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Visco-plasticity solution by finite element process 

0. C. ZIENKIEWICZ* and I. C. CORMEAU** (SWANSEA) 

ELASTO-VISCO-PLASTIC constitutive relations are used as the basis for a finite element formula­
tion. The process leads to a relatively simple computational algorithm and may be used for 
solution of truly visco-plastic situations or simply as an artifice for a convenient solution of 
plasticity problems. Several numerical examples illustrate the paper. 

Za podstaw~ sformulowania metody element6w skonczonych przyj~to zwi~ konstytutywne 
spr~zysto-lepkoplastycznoSci. Pos~owanie daje si~ sprowadzic do wzgl~dnie prostego a]go­
rytmu obliczeniowego i motna je zastosowac do rozwiwwania zagadnien istotnie lepkopla­
stycznych lub teZ po prostujako pewien dogodny spos6b rozwi~zywania problem6w plastycznych. 
Podano szereg przyklad6w liczbowych. 

IJpH <i>opMyJIHpOBKe 3aBHCHMOCTeH MeTo~a KOHellHbiX 3JieMeHTOB npKlUITbi onpe~emnoiiUie 
ypaBHeHWI ynpyro-BH3KODJiaCTIRHOCTH. Cnoco6 peDieHWI CBO~ K OTHOCHTeJ'ILBO npo­
CTOMY pacqf!moMy aJII'OPHTMY, KOTOpbiH MO:>f<HO IIPHMeHHTb AJU1 pememm ~ecTBemm 
BH3KoiiJiaCTHlleCKHX ~aq HJIH pacCMaTpHBaTL KaK HeKoTOpbiH cnoco6 pememm DJiaCTHllecKBX 
~1.1. ,Ua~ p~ tmCJieHHbiX npHMepos. 

1. Introduction 

The application of the finite element process to the solution of both creep (visco­
elastic) and plasticity problems is well documented [1-12]. Many different approaches 
have been used in plasticity to overcome the difficulties associated with 

(a) the incremental form of the strain-stress relations, 
(b) the necessity of adjusting the stresses to the yield condition, 
(c) the indeterminacy of "tangential" stiffness matrices when collapse situation is 

reached and 
(d) the difficulties associated with strain softening [13]. 
In contrast to this, creep and visco-elastic problems have almost universally been 

dealt with by a relatively simple computational scheme in which time is the basic parameter 
and "initial strain" is introduced [1]. 

It is surprising therefore that problems of visco-plasticity to which the simpler concepts 
can be applied have not been dealt with so far numerically. It is the objective of this paper 
to show that 

(i) the visco-plastic problems can be dealt with by relatively straightforward numerical 
formulation and 

(ii) that it can be effectively used not only to obtain real time-dependent solutions 
but, by treating the viscous effects as a purely computational artifice, leads to elasto-
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plastic solutions overcoming some of the difficulties inherent in the classical plastic formu­
lation. 

It could be argued that the visco-plastic model of the materials is indeed physically 
more acceptable than any purely plastic one in which implication of instantaneous plastic 
flow is made. It is perhaps this physical feature which makes the numerical finite element 
process successful and which opens the door to a host of new applications. Whilst plastic­
ity and visco-plasticity are well documented in the context of metal behaviour, extension 
of the former to a wide range of problems introduced for instance in soil and rock mechan­
ics have met only with limited success as time dependence is pronounced and strain 
softening frequently present. It is anticipated that by combining both effects in one compre­
hensive model more realistic solutions will be obtained. Such problems as the progressive 
failure of soil masses or time-dependent transfer of loads from a rock mass to a tunnel 
lining present possible applications of the visco-plastic model. 

2. The visco-plastic model 

In the visco-plastic model of the material we assume that the only "instantaneous" 
strains which can be produced by stresses are the elastic ones. To these is added a time­
dependent strain whose rate depends on the excess by which some function of the stresses 
exceeds a "threshold" or "yield" value [14-21]. 

To illustrate the situation conceptually we introduce a uniaxial model of Fig. 1. Here 
the slider (plastic component) can only become active if a > Y (in which a is the total 

_C 

Inactive 
If O'p( Y 

FIG. 1. The simplest elastic/visco-plastic model. 

actual "stress" applied and Y is some yield value). On instantaneous load application 
only elastic straining of the spring takes place, the excess a- Ybeing taken by the "dashpot" 
which results in a time variable strain. 

