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Large deflections of viscoelastic anisotropic plates 

J. BRILLA (BRA TISLAVA) 

IN 1HE PAPER is considered the problem of relatively large deflections of viscoelastic anisotropic 
plates. Deflections are assumed to be not small in comparison with the thickness of the plate 
but small as compared with the other dimensions. The system of nonlinear integro-differential 
equations has been obtained. This system can be solved by the method of successive approxi­
mations. 

Rozpatruje siC( zagadnienie stosunkowo duzych ugie(C lepkosprC(zystych plyt anizotropowych. 
Zaklada siC(, Ze ugiC(Cia nie s~ male w por6wnaniu z grubosci~ plyty, ale pozostaj~ male w sto­
sunku do pozostalych wymiar6w. Otrzymano uklad nieliniowych r6wnan calkowo-r6Zniczko­
wych, kt6ry moma rozwi~c metod~ kolejnych przybliZen. 

PaccMoTpeHa 3a.z:tat~a o6 OTHOCHTenLHo 6onLntHX nporM.6ax BH3I<oynpyrHX aHH30TpoiiHbiX 
nnaCTHHOK. TipeAUOJiaraeTCH, tlTO nporn6bi He MaJibl no cpaBHeHM.IO C TOJI~M.HOH IIJJaC­
THHI<H, HO 3Ha'tiHTeJILHO MeHLme OCTaJILHbiX ee pa3MepOB. Tionyt~eHa CHCTeMa HeJIM.HeHHbiX 
RHTerpaJlbHO-.z:tM.cflcf>epeHJ.UiaJILHbiX ypaBHeHM.H, KOTOpyro 1\'lO>KHO pentM.Tb no MeTO.z:tY no­
CJie,z:tOBaTeJILHbiX npM.6JIH)I{eHRH. 

1. Introduction 

THE MODERN nonlinear theory ofviscoelasticity is marked by the utmost generality. It was 
formulated by GREEN and RIVLIN [I] and NoLL [2] in their papers on general stress-deform­
ation relations for materials with memory. The general constitutive equations express 
the stress by an operator applied to the deformation history, the form of dependence being 
restricted only by certain general invariance requirements. It is evident that these general 
constitutive equations are too complicated for the solution of boundary value problems. 
Therefore, it is necessary to deal with approximations of general operators. GREEN and 
RIVLIN [I] have shown that these operators may be expressed to any desired approximation 
by the n-tuple integral operators. 

The first-order approximation given by a single integral operator generalizes the infini­
tesimal theory of viscoelasticity to the finite deformation theory of viscoelasticity, in which 
rotations and displacements can be large [3-5]. 

In this paper, we shall deal with further simplification of the theory for two-dimensional 
bodies corresponding to the large deflection theory of elastic plates and shells. Thus we 
shall assume that the deflections are not small in comparison with the thickness of the 
plate but are still small as compared with the other dimensions. 

2. Constitutive equations 

Consider quasi-static problems in which inertia forces due to deformation are negli­
gible. The constitutive equation of an arbitrary linear non-polar viscoelastic material can 
be written in the form: 

(2.1) 
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956 ], BRILLA 

where HiJkl represents a tensor operator. In the case of non-polar materials, this operator 
is symmetric and positive definite. It can have a differential or integral form. In the case 
of the differential form, the constitutive equations (2.1) assume the following form [6-7]: 

(2.2) 

or 

(2.3) 

where 

(2.4) n<r> = nr (~+" ) at '" 
n=l 

are scalar operators and 

8 

(2.5) H iJkr _ ~ Hukr o" 
(S) - .L.J {PI) Of" ' 

n=O 

s 

Q(s) - ~ Q<n> o" 
iJkl - .L.J iJkl ot" 

n=O 

are tensor operators, "" ;:;:::: 0 are inverse relaxation times, A., ;:;:::: 0 are inverse retardation 
times and n<0 > = I, Q<0> = 1. As has been proved by the present author [6], tensor opera­
tors cannot be on both sides of (2.2)-(2.3). 

