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Limit state of an elliptical plate 

D. NIEPOSTYN (W ARSZAWA) 

THE PAPER presents a complete solution for an elliptical plate simply supported at the boundary 
and uniformly loaded, made of an isotropic material yielding according to the Johansen condi­
tion. The equation of equilibrium of the plate is written in curvilinear coordinates of the prin­
cipal moment trajectories. After integration a solution is obtained which determines the limit mo­
ment value and the initially unknown set of trajectories. The static solution leads to the same 
result as the kinematic solution. Basic results are given following from the approximate solution 
of the Abel differential equation with a parameter; plates with various axial ratios of the ellipse 
[J = b/a are considered. 

W pracy podano rozwi~nie zupelne dla plyty eliptycznej, przegubowo opartej na obwodzie, 
obci~nej r6wnomiernie, wykonanej z materialu izotropowego, uplastyczniajl!cego siC( zgodnie 
z warunkiem Johansena. R6wnania r6wnowagi plyty zapisano we wsp~dnych krzywolinio­
wych, za jakie przyjC(to trajektorie moment6w gl6wnych. Po scalkowaniu r6wnan otrzymano 
r6wnanie okreslajllce wartosc momentu granicznego oraz POCZlltkowo nieznany uklad trajek­
torii. Rozwi~nie statyczne prowadzi do identycznego rozwi~ia jak i rozwil!zanie kinema­
tyczne. Podano podstawowe wyniki uzyskane na podstawie numerycznego rozwi~a r6wnania 
r6zniczkowego Abela z parametrem dla plyty eliptycznej o r6:Znym stosunku dlugo8ci p61 osi 
elipsy {J = b/a. . 

B pa6oTe ~aHo nomwe pemeHH:e wm paaHoMepHo HarpymeHHo:H, wapmtpHo onepTo:H no I<oH­
Typy, 3JIJDUITatlecKoit mxaC'flf;Him, BhmoJIHeHHo:H H3 H;30TponHoro MaTepH;a.Jia, no,wmwnome­
rocH yCJIOBH;IO TeKyt~eCTH; lforaHceHa. YpaaHemm paBHOBeciDI IDiaCTIIIIKH; aanH;caHbi B KpHBo­
JIH;Heiiu:biX I<oop~aTax, I<a.KHMH HB.IDIIOTCH TpaeKTOPHH: rJia.BHhiX MoMeHTOB. B peayJILTaTe 
H:HTerpupoBaHH;H ypa.BHeHH:H nonyt~eHo pemeHHe, onpe~emnomee BeJIW~HHy npe,o;em.Horo 
MoMeHTa, a TaK>Ke nepsoHallaJILHo HeH;aBecTHYIO CHCTeMY TpaeKTopltit. CTaTHllec:Koe pemeHH:e 
npH;BO,ll;HT K TaKOMy >Ke pe3yJILTaTy, KaK H; KH;HeMaTHtleCKoe pemeHH:e. IlpHBe,o;eHbi OCHOBHbie 
peayJILTaTLI, llOJIYtieHHhie npH liHCJieHHOM pemeHHH: ,o;H;<P<PepeHq~~aJILHoro ypaaHeHH:H A6e.IDI 
C napaMeTpOM. BblliH;CJleHIDI OTHOCHTCH K 3JlJIIUIT}llleCKH;M llJiaCTHHKaM C pa3.11H;liHhiMH OTHO­
meHH;HMH: ,o;JIH;H nonyoceit 3JIJIHIIca [J = bfa. 

1. Introduction 

1.1. Limit state of a structure 

STRUCTURES made of perfectly elastic-plastic materials and loaded by external forces 
can work in both the elastic and elastic-plastic states. One of the characteristic features 
of the structure must be its geometric invariability. Under a corresponding increase of the 
load intensity the yield zones will propagate, and once a certain limit of the load intensity 
is reached, the yield zones will make the system geometrically variable. The least value 
of the load which transforms the structure into a mechanism is called the limit load. The 
state which is attained by the structure immediately after the application of the limit load 
is called the limit state. 

The limit load intensity depends on the form and dimensions of the structure, the load 
distribution, the yield limit and the yield condition. The plates which will be dealt with 
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900 D.NIEPOSTYN 

in the present paper obey the K. W. Johansen yield condition for isotropic materials 

(1.1) 

M 1 , M 2 denoting the principal moments, and M 0 the moment leading to total yielding 
of a unit cross-section of the plate. 