In such a model the value of Y may well be made strain dependant and also nonlinear 
characteristics introduced into the dashpot and spring without difficulty. 

While the model can degenerate into a simple plastic one by a simple omission of the 
dash pot component, a fundamental difference arises when this is present: the total stress 
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can exceed the yield value instantaneously by any desired amount - a fact noted physically 
in many experiments [16]. 

The simple uniaxial, conceptual situation can be generalised to a multiaxial case. 
A full discussion and validation of the process can be found in the excellent surveys by 
OLSZAK, PERZYNA and others [14-17]. Only the essentials will be given here using vector 
and matrix notation for computational convenience. 

(a) First, as in the uniaxial model, the total strain E will be considered as a sum of the 
elastic Ee and visco-plastic Evp phases together with initial, prescribed strains. Thus, with E& 

standing for specified initial strains say of thermal origin, we have 

(2.1) 

(b) Second, in the usual manner, the total stress G will be related to elastic strains 
through a nonlinear reversible law as 

(2.2) 

in which DT is the tangential elasticity matrix and which is generally dependent only 
on Ee. 

Alternatively, differentiating with respect to time, we have 

(2.3) with etc. 

(c) Third, defining the scalar yield condition as 

(2.4) F = F(cs, Evp' Y) = 0, 

where Y is some yield stress value and.lev17 is the visco-plastic strain, we shall assume that 
the visco-plastic creep phenomenon only occurs when 

(2.5) F > 0. 

When F < 0 only elastic strains are possible, while F > 0 exhibits both elastic and visco­
plastic effects. Again the reader should contrast this with ideal plasticity which does not 
permit states F > 0, F = 0 being a necessary condition for plastic flow. 

(d) A further assumption regarding the direction of visco-plastic straining must now 
be made. In common with plasticity of non-associated type we shall assume this to be 
defined by the gradients of a "plastic potential", Q(cs, Ev17 , Y). Thus we have 

(2.6) . 'aQ 
Evp =lac; 

in which 

(2.7) 

For special cases, an associated form of visco-plasticity Q = F may be used and here 
philosophical arguments of the least work principle can be brought in to justify its validity. 
In general, we are simply introducing Eq. (2.6) and (2.7) as a commonly made assumption 
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(e) The magnitude of the visco-plastic strain rate is governed by a fiow rule giving 
the coefficient .A. of (2.6) as a function of stresses and visco-plastic strains 

(2.8) 

with F being the value of the yield function, F0 introduced as a reference fixed value making 
FfF0 dimensionless, and y a "fluidity" coefficient with dimension s- 1 • 

In above, ( ) denotes a zero term if F < 0 and 4J is a scalar function such that 

4J(x) > 0, x > 0, 

4J(x) = 0, x = 0. 
(2.9) 

Different functions 4J have been proposed (16]. 
A linear relationship of the type 

(2.10)1 4J(x) = x 

is obviously the simplest and probably quite adequate to describe the behaviour of many 
materials. Relationships such as 

(2.10)2 4J(x) = x", 

or 

(2.10h 4J(x) = (e"x -1) 

have been suggested and indeed are incorporated in the program described later. For 
computational purposes, a numerical definition of 4J(x) is most convenient and can be 
made to fit any experimental data. 

Summarising we note that quite generally we can write the constitutive relations simply as 

(2.11) . n-1· I,~,.( F)' oQ 
E = T a+,,"' Fo I a a . 

STRESS SPACE 

• 3 

STRAIN SPACE 

FIG. 2a. Associated visco-plastic constitutive relations. 
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a 

STRAIN SPACE 

FIG. 2b. Non-a~sociated visco-plastic constitutive relations. 

This together with the initial conditions of the problem must suffice to obtain numerical 
solutions. 

The relationships of visco-plasticity are illustrated in a "six-dimensional" stress space 
in Fig. 2. In Fig. 2a the associated rule is shown where as in Fig. 2b a non-associated situation 
is given. Regions shown are those in which the visco-plastic flow occurs and the direction 
of strain rate implied by the normality requirements is indicated. 

Strain hardening or softening is implied in the form of surface F which can alter with 
E,p, the total visco-plastic strain reached. 

Further, the position ofF may itself be made dependent on the strain rate [18] but we 
shall not consider such a situation in the following. 

