x,.,) 0 H ( = +,1,,)
are scalar operators and
25 HEM = ) _ (m _5_"
( " ) (J) (ﬂ) a‘n’ QUH Qi.l' 1 "

n=0 n=0

are tensor operators, %, = 0 are inverse relaxation times, 4, > 0 are inverse retardation
times and H® = 1, 0 = 1. As has been proved by the present author [6], tensor opera-
tors cannot be on both sides of (2.2)-(2.3).

In the case of a homogeneous relaxation spectrum, Egs. (2.5) assume the form:

2.6) HP = HI™ ZK Pk Ok = QrmZQa e

In the case of an integral form, the constitutive equations can be written in the form:

13

7 _ kg oy 08k
@7 pr _nfa (-0 2 ar,
or
4 1
(2.8) & =6ffum(f—7)%9:—d7s

where GVY* (t—1) is a tensor of relaxation functions and Jizy (1—7) a tensor of creep
functions.

3. Plane stress equation

Consider a viscoelastic anisotropic thin plate of constant thickness 4. We choose the
rectangular Cartesian coordinate system x; with x; = 0 in the middle plane of the unde-
formed plate. We restrict our attention to those plates which are elastically symmetric
about the middle plane. According to the theory of large deflections, we assume that the
transverse displacement u, is relatively large as compared with the thickness /, and the
displacements u;, u, in the midplane are so small that the equilibrium equations can be
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expressed in the coordinates of the undeformed plate and squares and products of deriv-
atives of u,, 1, can be disregarded.
The tensor of finite strain can be written in the form

1 ..
(3.1) &5 = T(“i.ﬂ‘“j.ﬁ“t.:“k.}), i,jk=1,2,3.

We shall consider the midplane components of this tensor &5, where o, f assume
the values 1 and 2. According to the assumption indicated, we have:

1
3.2) Eap = & (Uaptupatusatusg), of=1,2.
Using the infinitesimal strain tensor
1

(3.3) g = T(ua,ﬂ +Uga)s
we can write

1
(34) Eap = e¢3+ -'2— VEWLEN
or

1
(3.5) €ap = Eqg— -2— Uz alizg.

According to the definition (3.3); the infinitesimal strain tensor fulfils the compatibility
equation:

(36) Eg.’EM ea‘a.?a = 0,

where €, is the alternating tensor.
Inserting (3.5) into (3.6), we obtain:

1
(3.7 €uy€ps€ap,ys = 2 €y Epsliz,asUs py-

From the constitutive equation (2.1) we find that

(3.8) eap = Gapyso™,

where

(39 Gags = (P91,
Introducing the stress function

(3.10) Oup = €ayCpsF 435

we can write:

(3.11) Eap = Gapys Epu€oyF -

Using (3.11), the compatibility equation takes the form:

1
(.12) Eau€prEmEapCaprs Fyump = 5~ CayCpalts,aatis,pys

which is the compatibility equation written in terms of the stress function.
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In order to simplity the writing and to obtain the common form of this equation, we
introduce the operator:

(3.13) Koy = €au€r€px€ap Gapya-
Hence, the compatibility equation becomes:

1
(3.14) KagroFapys = a5 Euy Epalda,asl3 pys
which yields:
(3.15)  Kyy11F 111 +4Ki112F 1112+ 2(K1120+4K1212) F1122 +4K122: F 1222

+K3222F 2222 = 43,12 —U3,31U3,22
or
(3.16)  G2222F,1111—4G1222F,1112+(2G1122+4G1212) F,1120—4G 112 F 1222
+G1111F 2222 = ud,12—U3,11U3,22-
In contracted notation [8] we obtain:
(B.17)  G12F,1111—2G26F, 1112+ (2G12+Ge6) F 1120 —2G 16 F, 1222
+Gy1F 3225 = 3,120~ U3,11U3,22-
Using the constitutive equation (2.3), the equation becomes
(3'18) QZZIIRIIII -—4'Q1222F-1112+ (ZQI 122 +4Q1212) F-l. 122_4Q1 lle-l 222

+01111F 2222 = Q(’-‘g.l 2—U3,1143,22),

where Q is a scalar operator.

4. Plate equation

Now we are concerned with the transverse displacements of the plate of constant thick-
ness h loaded by the transverse load g(x,, x,). In addition to the fixed Cartesian axes x;
in the undeformed plate, we take the coordinates y; in the deflected plate. We put the
coordinate surface y; = 0in the deflected midplane of the plate. Then, according to assump-
tions on the displacement of the large deflection theory, we put

4.1) Xy =Y, X2=Yz, X3=y3tw,
where
“4.2) W = Us.