Our considerations will be based on the technical theory of thin plates and small 
deflections; all assumptions of that theory will be valid throughout the paper. 

I M2 

B A 

-
M1 

c D 

FIG. l. 

The solutions will be based on the theory of small elastic-plastic deformations and 
on the perfectly rigid-plastic model of the body; it will enable us to deal with the concept 
of plate deflection instead of the deflection increment. 

The physical relations are in agreement with the associated flow rule and the existence 
of a plastic potential. 

1.2. Approximate solutions 

A complete solution of the problem of load carrying capacity of a structure consisting 
in the simultaneous determination of 

(a) the limit load intensity, 
(b) distribution of the generalized internal forces, 
(c) mechanism of collapse of the structure 

is known for certain particular types of structures only. It is not easy to find the complete 
-i.e., the correct (within the framework of the assumptions introduced)- solution. 
This difficulty necessitates seeking approximate solutions, including those determined 
in a static or kinematic way. 

The static solution in the case of plates consists, in principle, in assumption of a certain 
distribution of moments compatible with the boundary conditions, satisfying the equations 
of equilibrium and the yield condition in certain regions. Such a solution allows for the 
determination of the limit load P os, certainly approximate. 

The kinematic solution consists in assumption of a certain mechanism of collapse 
of the plate and in determination of the limit load Pob which is also approximate. It is 
known that the actual limit load P 0 is contained in the interval: 

(1.2) 
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LIMIT STATE OF AN ELLIPTICAL PLATE 901 

The bounds of the interval make it simultaneously possible to decide which of two different 
solutions, corresponding to two different statically admissible moment distributions, or 
two different collapse mechanisms, lies closer to the exact solution. These are obviously 
the solutions which contract the interval. 

The majority of papers dealing with the load carrying capacity of plates are limited 
to the kinematic solution. Such collapse mechanisms are sought for which correspond 
to the least intensity of the limit load. 

In the case of a complete solution, such collapse mechanism and such moment distri­
butions are determined which correspond to equal values of the collapse load. The left 
and right-hand bounds of the interval (1.2) coincide, 

(1.3) Pok = Pos = Po, 

and hence such solution is exact within the framework of the assumptions made. 
In · the present paper is given the solution for a plate simply supported along the entire 

boundary and with a uniform load, having at least one axis of symmetry. For simplicity, it is 
assumed that it is located on the horizontal axis. 

2. Complete solution 

2.1. Equation of equilibrium of the plate in curvilinear coordinates 

It is convenient to write the equation of equilibrium of the plate in curvilinear coor­
dinates. 

The curves 

(2.1) x = x(a, {J), y = y(a, {J) 

y 

X 

FIG. 2. 

represent two families of lines on the plane xOy. They may be written in the form of a vec­
tor equation 

(2.2) r = xi+yj. 

Differentiation of Eq. (2.2) with respect to the parameters a and {J yields the vectors 

(2.3) 

16" 

_ ax-:- ay-:­
ea. =-z+-J aa aa. 
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902 D. NIEPOS1YN 

tangent to the line {J = const, and 

(2.4) 

tangent to the line rx = const. 
The families of lines (2.1) or (2.2) are orthogonal provided that 

(2.5) 
ax ax ay ay - 0 
act 8jf + 8ci a{f - . 

The lengths of the tangent vectors (2.3) and (2.4), called the Lame parameters 

(2.6) J2'= (~)2 (~)2 
la. arx + arx ' ( a \2 ( a )2 

hJ = a;) + a; 
enable the determination of the differentials of the curve are in the form: 

(2.7) 

The angle cp of inclination of the tangent to the curve f3 = const may be determined 
on the basis of Eqs. (2.3) or (2.4), 

(2.8) 

1 ax 
coscp = -­

ha. arx' 

. 1 ay 
smcp = ha. act' 

1 ay 
coscp = JZ;ajf' 

. 1 ax 
Sin cp = -hp 7f/J-. 