In the case of a homogeneous relaxation spectrum, Eqs. (2.5) assume the form: 

(2.6) 

s 

Hu~r.r = nu~r.r ~ K ~ 
<s> ~ "ot"' 

n=l 

s 

Q(s) Q ~Q o" 
IJkl = iJkl L.J , 01, • 

n-1 

In the case of an integral form, the constitutive equations can be written in the form: 

(2.7) 

or 
t 

(2.8) J aak' 
EiJ = Ju~r.r(t-T)aTdT, 

0 

where Gukr (t- r) is a tensor of relaxation functions and J11~r.1 (t- r) a tensor of creep 
functions. 

3. Plane stress equation 

Consider a viscoelastic anisotropic thin plate of constant thickness h. We choose the 
rectangular Cartesian coordinate system xi with x 3 = 0 in the middle plane of the unde­
formed plate. We restrict our attention to those plates which are elastically symmetric 
about the middle plane. According to the theory of large deflections, we assume that the 
transverse displacement u3 is relatively large as compared with the thickness h, and the 
displacements u1 , u2 in the midplane are so small that the equilibrium equations can be 
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expressed in the coordinates of the undeformed plate and squares and products of deriv­
atives of u1 , u2 can be disregarded. 

The tensor of finite strain can be written in the form 

(3.1) 

We shall consider the midplane components of this tensor Eap, where a, fJ assume 
the values I and 2. According to the assumption indicated, we have: 

I 
(3.2) ei%/J = T (ul%,p+u11,1%+u3 ,1X+ u3 ,11), a, fJ = I, 2. 

Using the infinitesimal strain tensor 

(3.3) 

we can write 

(3.4) 

or 

I (3.5) ei%/J = e1%f1- 2 u3 ,1%u3 ,11 • 

According to the definition (3.3); the infinitesimal strain tensor fulfils the compatibility 
equation: 

(3.6) 

where El%fJ is the alternating tensor. 
Inserting (3.5) into (3.6), we obtain: 

(3.7) 
I 

EIX7Ep~E1%1J,y~ = T EI%7Epdu3,du3,p7• 

From the constitutive equation (2.I) we find that 

(3.8) 

where 

(3.9) 

Introducing the stress function 

(3.IO) 

we can write: 

(3.11) 

Using (3.11), the compatibility equation takes the form: 

(3.12) 

which is the compatibility equation written in terms of the stress function. 
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In order to simplity the writing and to obtain the common form of this equation, we 
introduce the operator: 

(3.13) 

Hence, the compatibility equation becomes: 

(3.14) 
1 

Krt/J~F.a.fJ1, = T Ea..Ep11u3 ,®u3 ,p1 , 

which yields: 

(3.15) 

or 

(3.16) G2222F,uu -4Gt222F,tu2 + (2Gu22 +4Gt2t2)F,tt22 -4Gu12F,t222 

+GuuF,2222 = u~.12-u3,11U3,22· 

In contracted notation [8] we obtain: 

(3.17) G22F,uu -2G26F,u12 + (2G12 + G66)F,1122 -2Gt6F,t222 

+GuF,2222 = u~.12-u3,uu3,22· 

Using the constitutive equation (2.3), the equation becomes 

(3.18) Q2222F,uu -4Qt222F,ut2 + (2Qu22 +4Qt212)F.u22 -4Qu12F.t222 

+Qu11F,2222 = Q(u~.12-u3,11u3,22), 

where Q is a scalar operator. 

4. Plate equation 

Now we are concerned with the transverse displacements of the plate of constant thick­
ness h loaded by the transverse load q(x 1 , x 2). In addition to the fixed Cartesian axes Xt 

in the undeformed plate, we take the coordinates Yi in the deflected plate. We put the 
coordinate surface y 3 = 0 in the deflected midplane of the plate. Then, according to assump­
tions on the displacement of the large deflection theory, we put 

(4.1) 

where 

(4.2) 

The covariant base vectors can be obtained from the formula: 

(4.3) 

which yields: 

(4.4) 
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Then the components of the metric tensor become: 

(4.5) 

(4.6) 

[

1+wj 
g,J = g,gJ = w,1W,2 

W,t 

W,tW,2 

1+w.i 
w,2 

g'i = [ ~ 
-W,t 

0 -w.1 ] 
1 -w,2 • 

2 2 
-w,2 W,t +w.z 

In the absence of body forces, the equilibrium equations are 

(4.7) 

959 

where the symbol f denotes the covariant differentiation. This equation can be written in 
the form: 

(4.8) 

where 

(4.9) 

and 

(4.10) 

r,1k, F}t are Christoffel symbols of the first and second kind, respectively. 
Equations (4.8) represents three equilibrium equations in y1 , y2 and y3 directions. 