3. Extension of the visc~plastic model 

It is easy to visualise (and not complex to implement computationally) an extension 
of the visco-plastic model to include visco-elastic behaviour or to represent more complex 
behaviour by placing several models in series as shown in Fig. 3. Details of evaluating 
the strain rates associated with the Kelvin elements of the visco-elastic model are given 
in Ref. [6) and will not be considered here except to note that in computation the stress 
and strain rate of each model must be separately evaluated and stored. 

A further possibility of extension of the model to cover almost any material behaviour 
is to use overlay models [23]. 

In metals it has been customary to treat creep and plasticity phenomena as separate 
features. To account for the creep rate increase with stress, power laws have been extensively 
used with indices as high as 6 to 8. It is interesting to speculate that in fact the combined 
behaviour of creep and plasticity can be obtained by stipulating two or three series of visco-
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D·· 
FIG. 3. A composite visco-elastic visco-plastic model. 

plastic models with different "yield values". Indeed the commonly made assumption in 
creep strains is to impose normality of strain components to the effective, von Mises, 
stress. This clearly is implied directly and with more justification in the visco-plastic model. 

4. Computational procedure for quasi-static visco-plastic model 

4.1. General considerations 

We shall formulate the problem in the displacement finite element form, using most 
general nonlinear elastic behaviour and visco-plastic strain model, so that the general 
structure of the resulting equations can be appreciated. Later we shall specialise in describ­
ing a computational scheme of particular physical simplicity using the so-called "initial 
strain" procedure. 

The full details of finite element methodology is given elsewhere [1] and the general 
notation of that text will be used here. 

In the formulation we shall deal with the so called quasi-static situation in which inertia 
terms are negligible. Similarly the effects of any thermal coupling will be neglected. 

Both assumptions are consistent with slow phenomena but in principle there is no 
difficulty of extending the formulation to include them. 
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4.2. Finite element discretisation and associated matrix equations 

(a) We prescribe a displacement field in a piecewise (element by element) manner by 
means of appropriate shape functions 

(4.1) f= {;] =N(x,y,z)li, 

where & is a set of nodal displacements. 
(b) Strains are derived from displacements by differentiation(!) 

(4.2) £ = B(x, y, z)&. 

(c) By virtual work we obtain equilibrium relationships 

(4.3) J BTadV -R1 = 0 
V 

in which a are the stresses associated to the strains £ and R1 the total body and boundary 
loads reduced to the nodes of the structure. 

(d) We introduce now the constitutive relations and combining them with Eq. (4.3) 
we fully define the problem. As rate relationships are involved, it is convenient to rewrite 
Eq. (4.3) in a differential form 

(4.4) 

or, using (2.1) and (2.3) 

(4.5) 

and introducing ( 4.2) 

(4.6) 

J BTDT(E-E11p-Eo)dV- R, = 0 
V 

in which KT is the tangential stiffness matrix 

(4.7) 

and 

(4.8) R = Rz+ J BTDT£8 dV. 
V 

Equation (4.6) completed by the constitutive relations 

(4.9) 

and 

(4.10) 

(I) We restrict ourselves to infinitesimal strains and small displacements here. 

http://rcin.org.pl



880 0. C. ZIENKIEWICZ and I. C. CORMEAU 

defines a system of three simultaneous matrix ordinary differential equations. Their solution 
can be obtained by several marching schemes such as Euler extrapolation, Runge Kutta 
or other predictor-corrector systems, starting from initial conditions simply given by an 
instantaneous purely elastic response under loads and prescribed strains application. 

4.3. Particular case of linear elastic/nonlinear visco-plastic model 

To clarify the process we make the assumption of linear elasticity and here Kr = K 
and Dr = D giving a set as follows: 

. I (F)) oQ 
Evp = 'Y\4> F

0 
oo' 

(4.11) • J T • • K&- B DEppdV-R = 0, 
y 

G = D(B&-EI1p-£e). 

Starting from initial conditions ar time t = 0, known as the solution of the standard elastic 
problem 

(4.12) 

K&o = Ro, 

E
0 = B&0 +E~, 

o0 = D(E0 -E~), 
~p = 0, 

we find the increment of viscoplastic strains estimated from ( 4.11) 1 

(4.13) 

then the change in displacements 

(4.14) L1& = K- 1 
( J BTDL1EI1pdV + RL1t) 

y 

and finally the change in stress 

(4.15) 

Steps (4.13) to (4.15) are computationally standard elastic solutions with L1E11p being 
treated as "initial strain", hence the process is often known by this name. 