From these relations may be calculated 

(2.9) 
acp 1 Bhp 
- =---, 
8{3 ha. arx 

and the curvatures are 

(2.10) 

Assuming the curves (2.1) as coordinates, we can write the equations of equilibrium 
of the plate 

(2.11) 

8(hp Ta.) 8(ha. Tp) 
arx +-ap-+ha.hpp(rx, {3) = 0. 

The assumption that one of the families (2.1f is the family of straight lines enables 
the Eqs. (2.1) to be written in the form 

(2.12) x = x 0 (cp)+ecoscp, y = y 0 (cp)+esincp, 
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LIMIT STATE OF AN ELLIPTICAL PLATE 903 

with the orthogonality condition 

(2.13) 

provided that for e = 0 one of the curves of the family is obtained. 
We can, however, assume that the set of coordinates is formed by involutes of a certain 

curve and their curvature radii. In that case, for e = 0, the evolute equation of all curves 
of the family (Fig. 3) is obtained, and instead of Eq. (2.13)- another equation holds: 

(2.14) tg cp = dyo . 
dx0 

lj 

... 
X 

FIG. 3. 

The equations of equilibrium of the plate written in the reference frame (2.12) are 
immediately obtained from Eq. (2.11) by assuming 

et=r, fJ=cp 

and calculating 

ha. = h12 = 1, hB = h'l' = (!• 

The equations are finally written in the form 

o(eMr) oMrtp M _ T. 
oe +--aq;- 'I'- e n 

(2.15) o(eMrrp) 8M'~' M _ T. 
oe +--aq;+ rrp- e 'I'' 

o(eTr) oT'~' ( ) _ O 
oe + acp + eP e, cp - . 

A particular case of the coordinates (2.12) are polar coordinates whose evolute is a point. 

2.2. Integration of equations of a plastic plate 

In the case of plates made of the K. W. Johansen material, the yield condition is given 
by Eq. (1.1 ), its geometric image being the square ABCD shown in Fig. 1. In connection 
with the convention concerning the model of the body and the physical relations, it may 
be assumed, that the curvature vectors of the deformed plate surface are perpendicular 
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to the square ABCD. Except for the states corresponding to the vertices of the square, 
a ruled surface is always obtained. In an isotropic plate the directions of principal curvatures 
of the deformed surface coincide with the directions of principal moments or, more precise­
ly, with the directions of trajectories of the principal moments. It may be concluded that 
the aquilibrium equation should be written in the form (2.15). 

In the case of stresses corresponding to the vertices of the square ABCD (Fig. 1), two 
basic cases should be distinguished: 

(a) The state corresponding to the vertex occurs on a certain line of the plate, and 
(b) The state corresponding to the vertex occurs on a certain area of the plate. 
In the first case, a yield line is formed along the curve. In the second case, we may 

substitute into Eqs. (2.11) 

(2.16) 

or 

(2.17) 

which corresponds to the vertices A and B. Corresponding considerations may also be 
applied to the remaining vertices C and D. 

Let us simultaneously assume that the lines (2.1) are the principal moment trajectories, 
which implies the equality 

(2.18) Ma.p=O. 

After substitution of Eqs. (2.16), (2.18) in Eq. (2.11), it is easily found that 

Ta. = 0, Tp = 0, p = 0, 

which means that this state of pure bending in a certain region may occur only if 
p = 0 - i.e., the only load consists of moments continuously distributed along the contour 
of the region. If the plates were loaded continuously on the entire region, such a state 
could not exist. 

In the case of the state (2.17), we obtain for the bisector sections of the principal 
directions: 

M 1 = M 2 = 0, M 12 = M 0 • 

It is easily observed that here also a continuous load perpendicular to the middle surface 
of the plate cannot occur. In view of the problem under consideration, of a plate loaded 
on its entire surface by vertical forces directed downwards, that case will not be consid­
ered here. 

It is evident from the above considerations that we may confine our attention to the 
Eqs. (2.15). If it is additionaly assumed that the coordinates (2.12) coincide with the trajec­
tories of principal moments, the torque connected with that system vanishes. 

Taking this observation into account and complementing the equations of equilib­
rium by the yield condition according to Eq. (1.1), we obtain 

(2.19) M, =eT, 
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LIMIT STATE OF AN ELLIPTICAL PLATE 90S 

(2.19) a~;r) + np(n, m) = 0, 
[cont.) t:. t: T 

T'~~ = 0, Mrp = M 0 • 

Owing to the assumption that Eqs. (2.19) are referred to the system of trajectories 
of principal moments, the system of equations is determinate, the number of unknowns 
being equal to the number of equations. The additional equation determining the position 
of the trajectory will be derived later. 