We shall deal separately with the equations of equilibrium in the midplane 

(4.11) 

and in y3 direction 

(4.12) 

According to the assumptions of the large deflection theory of plates and according 
to (4.1), we replace y~ by x,u which are orthogonal Cartesian coordinates. Multiplying 
(4.11) by y3 and then integrating it with respect to y3 through the thickness of the plate, 
we have: 

(4.13) 

where we have denoted 

(4.13) 

and 

(4.15) 

h/2 

Map = f ~Y3 dy3 
-h/2 

h/2 

Qp = J a3Pdy3. 
-h/2 

Similarly, after integration of (4.12) with respect to y 3 , we obtain: 

(4.16) 
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where 

(4.17) 
h/2 

NafJ = j ~dy3. 
-h/2 

Eliminating the shearing forces Qa from ( 4.13) and ( 4.16) yields: 

(4.18) MafJ,a.p+w,a.fJNa.fJ+q = 0. 

J. BRILLA 

Assuming that normals to the midplane remain normal during deformation and do 
not change their length, we can write: 

(4.19) 

Inserting ( 4.19) into the constitutive equation (2.1 ), and integrating it with respect 
to y 3 , we obtain: 

(4.20) 

where 

(4.21) D - 1 h3 
a{Jy4 - U Ha{Jy4 

are operators corresponding to stiffnesses of an elastic plate. 
Hence (4.18) can be written in the form: 

(4.22) 

where we have put 

(4.23) Na{J = hea..,EfJtJF...,I· 

Equations (3.14) and (4.22) correspond to Karman equations for large deflections 
of elastic plates. 

Equation ( 4.22) can be written in the form: 

(4.24) DuuW,1111 +4Du12W,luz +2(Duzz +2Dl2lz)W,uzz +4Dl2zzW,lzzz 

+DzzzzW,zzzz = q+h(w,uF,zz-2w,l2F,l2+w,22F,u), 

or in the contracted notation 

(4.25) DuW,uu +4D16w,1112 +2(Dl2 +2D66)w,1222 +4Dz6W,l222 +DzzW,zzzz = q 

+h(w11F,22 -2w,zzF,12 +W,zzF,ll). 
In the case of a Voigt plate, 

(4.26) 

where £a.PY6, r;a.P16 are moduli of elasticity and moduli of viscocity, respectively. 
In the form of Laplace transform, (4.26) becomes 

(4.27) 

where symbols with tildas denote Laplace transforms. 
Solving this equation, we find: 

(4.28) A(p)ea.{J = Aap1lp)a11 , 
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where in the general case A (p) = l.eal17: + P1JaP7.sl is a polynomial of degree in p and the 
adjoint matrix At%1~~ (p) is a p-matrix of degree 2. 

Inserting (4.26) and the inverse of (4.28) in (3.14) and (4.23), we obtain: 

(4.29) K.p,.( :r )F.ap16 ~ ~ E01 Ep6A( :I )w ... w,p1 

and 

(4.30) 

where 

(4.31) 

1 h3 DaPy.S = IT Eapy.s ' 

In the case of the homogeneous spectrum 

(4.32) 

we obtain: 

(4.33) 

where 

(4.34) 

and 

(4.35) 

K,oJJ,.F,oJJ,, ~ ~ E01 Ep• (I+ K : 1 ) w,.,w,p1 , 

Doll,.( I +K :r )w,..,,. ~ q+hE.1Ep,w,.pF,,., 

5. Integro-differential equations for large deflections of viscoelastic plates 

When dealing with boundary value problems of large deflection theory of viscoelastic 
plates, it is advantageous to replace boundary value problems by solutions of nonlinear 
integro-differential equations. 