The covariant base vectors can be obtained from the formula:
@3) &=,
which yields:

4.4 g =itw,iy, g =ih+w,i;, g =Iis.
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Then the components of the metric tensor become:

l+wi waw, w,

4.5) gy =88 =|w.w, 1+w; w,|,
W, W, 1
1 0 -,
4.6) =] o f iy

-w,, -w, witw}
In the absence of body forces, the equilibrium equations are
4.7 dlli=0,
where the symbol / denotes the covariant differentiation. This equation can be written in
the form:

(4.8) a‘f{+1"{io"-’+r{,o"‘ =0,
where
@.9) j‘l = gmr Jkm
and
1
(4.10) Iy = 5 @ik +&iki—8isi)>

Iy, I'}y are Christoffel symbols of the first and second kind, respectively.
Equations (4.8) represents three equilibrium equations in y;, y, and y; directions.
We shall deal separately with the equations of equilibrium in the midplane

4.11) o+ 0"+ Ta* =0
and in y; direction
4.12) o+ o +Ie™* = 0.

According to the assumptions of the large deflection theory of plates and according
to (4.1), we replace y, by x,, which are orthogonal Cartesian coordinates. Multiplying
(4.11) by y; and then integrating it with respect to y, through the thickness of the plate,
we have:

(4.13) Mapa—0Qp =0,

where we have denoted

hf2

“.13) My = [ o*ydy,
—hj2

and
hj2

(4.15) 0p= [ o*dys.

—k/2
Similarly, after integration of (4.12) with respect to y;, we obtain:
(4.16) Qua+WopgNeg+q =0,
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where
2

@4.17) N = [ o®dy;.

—hp2
Eliminating the shearing forces @, from (4.13) and (4.16) yields:
(4.18) Mg g +WMN@+Q = 0.

Assuming that normals to the midplane remain normal during deformation and do
not change their length, we can write:

(4.19) Eapg = —V3Wap.

Inserting (4.19) into the constitutive equation (2.1), and integrating it with respect
to y;, we obtain:

(4.20) qu = — waw,.ﬁ,
where

1
(4.21) Dg#-,a = 1—2- thgp”

are operators corresponding to stiffnesses of an elastic plate.
Hence (4.18) can be written in the form:

(4.22) Degys®,opys = q+h€ay€ps®,apF 55,
where we have put
(4.23) Nqﬁ = hEa,Gp,;.F:ﬂ.

Equations (3.14) and (4.22) correspond to Karman equations for large deflections
of elastic plates.

Equation (4.22) can be written in the form:
(4.24) Dyy11%,1111+4D1112W,1112+2(Dy122+2D1212)W,1122+4D 122,122

+D3222W,2222 = q+h(W,11 F20—2w,1,F,12+w,5, F,14),
or in the contracted notation

(4.25) Dy 1w,1111+4D16%,1112+2(D12+2Ds6)W, 1222 +4D26W,1222+D22%,2222 = ¢
+h(w 1 F22—2,5, F 15+ 5, F 11).
In the case of a Voigt plate,
d
(4.26) oY = (E””" + 7P W)e,a,
where E*7, 77 are moduli of elasticity and moduli of viscocity, respectively.
In the form of Laplace transform, (4.26) becomes
@.27) 8 = (E9P 4 pyotrd)T |

where symbols with tildas denote Laplace transforms.
Solving this equation, we find:

(4.28) A(P)Eag = Aapys(p)a”,
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where in the general case A(p) = |[E*¥" +py®"| is a polynomial of degree in p and the
adjoint matrix Ay, (p) is a p-matrix of degree 2.
Inserting (4.26) and the inverse of (4.28) in (3.14) and (4.23), we obtain:

7] 1 J
(4.29) Kapys (F) Foapys = 5 €ay€psd (‘g,“) W,as%W,py
and
a
(4.30) (Dam +Qup10 7, )“’ apys = 8+ h€xy€ast0 0 F 5,
where

K, (6) € € 0
@31) e\ gy | = Cou 5vEyxEapA pvp 2t

1 1
Dapys = 15 W' Eapys s Qaprs = 15 Wapys-
In the case of the homogeneous spectrum

(432) ’?uﬂyé = KE,;YJ,
we obtain:

1
K opysFapys = ?e,,e,,(1+K &) W%, gy »

(4.33)
D pys (1 +K %)w_d,.; = q+he€, EpsW,ap Fys,
where
(4.34) Kapys = €qu€yE4x€ap Apwp
and
(4.35) Aupys = (Egppo)™*.