Let us consider a plate which is symmetric with respect to the axis Ox (Fig. 4) and has 
a sagging yield line on this axis. The straight line trajectory B0B1 passes through the 

y 

X 

FIG. 4. 

point B 1 (x, y) at the contour of the plate. In the figure are also drawn the curvilinear 
trajectories: C 1 - passing through the point B 1 , and C0 - passing through B0 , as also 
an arbitrary trajectory C. The curvature radii of the trajectories at the points of intersections 
with the straight line B0 B 1 are respectively denoted by e 1 , eo, e. 

With the assumption p = const, the Eqs. (2.19) can be integrated. Taking into account 
the condition at the point B0 -i.e. for e = eo - we obtain Tro = 0, Mro = M 0 and 

1 e2-e~ 
Tr = --p _;::____;::__ 

2 e 

M,= Mo- !p(e-eo)2 (1+2 ~o ), M.= Mo. 

(2.20) 

The moments and distributions of shearing forces along the trajectory B0 B 1 are known; 
they are given by the Eqs. (2.20). Still the moment M 0 is not determined as a function 
of loading, of the form and dimensions of the plate, and of the system of trajectories. 
The limit moment M 0 or the limit load p may be assumed as the unknown value. 
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2.3. Limit moment. Limit load 

The limit load or moment is determined from the boundary conditions at the contour 
of the plate. Assume the plate to be simply supported at the entire boundary. Using the 
transform formulae for the moments connected with the reference frame (e, qy) and (t, n) 
(t- tangent, n- normal to the boundary), we can easily determine: 

(2.21) 

and 

(2.22) 

M"= M 0 , M,= -M0 ctgy. 

M,.=O, 

Mt = -M0 (1-ctg2 y), 

M,.t = -M0 ctgy. 

On substituting into the second of Eqs. (2.20) the value 

e =et, M,= -Moctgy, 
we obtain 

(2.23) Mo = ! psin2 y(e, -eo)2
( 1+2 ::) . 

Equation (2.23) makes it possible to calculate the limit load p or the limit moment 
M 0 and may serve, at the same time, for establishing the system of trajectories. 

The same equation may be represented in an alternative form. In Fig. 4 are shown two 
rectilinear trajectories B0B1 and D0D 1 lying very close to each other. These trajectories, 
together with the edge of the plate and the sagging yield line located on the horizontal 
axis, determine the area B0 B1D1Do. 

Let us calculate the static moment dSP of the load acting in the region of that quadrangle, 
taken with respect to the tangent t 

Cl! 

dSp = j (et -e)sinypededqy. 
110 

The differential of the arc of the curve bounding the plate is expressed by 

ds= e~dqJ. 
smy 

Once the integral is calculated, the ratio 

(2.24) dSP 1 . 2 ( ) 2 ( 1 2 eo) ds = 6psm Yet -eo + e; 
can be determined. On comparing Eqs. (2.23) with (2.24), we observe that 

(2.25) Mo = d::. 

Hence the ratio of the statical moment of the load occurring in the region determined by two 
trajectories lying infinitely close to each other, by the contour of the plate and by the sagging 
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LIMIT STATE OF AN ELLIPTICAL PLATE 907 

yield line, calculated with respect to the contour arc differential tangent to the boundary 
of the plate, is a constant value in the entire plastic region of the plate. 

The form ofEq. (2.25) is more convenient than the Eq. (2.23) for determining the system 
of trajectories of principal moments in the plate. 

2.4. Mechanism of collapse of the plate 

In order to determine the mechanism of collapse of the plate, let us apply the kinematic 
approach to the load capacity of the plate. The mechanism should be compatible with the 
geometric boundary conditions. Let us assume the mechanism to be dependent on the 
parameters being the angles of rotation of the individual panels (Ji. Denoting the lengths 

FIG. 5. 

of the sides of the polygon by bi (Fig. 5) we are able to evaluate the work done by 
internal forces: 

n 

tSV = Mo 2 biO, 
i=l 

and the work done by external forces 
n 

tSL = 2 Sp,Oh 
i=l 

where 

denotes the statical moment of the load on the panel calculated with respect to the axis 
of rotation of the panel. 