4.4. Automatic time stepping 

A step-by-step integration of matrix equations in time is obviously a further approxi­
mation which adds new errors to the usual space discretisation errors. This is due to the 
fact that L1~P in each time interval is calculated from a state of stress assumed to remain 
constant during the time increment when it is actually varying. 

Errors may become excessive and results meaningless if the time increments used are 
too large; it is difficult to estimate a priori what time intervals should be chosen because 
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these depend on stresses and viscous properties of the material and may vary from one 
element to another. 

It is also desirable to keep the time increments small when the rates of stresses and 
strains are significant and to enlarge them as an asymptotic state in time is approached. 

A way of overcoming these difficulties is as follows: we define norms of total strains 
and strain rates 

(4.16) 

where subscripts I, 11 and Ill refer to principal tensor components. We compute a time 
increment such that the change of strain is a fraction of the total strain accumulated before 

(4.17) 

where r is an increment parameter chosen a priori and dependent on the desired accuracy 
so that 

(4.18) IIEII 
LJt = T lle.,pll" 

It has been found that 0.1 < T < 0.2 leads to good and not too expensive results. 

4.5. Improvement of accuracy 

Various possible algorithms to improve accuracy and stabilize the solution can be 
introduced. In the solution described we follow a predictor corrector process as follows. 

Starting from a<'> known at beginning of interval, we 
(a) calculate L1e.,P as a function of a<'>, 
(b) -~ solve ( 4.11) and find an iterated approximation o1' +.dt> i = 1 , 2, ... , 

(t+!.dt) 1 
(c) find the mean stress o1 = 

2
(o<'>+oJ'+.d'>), 

-t 

(d) I compute Ae,, as a function of er/'+!••), 
(e) -find new oi'+.dt> by re-solution of ( 4.11) and cycle until convergence is achieved or 

for a given specified number of cycles. We found that two cycles are generally 
sufficient. 

4.6. Extension to include visco-elastic effects 

As stated in Sec. 3, it is easy to extend the formulation and program to composite 
elasto-viscoelastic-viscoplastic models.' Only the expression of the strain rate Evp has to 
be modified, Eq. (4.ll)b to include the additional effects. As shown in Ref. [6], visco­
elastic strain components have to be stored for each additional Kelvin unit of Fig. 3. 
This is purely computational and very complex materials can be incorporated in the algo­
rithm already described. 
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4.7. Simplex and isoparametric elements 

Any element form can clearly be used in the actual implementation. We have here 
concentrated on simple two·dimensional problems and the well known triangular element. 

Experience shows that much improved results in nonlinear analysis follows the use 
of isoparametric numerically integrated elements [12, 13]. 

For a production type application, these are strongly advised. 

5. Application 

Here, the examples included are relatively simple and designed firstly to demonstrate 
the accuracy of the computational scheme including the effects of varying time steps and 
secondly, to test the applicability in a simple plasticity case where the time aspect is intro· 
duced as an artifact. Anticipating the results we would expect here an iteration process 
similar in all respects to that implied in the modified Newton RAPHSON [1, 13] approach 
but with a parameter (yLit) which in effect acts as an accelerator (ordecelerator) and which 
can be adjusted to obtain convergence at all times. The results shown later bear out this 
assumption. 

The first example is that of a thick-walled sphere solved analytically by WIERZBICKI [22]. 
This "one·dimensional" problem is treated as a "two·dimensional" axisymmetric one here 

2 

0 

- REF. 22 

o F.E.M. 

I 2 3 4 S 6 
DISPLACEMENT-TIME CURVES 

t=l 

t=l.l 

f=1.2 

i= 1.3 

!=1.4 

t=•.s 

FINITE ELEMENT MESH AND BOUNDARY 
CONDITIONS 

FIG. 4. Thick sphere under internal pressure exceeding the collapse value 
E = 2.lx 106kg/cm1 , v = 0.3, Von Misesyieldfunction. Perfect plasticity withFo = Y = 2800kgfcm1 • Linear creep, y = 0.01 

-r = 20%. Pressure= 11' 200 ka/cma. 

to test the validity of the program. A segment of 5° is considered and described on Fig. 4, 
which aJso gives the comparison of numerical and exact solution for displacement·time 
relations. Figure 5 shows the time·dependent changes in stress distribution. In both cases 
the exact solution is reproduced to degree of accuracy associated with plotting. 

http://rcin.org.pl



4. 

3 

3. 