5. Integro-differential equations for large deflections of viscoelastic plates

When dealing with boundary value problems of large deflection theory of viscoelastic
plates, it is advantageous to replace boundary value problems by solutions of nonlinear
integro-differential equations.

We shall consider the combination of the following boundary conditions:

(5.1) w=0, w,=0, on a8,
or

(5.2) w=0, M,=0, on a5
and

(5.3) Npw=0, N,=0, on 45,
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or
(5.4) u = 0, U; = 0, on 55,

where 85 denotes the boundary of the plate.
We consider the basic equations of the large deflection theory of viscoelastic anisotropic

plates:
Dﬂyawﬁﬁw =4q +haEgowd§F.w,

(5.5

1
KapyFapys = = €aySpoW.co®,py-

Applying, formally, Laplace transformation, we arrive at:

(5.6) Depyo®,0500 = § + h€x€pW o F, ?;:
1 S P
(5:6) Koo Foapys = % Cay€poW,as®,pys

where the Laplace transformation, as denoted by tildas, is applied to the whole of the
products of nonlinear terms and not to single terms separately.

Denoting Green functions of the left-hand sides of (5.6) with appropriate boundary
conditions by G,, G,, we obtain

@ = [ [ Guxi— &1, X2—E2, D) (G +hewyCastong Fp)dEy dEs,
(5.7 *

e 1 Ty
F=3 ff Ga(x1 =81, X2—£2, P)€ay€patW,asW,5, 46 dE -
Using the convolution theorem, we find that

r
w = f T f Gy(x1 =1, Xo— &3, 1= 1) (q+hEsy oW a5 F o) dEy dE T,
(5.8)
e fff Go(x1 =&y, X2 —&2, 1— 7)€y €psW,0sW 5,4 A& dT.
Thus we have obtained a system of nonlinear integro-differential equations for large
deflections of viscoelastic anisotropic plates.

This system can be solved by the method of successive approximation. As the first
approximation we take the linear solution for

t
9 oy = [[[Gixi—t1, %= &2y t=1)q(E1, &2, 1)dE, dE, .
0 =

Then the first approximation of F is given by the formula:

[}
1
(10)  F= f f f Gats =1, Xa— by 1= 7)€y po 1,001y s dE Y.
(1] ]
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Hence the second approximation can be written in the form:

W = f.rf Gi(x, =&y, x2—82,1—7) (q“'heayeﬂdwlmﬁpl,yd)dfl dé,dz,
.11) v @

£
1
F2 = T fff Gz(x; —Eg, xz‘—Ez, r—'T)EarE‘gﬂwLangﬂydeldszd‘l.'.
0 [

Continuing this procedure, we find that the n-th approximation is given by

4
wa = [ [[ Gilxi =1, %2— &2y 1= 1) (@ hery €400 1,09 Fa1,40) 1 dE dT,
(5.12) £ e

r
|
Fo= g [ [ [ Gatrimti 0=, 1= Dentpntonatons dédéade.
0 s

In the case of the homogeneous relaxation spectrum, the constitutive equations (2.2)
can be written in them form:

a\ ., ; ad
ij — Fidki
(5.13) H( a‘)a E E( ar)s”"

where H, E are scalar polynomials in %, and EV* is a tensor of elastic moduli.
Thus the equations for large deflections of viscoelastic plates become
i) d
DuﬂydE E W,apys = H gr— (q+he¢yEMW_ﬂﬂF,w),
(5.14)
0 1 0
KappoH\ = | Fapys = 5 €xy €| 51 | W.asW,p, -

Then the corresponding integro-differential equations assume the form:

0 )
E(W) w = ffG! (xl '“-E! » X2 _EZ)H(‘E;)(Q‘{'I?EWE‘NW"&F'N) déldfz,
(5.15) ¢
d 1 F
H(E) F=2 ff Ga(%1 = &1y X2—83) €y Epo (*g{) W, W,p,d61 A2,

where G,, G, are Green functions of the corresponding elastic plate. This system of integro-
differential equations can also be solved by the method of successive approximation. The
n-th approximation is then given by the formulae:

0 d
E(‘a_t)wn =ff Gl(xl_El!xz_EZ)H(E)(q+e¢yE§dwu-l,aﬂF—-1,yd)d51d52i
(5.16) =

a 1 p
H(E) F, = 5 f Gy(xy =&, x,—&3) E“YE”E(_aT)wn;dwn,ﬁydfld‘sz-

20 Arch. Mech. Stos. nr 5—6/72



964 J. BRILLA

The method of successive approximation appears a convenient method also for numeri-
cal solution of the problem. The convergence of this method will be analysed in an another

paper.
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