The condition of extremum of M 0 applied to the equation 

tSV = tSL 

under the assumption of small angles 01 yields the equality 

(2.26) M - Sp, 
o-­

b, 
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which was derived by RZHANITSYN [14]. It should be noted that the condition (2.26) results 
from the kinematic analysis and simply expresses the equation of equilibrium of the panel; 
it may be used in that form only in the case in which the nodal forces are absent [16]. 
If they are present, their moments should be considered in calculating the statical moment 
of the load Spi. The corresponding solutions for plates containing holes are given in 
[19, 20]. 

In the case of a plate with a curvilinear contour, Eq. (2.26) is transformed into Eq. (2.25). 
The equations describing the collapse mechanism and the set of trajectories of principal 
moments are identical. The same values of the limit moment and limit load are obtained 
from the static and kinematic solutions. 

In determining the set of trajectories and the collapse pattern, certain limitations exist 
following from the boundary value of Mr (2.21). In the case of perfectly plastic plates, 
the condition 

(2.27) 

holds. 
From the Eq. (2.21) it follows that the angle at which the trajectory intersects the 

plate boundary must lie in the interval: 

(2.28) 45° ~ y ~ 135° 

-i.e., the straight line trajectory (yield line) and the normal to the boundary cannot 
make an angle greater than 45°. 

In the case of a curvilinear contour, the deflection surface is described by the straight 
line whose projection on the middle surface is the B0B1 trajectory, Fig. 6. 

If we assume that the deflection of points B0 lying on the horizontal axis is equal 
to w0 , then it may easily be observed that the line describing the surface lies in the plane 

X 

FIG. 6. 

passing through the tangent to the plate contour at the point B1 (x, y) and the point 
B(z, 0, w0) whose projection is B0 (z, 0, 0). 

The line of intersection of that plane with the plane xOw makes with the Ox-axis the 
angle whose tangent equals: 

(2.29) 
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and in addition we have 

(2.30) 
dy 

Xs = x-y dx. 

909 

Equation (2.29) determines the curve of intersection of the deflected plate surface 
and the symmetry plane xOw. 

If the coordinates of a point lying on the straight line which describes the surface are 
denot.ed by P(X, Y, Z), then its equation may be written as 

X-x Y-y W 
(2.31) --=--=--

x-z y 

In this equation appear the coordinates of the point B1 (x, y) lying on the contour 
of the plate, the integral w0 from Eq. (2.29), and z- the abscissa of the point of inter­
section of the straight line trajectory with the axis. The abscissa has to be found from 
Eq. (2.26), which will be done further in this paper. 

3. Principal moment trajectories 

· 3.1. Geometric relations 

It is seen from Fig. 4 that certain relations exist between the trajectories of principal 
moments and the plate contour; they have to be used. The segment B0B 1 which equals 
the difference of lengths of the curvature radii of trajectories C 1 and C0 can be calculated 
from two different right angle triangles, 

h y 
(3.l) (h -eo = siny = sin<p- ; 

y being the ordinate of the point B1 (x, y) lying on the plate contour, and h- the distance 
of point B0 from the tangent to the plate contour at B 1 • Both magnitudes are indicated 
in Fig. 4. 

The distance h, understood as the length of a straight line sector, can easily be calculated. 
In the case of a curve directed according to Fig. 4, 

(3.2) 
dy dx 

h = (x-z)--y-. 
ds ds 

Under reversed direction of the curve, the value of h calculated according to the formula 
(3.2) is negative, hence the signs of both terms standing on the right-hand side have to 
be changed. 

It is also easily observed that 

. dz . ds 
(3.3) eo = -smp d<p, e1 = smy d<p, 

and the ratio of curvature radii, Eq. (3.1) being taken into account, is equal to 

(3.4) eo y dz 
e;= -hds' 

The minus sign in the first of Eqs. (3.3) and in (3.4) results from the assumed direction 
of the curve. 
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3.2. Equations determining the position of trajectories 

The basis for the determination of trajectories is Eq. (2.25), which remains true at 
every load [4]. Let us confine our considerations to a uniform load. Then the equation 
may be written in the form of Eq. (2.23) which is, however, never suitable for seeking the 
solutions. 