We shall consider the combination of the following boundary conditions: 

(5.1) w = 0, W,n = 0, on as, 
or 

(5.2) w = 0, Mnn = 0, on as 
and 

(5.3) Nnn = 0, Nn11 = 0, on as, 
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or 

(5.4) Uz = 0, on aS, 

where as denotes the boundary of the plate. 
We consider the basic equations of the large deflection theory of viscoelastic anisotropic 

plates: 

(5.5) 
Da.fJydW,a.pyd = q +hea.yEp6w,a.fJF,yd' 

1 
Ka.fJydF,a.fJyd = T Ea.yEpdW.a.dW,py. 

Applying, formally, Laplace transformation, we arrive at: 

(5.6) 

(5.6) 
- - 1 .,.._,.,.~.,. 

KapydF.a.{Jyd = T Ea.yEptJW,a.dW,py, 

where the Laplace transformation, as denoted by tildas, is applied to the whole of the 
products of nonlinear terms and not to single terms separately. 

Denoting Green functions of the left-hand sides of (5.6) with appropriate boundary 
conditions by G1 , G2 , we obtain 

iiJ = J J Gt(xt-el, xz-ez,p)(q +heayefJd;,:;F,;;)ael d~z, 
(5.7) 3 

Using the convolution theorem, we find that 

(5.8) 

t 

w = J J J G1(x1-~1' Xz-ez, t-r)(q+hea.11 Ep11 W,a.pF,y6)d~1 d~zdr, 
0 3 

t 

F = ~ J J J Gz(x1-~1' xz-e2, t-r)ea.yep6w,a.bw,p11 d~1 d~2 dr. 
0 3 

Thus we have obtained a system of nonlinear integro-differential equations for large 
deflections of viscoelastic anisotropic plates. 

This system can be solved by the method of successive approximation. As the first 
approximation we take the linear solution for 

I 

(5.9) Wt = J J J Gt(Xl-el, Xz-~z, t-r)q(el, ~2, r)d~1dezd7:. 
0 3 

Then the first approximation ofF is given by the formula: 

t 

(5.10) F1 = ~ J J J Gz(xl-et,xz-ez,t--r)ea.yepdwl.a.dwt,tJydetd~zdr. 
0 
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Hence the second approximation can be written in the form: 

(5.11) 

t 

W2 = J J J G1 (xl- ~~, X2- ~2, t- r)(q+hEayEfJ6w1 ,a,pF1 , 116)d~ 1 d~2 dr, 
0 s 

t 

F2 = ~ f f f G2(xt-~1' x2-~2' t-r)EayEp,w2,a,w2 ,pyd~ 1 d~2 dr. 
0 s 

Continuing this procedure, we find that the n-th approximation is given by 

(5.12) 

t 

Wn = f f f Gl (xl- ~1' x2- ~2' t- r)(q+hEayE[J,wn-l.a{JFn-l,yd)d~l d~2dr' 
0 s 

t 

Fn = + J J J G2 (x1 -~ 1 ,x2 -~2 ,t-r)EayEp,Wn,a6Wn,{Jyd~ 1 d~2 dr. 
0 s 

963 

In the case of the homogeneous relaxation spectrum, the constitutive equations (2.2) 
can be written in them form: 

(5.13) Hut k = E'JkiE(:Je••• 

where H, E are scalar polynomials in ~ , and EiJkl is a tensor of elastic moduli. 

Thus the equations for large deflections of viscoelastic plates become 

(5.14) 

D.p,.,E( ;, )w .• p,., = H(:, )(q+hE.,Ep,w,.pF,,.,), 

K.,.,.,H( :t )F,.,.,, = + E.yEp,£( :t )w .• ,w,p,. 

Then the corresponding integro-differential equations assume the form: 

E(:
1
)w = J J G1 (x 1 -~1 ,x2 -~2 )H(:1 )(q+hE.,EJMW,.pF,,.,)d~,d~2 , 

s 
(5.15) 

H (:,) F = ~ J J G2 (x1 -~1 , x2 -~2)E.,Ep,£( :t) w,.,w,p,d~, d~z, 
where G1 , G2 are Green functions of the corresponding elastic plate. This system of integro­
differential equations can also be solved by the method of successive approximation. The 
n-th approximation is then given by the formulae: 

E( :t )w. = J J G, (x, -~1 , x2 -~2)H( :t )(q+E.,Ep,w._,,.,.F._ 1 ,,.,)d~,d~2 , 
(5.16) s 
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964 J. BRILLA 

The method of successive approximation appears a convenient method also for numeri­
cal solution of the problem. The convergence of this method will be analysed in an another 
paper. 
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