3 

2 

-:EXACT (REF. 22) 

o :FINITE ELEMENT 

pressure: 4xY 

FIG. 5. Thick sphere: time-dependent circumferential stress distribution. 
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FIG. 6. Thick cylinder under internal pressure below the collapse value. 
E = 2 x 107 kg/cm2

, v = 0.3. V on Mises yield function. Perfect plasticity with E = Y = 2000 kg/cm2 • Linear creep v = 0.0001 
T = 10%. 

15 Arch . Mech. Stos. nr 5-()/72 [883] 
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FIG. 7. Thick cylinder: pressure-displacement curve. 
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FIG. 8. Thick cylinder: hoop stress distribution accuracy. 
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FIG. 9. Thick cylinder: steady state elasto-plastic hoop stress distribution for various applied pressures 
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FIG. 11. Composite sheet. Perfect Mises plasticity. Displacement-time curve for various time stepping 
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A linear visco-plastic law was used in this example and details are given in the figure 
legend. 

In the second and third examples, the visco-plastic effect is introduced artificially to 
study the progression towards steady state elasto-plastic solution. The problems are those 
of a simple thick cylinder under uniform pressure (Figs. 6-9) and of a perforated tension 
strip (Fig. 10) treated as axisymmetric and plane stress cases, respectively. 

In the case of a cylinder, analytical as well as numerical solutions of the purely plastic 
problem are available [12, 13] for a comparative study. 

Figure 6 shows displacement-time curves obtained for various sequences of load appli-

<Yo 

3 

x HARD.MAT. STEPS 

2 +SOFT. MAT. STEPS 

STRESS-STRAIN PATH 

.9f-------------------------~S~T~E~A~D~Y~S~T~.A~F~T~E~R~2~1~S~T~E~PS 

+-+ STRAIN SOFTENING /. F.E .. 

--PERFECT PLASTICITY,EXACT. 

*-* STRAIN HARDENING, F.E .. 

2 
OISPLACEMF.NT-T IME CURVES 

1!... t 
3 2o;, 

FIG. 13. Composite sheet. Isotropic strain hardening and softening using Mises yield function. Applied 
pressure p = 8 0' o. 
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cation. Each load increment was left until steady state conditions were reached with 
a desired accuracy. In Fig. 7 we show a plot of the load-displacement progression for an 
incrementally applied load and for a single loading step. In both cases the expected con­
vergence to the exact steady state solution is recorded. 

In Fig. 8 a study of stress distribution is made for these two load situations, additionally 
including a variation of the time increment parameter. Discrepancies are small and the 
shorter time intervals give a slightly better approximation. Figure 9 shows the steady 
state stress distribution for various loads. 

While the first two examples are of rather trivial geometry, Fig. 10 illustrates a more 
realistic application. Here a perforated strip studied by VALLIAPPAN [5] is subject to a sud­
denly applied load below the collapse value. Final spread of plastic zones and time varia­
tion of stresses are shown. It is interesting to note a very good convergence of results after 
only 20 time increments. This approximates to the cost of the standard elasto-plastic 
solution and, although exact comparison of details is not available here for the two solu­
tions, the results appear very similar. 

Clearly it is desirable to investigate 
(a) the most efficient time stepping scheme, 
(b) the effects of nonlinear viscoplastic law, 
(c) strain hardening as well as strain softening characteristics of behaviour. 
Much yet remains to be done but in the last example, of somewhat trivial nature, we 

study some of these problems. Here a composite sheet of two materials one with an infinite 
yield point is subject to a line load Fig. 11. The same figure compared the effects of using 
the predictor corrector process with that of the simple and cheaper Euler extrapolation. 
Clearly, the first is more accurate but the question of cost involved in reaching more 
accuracy via this method or simply by taking smaller time increments needs to be studied. 

In Fig. 12 we plot the results for three various types of visco-plastic laws. In none was 
any difficulty of convergence experienced. Finally, Fig. 13 illustrates the same problem 
with strain hardening and softening effect. 

6. Concluding remarks 

The techniques of visco-plastic analysis have been demonstrated and show that this 
extension not only allows a new category of problems to be dealt with but can also be 
effectively used as a vehicle for classic elasto-plastic solutions. Clearly, many extensions are 
possible and indeed desirable. The inclusion of dynamic terms and thermal coupling are 
but two possibilities. Even with the present limitations it is desirable to extend the appli­
cations to the study of collapse situations. Those can be characterized by the lack of asymp­
totic displacement convergence, and effective computational techniques are now being 
investigated in that context. 
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