The static moment of the uniform load acting on the area B0B1D 1D 0 (Fig. 4) is calcu­
lated as a product of the load and the static moment of the area 

dSP = pdSc. 

The static moment of the area is calculated directly from the geometry 

(3.5) 
I 

dS, = 6 (h 2ds-2hydz). 

After substituting Eq. (3.5) into (2.25), we obtain: 

(3.6) M 0 = _!_p(h2 -2hy dz) 
6 ds 

-therefore, another form of the Eq. (2.23). It is readily observed that Eq. (3.6) may 
be obtained directly from Eq. (2.23) by substituting 

((!1- eo) sin, = h 

on the basis of Eqs. (3.1) and (3.4). 
For a circular plate loaded uniformly, the limit moment equals 

(3.7) 

if the radius of the circle is denoted by r 0 • 

Equating both sides of Eqs. (3.6), (3.7), we obtain 

(3.8) 

This equation will be called fundamental. Solution of that equation in the case of a definite 
form of the contour enables a simple determination of all components of the complete 
solution. 

3.3. Analysis of the fundamental equation 

In spite of the apparent simplicity of Eq. (3.8), its integral cannot be found and written 
in a closed form. The magnitude h appearing in that equation is a linear function of z, and 
hence the Eq. (3.8) can very easily be reduced to the classical form of the A bel equation 
of second kind. 

Equation (3.8) can be reduced to a nonlinear partial differential equation of the first 
order. Substituting Eq. (3.2) and the total differential of two independent variables 

oz oz 
dz = ox dx+aydy, 
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LIMIT STATE OF AN ELLIPTICAL PLATE 911 

we obtain 

(y2 -r~ + 2y2 j_!_) dx2 +[2y2 j_!_- 2y(x-z)-2y(x-z)j_!_J dxdy 
~ ~ ~ 

+[(x-z)'-r~-2y(x-z) ;; Jdy2 = 0. 
Assuming now the left-hand side to be a square of the total differential of two variables, 
we are led to the following equation 

(3.9) oz 2 oz 2 2 oz oz 2 2 2 2 

[ ] 2 [ J y(x-z)a:x+Y ay +2r0 y a:x-y(x-z)a--y +ro[y -ro+(x-z)] = 0. 

The solution is now reduced to the determination of such an integral z = f(x, y) which 
passes through the contour of the plate. Attempted solutions of each of the two Eqs. (3.8), 
(3.9) for an elliptical plate failed. 

The integral of Eq. (3.8) may easily be represented by the Taylor or McLaurin series. 
No serious difficulties are connected with the numerical solution. Both methods will 

be demonstrated in the case of an elliptical plate. 

4. Uniformly loaded elliptical plate 

4.1. Fundamental equation 

Let us consider a plate bounded by the ellipse 

(4.1) x = acost, y = bsint, 

simply supported at the boundary and uniformly loaded. 
The position of an arbitrary straight line trajectory is determined by two points: 

B1 (x, y) lying on the boundary and B0 (z, 0)- on the horizontal axis (Fig. 4). Using 
Eqs. (3.2), we can calculate the distance of the point B0 from the tangent to the ellipse 
at B 1 • By means of the dimensionless quantities 

(4.2) 
b 

k2 = l-{P, 
z 

p = {i' c =-, 
a 

we obtain 

(4.3) 
h PO- Ccost) 
-= 

y'1-k2 cos2 t a 

From the symmetry of the system with respect to both coordinate axes it follows that 
with t = 0 the abscissa z reaches its maximum value z0 = aC0 , while with t = n/2, z = 0. 
Fort = 0, we obtain: 

ho = a(l-Co); 

this magnitude measures the distance from the sagging yield line (on the Ox-axis) to the 
right-hand apex of the ellipse and, simultaneously, the height of the triangular element 
into which the quadrangle B0 B1D1D0 is transformed in the apex. The carrying capacity 
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of an elliptical plate is thus compared to the load capacity of a circular plate with radius r 0 ; 

it is seen that h0 = ro. 
Substitution of Eqs. (4.3) and r0 into Eqs. (3.8) yields, after simple transformations, 

(4.4) (1-Ccost)2-2(1-Ccost)sint ~; = 0 -p;o)2 
(1-k 2 cos2 t), 

while 

(4.5) ro = a(1- Co). 

In the differential Eq. (4.4) appears a constant Co of unknown value, though its geo­
metrical sense is known. In order to determine the constant of integration of Eq. ( 4.4) 
and the constant C0 , we may use the conditions 

(4.6) 

and 

(4.7) 

t = 0, C = Co, 

71: 
t=-

2' c = 0, 

dC = 0 
dt 

The most important question is the solution of Eq. (4.4); unfortunately, the integral 
cannot be determined in a closed form. Three possible concepts are listed below. 

(A) Approximate solution. Assume the function 

(4.8) C = C0 cost, 

which is substituted in Eq. (4.4). This function satisfies the equation only at t = 0. Assuming 
as an additional condition that Eq. (4.4) be satisfied at t = n/2, we obtain 

(4.9) Co = 1+{J2-{Jy3+{J2. 

It appears that at the value of Eq. (4.9) so selected, the function (4.8) constitutes a rather 
good approximation. 

(B) Solution in the form of a series. Introducing a new independent variable u = const 
into the Eq. (4.4), the integral of that equation is readily represented by a Taylor series. 
Returning to the variable t, we obtain: 

(4.10) ,. - 'f}2-J cost [ ('f}2-1)2 2( 2 12) k2 2] cos3t 
" - -2-1!+ 2 + 'f} - - 'f} 3! 

[ 
27 J cos

5
t + 4('YJ2 -1)3 + 2 ('YJ2 -1)2 + 32('fJ2 -1)- 8k2'fJ2('fJ2 -1) ----st+ ... ' 

where the notation is used 'YJ 2 = (1- C0) 2 I {12 • 

(C) Numerical solution. For an elliptical plate with a definite ratio fJ = bfa, Eq. (4.4) 
can be solved with the conditions (4.6) and (4.7). The solution is reduced to finding such 
values of the parameters C 0 as would ensure satisfaction of the conditions already mention­
ed. Only one of the integrals of Eq. (4.4) satisfying Eq. (4.6) passes through the point 
t = n/2, C = 0, Fig. 7. 
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t=O dt,/dt=O 

FIG. 7. 

The approximate value of Co may be evaluated according to Eq. (4.9). The results 
of approximate solutions of Eq. ( 4.9) and the numerical solutions are shown in Fig. 8. 

From the direct comparison of the results it is seen that the approximate solutions 
according to Eq. (4.9) yield comparatively good results. The greatest divergence of the 

0 

Numerical .solution 

Approximate 
solution (4.9) 

0.6 

FIG. 8. 

two solutions amounts to 4% of the numerical solution, which may be treated as accurate 
for practical purposes. The great error is found for plates in which the ratio of axes is 
{J = b/a = 0.3-0.5. 

Once the value of Co is known, r0 is determined from Eq. (4.5), and next the limit 
moment or limit load - from the equality 

Solution of the Eq. (4.4) makes it possible to determine the values of C corresponding 
to various values of the angle t thus enabling the determination of the positions of all 
trajectories of the principal moments, in the entire region of the plate. 
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914 D. NIEPOSTYN 

4.2. Distribution of trajectories and moments 

Solution of Eq. (4.4) in the form of a determined value of Co and C = zfa at arbitrary 
points of the circumference of the plate given by the angle t makes it possible to find the 

X 

FIG. 9. 

set of straight line trajectories in the entire region of the plate. This solution consequently 
yields the following geometrical magnitudes: 

Angle of inclination of the trajectory to the horizontal axis 

{Jsin t 
tgcp = cost-C · 

The angle y at which the trajectory intersects the boundary of the plate 

( Jt) tga:-tgcp 
tg y-T = 1 +tga: tgcp · 

The distance h from the point of intersection of the trajectory with the horizontal 
axis to the tangent to the elipse: 

The curvature radii of the trajectory at the points of intersection with the horizontal 
axis and with the ellipse 

Qo e) (1-c.>'-(haf 
-= 

cos(~ -r) 3(:)-(1-Co)' ' a 

Ql (:) 
+~. -= 

cos(y- ~) a a 
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Coordinates of the evolute of curvilinear trajectories 

Xo = cost-~cosq; 
a a ' 

Yo fJ . e1 . - = smt--smq;. 
a a 

915 

It is also easy to determine the variation of the radial moment and the transversal 
force along an arbitrary trajectory 

M,= Mo- !P(e-eo)2 (1+2 ~ ). 
p(r/-e~) 

Tr = - 2e ' 

while in the perpendicular direction 

M'~'= M 0 , Trp = 0. 
The solution is accurate provided the condition is fulfilled 

45° ~ y ~ 135°, 
following from the limitation: 

IMrl ~ Mo 
valid for plates made of perfectly elastic-plastic or rigid-plastic materials. 

4.3. Plate with a hogging yield line 

If the angle y of intersection of the trajectory with the plate boundary, calculated 
according to the solution presented, does not fall within the interval (n/4, 3n/4), the solution 
proves to be incorrect. On a certain sector of rectilinear trajectories which do not fulfill 
the condition for y, close to the boundary, the radial moment would be smaller than -M0 , 

what is impossible. Analysis of the numerical solutions indicates that for the ellipse with 
axial ratio {J > 0.284, the inequality tg(y-n/2) < 1 holds, and a hogging yield line can­
not be formed. 

The hogging yield line is formed for {J ~ 0.284. On the basis of considerations present­
ed in [4], it is established that the hogging yield line is then located on a circular arc of 

Fio. 10. 

radius r 0 1/i. It is evident (Fig. 1 0) that the distance from center L of the circle to the 
tangent to the ellipse at point K (through which the yield line passes) is equal to h1 = r 0 • 

Inserting this value of h into Eq. (3.8), we calculate: 

dz = 0 
ds · 

17 Arch. Mcch. Stos. nr 5-6/72 
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Let us denote by index I those values which correspond to the point K from which the 
hogging yield line starts. It is easily found on the basis of Eq. (4.3) that 

the abscissa of L being 

r o h 1 ,8 ( 1 - C 1 cost 1) -=-= ; 
a a V 1-k2 cos2 t1 

,. z1 
1,1 =-= 

a 
,8-k 2 sin t 1 cost 1 

,8 cost 1 - sin t 1 

Using this value, we can calculate: 

(4.11) .!!!__ =,8 sint1 111-k2 cos2 t1 

a sin t 1 - ,8 cost 1 • 

The Eq. (3.8) for a plate in which a hogging yield line is created may now be written as 

dC sin2 t (l-k2 cos2 t ) 
(4.12) (l-Ccost)2 -2(1-Ccost)sint-d = (. 1 ,8 ); ·(l-k2 cos2t), 

t smt1 - cost1 

instead of the Eq. ( 4.4) valid for a plate without the hogging yield line. 
Solution of Eq. (4.12) is then reduced to the determination of such a parameter t1 and 

a function C = C(t1 , t) which satisfy the conditions: 

for t = tb dCfdt = 0, 

for t = n /2, C = 0. 
(4.13) 

The numerical solution for the plate with axial ratio ,8 = 0.2 yields the values 

t1 = 1.343881 rad, 

C1 = 0.011231, 

.!!!__ = 0.204 525. 
a 

ro/a 
Plate with ne-1 £nbirfy viefding plate 

10 - - --- :-t - ---- - - -------
0 gative yield 1 

0 

tine I 

oz 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

04 
{3=0284 

~ 
1<5 

:g 
f:!? c:::; 
c:::;l 

06 

Fio. 11. 

~ ~ ~ § 
et) ~ <::5 c:::; 

c:::i c:::; 'I-' 

08 1.0 
f3=b/a 
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The radii r0 of reduced circular plates having identical limit moments are presented 
in Fig. 11. 

In the case of formation of a hogging yield line, the limit moment and limit load are 
less than those calculated under the assumption of full plasticity of the entire re~ion of the 
plate (except {3 = 0.284). 

The system of trajectories and moment distribution in a plate with a hogging yield 
line are different in two types of regions. In the region bounded by a circular arc the solu­
tion is the same as in the case of a circular plate clamped at the boundary and subjected 
to the conditions of axial symmetry. In the region bounded by an elliptical arc (plate 
boundary), all quantities may be determined analogously to the case of a plate yielding 
on its entire region. 
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