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Some remarks on plane flow of granular media 

A. DRESCHER (WARSZAWA) 

BASING on the known static solutions of plane strain problems of granular media, kinematic 
solutions of the following particular problems are considered in the paper: (a) the retaining wall 
problem, (b) punch indentation, (c) flow through a vertical channel. The kinematic fields are 
determined for the models introduced by (i) Drucker and Prager, (ii) Jenike and Shield, (iii) 
Genev. Correctness of the solutions was investigated from the point of view of non-negative 
values of the dissipated power. A number of solutions corresponding to models (ii) and (iii) is 
shown to be incorrect. The results are of interest in the experimental verification of the models. 

W oparciu o znane rozwi~zania statyczne dla plaskiego stanu odksztalcenia osrodka rozdrobnio
nego rozpatrzono rozwi~zania kinematyczne dla problemu: a) odporu scianki, b) wciskania 
stempla, c) przeplywu przez kanal pionowy. Pola kinematyczne znaleziono dla modelu 1) Druckera 
i Pragera, 2) Jenike i Shielda, 3) Geniewa. Zbadano poprawnosc rozwi~zan z uwagi na nie
ujemnosc mocy dysypowanej. Wykazano, ze szereg otrzymanych rozwi~zan dla modeli 2) i 3) 
jest niepoprawnych zar6wno dla osrodka waikiego jak i niewa:Zkiego. Rozpatrzone problemy 
brzegowe nalei:~ do klasy zadan o niedopuszczalnych kinematycznych warunkach brzegowych. 
Otrzymane wyniki maj~ istotne znaczenie przy weryfikacji eksperymentalnej omawianych modeli 
na podstawie por6wnania doswiadczalnych i teoretycznych p61 pr~dko5ci w zadaniach brzego
wych. Wskazuj~ one na koniecznosc uprzedniego sprawdzania poprawnosci rozwi~zan teore
tycznych dla realizowanego doswiadczenia. 

HcXO,z:vi H3 H3BeCTHhiX CTaTINecKHX pememm WUl WIOCKOrO ,Qe<f>opMHpOBammro COCTOHHH.R 
pa3MeJILlli!HHOH cpe.z:u,r, IIOCTpOeHbi KHHeMaTI{lleciG:{e peiiieHWI WUl CJie,lzyiOIIUlX 38.Qall: 
a) UO,QIIOp CTeHI<H; 6) B,QaBJIRBaHHe lliTaMIIa; B) TelleHH:e B BepTHKam.HOM l<aHa.Jie. l<H;HeMaTH
qeci<He nomr llOCTpOeHbl wm MO,QeJie:H: 1) ,UpyRepa-Ilparepa; 2) EHHI<e-IIIHJI.Qa; 3) re
HHeBa. l1ccJie.QoBaHa Koppei<THoCTb pememm B ornomemm HeoTp~aTem.Ho:H MOII.lHOCTH 
,QHCCH;rrn;pyeMOH 3HeprHil. Iloi<asaHO, qro MHOrn;e peiiieHWI WUl MO,QeJieH 2) H 3) Hei<oppei<THbi, 
Kill< wm BeCOMOH, Tal< H wm He:&ecOMOH cpe,Q. PaccMOTpeHHbie I<paeBbie 38,Q8liH npHBilAJIOKaT 
1< I<Jiaccy sa,Qall c He.QonyCTilMhiMH K~U~eMa~ecl<llMil I<paeB:biMll yCJIOBID!Mil. IlonylleHHbrc 
pe3yJibTaTbr HMeiOT cymeCTBemme 3HaqeHHe npH 3I<cnepHMeHTaJILHOH npoBepi<e paccMaTpHBa• 
eMhlX MO,QeJieit, COCTO~eH B cpaBHemm TeopeTHllecKHX IIOJieit CI<OpoCTeH CO CI<OpOCT.RMH,. 
noJiylleHHhiMH B OIIbiTax. 06Hapy»<eHHbie pe3yJibTilThi yRil3hmaroT Ha Heo6xo.QHMOCTb npe
.QBapnTeJibHoii nposepi<H · I<oppei<THOCTH TeopeTHlleCKHX peweHHii npH npoBe.QeHHH noBe
poliHhiX OIIbiTOB. 

1. Introduction 

THE BOUNDARY value problem of plane, quasi-static flow of a granular medium, described 
by the model of a rigid-perfectly plastic body and the Coulomb-Mohr yield condition, is 
rather well known as regards static solutions are concerned (cf. e.g. [12]). Much less 
attention has been paid thus far to kinematic solutions, one of the reasons being the con
troversial propositions concerning the kinematics of granular media. In numerous techno
logical processes (e.g. in earthmoving [14]), however, the knowledge of the static solution 
itself is insufficient. 

In the present paper is investigated the possibility of constructing kinematic counter
parts to the known static solutions of the following three problems: (a) shifting of a retain-
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838 A. DRESCHER 

ing wall, (b) punch indentation, (c) flow through a parallel-walled channel with a narrow 
opening. Cohesionless media are considered and the kinematic models proposed by 
DRUCKER and PRAGER [4], JENIKE and SmELD [6] and GENEV [5] are used. 

The conditions to be satisfied by the kinematic solutions based on the static solutions 
are: (a) feasibility of motion of the material, b) fulfilment of kinematic boundary condi
tions, c) compatibility of deformations, d) non-negativeness of the dissipation power in 
plastic domain elements, along the discontinuity lines of the velocity field and in the regions 
of contact with the tool or the structure. The correctness of the velocity fields in a granular 
medium from the point of view of satisfaction of all four conditions has been investigated 
in a very few papers only (e.g. [3, 7]); in the majority of publications, the problem is reduced 
to verifying the first three conditions. 

Condition (d) is expressed by the relations 

(1.1) Dv = aiJeiJ ~ 0, D, = Ti[V;] ~ 0, 

the first of which, however, does not hold in the model by DRUCKER and PRAGER and in 
a cohesionless medium. In the latter case the dissipation power is equal to zero in a body 
element both in the case of plastic loading and in the case of unloading (cf. e.g. [8]). For 
the case of a Drucker-Prager model, the kinematic solution should make the vector eiJ 

directed (at every point) outwards the yield surface. This condition is expressed, in the 
case of plane strain, by the following inequality written in terms of the principal directions 
of stress: 

(1.2) a 1 e1 < 0 or a2 e2 > 0, a 1 > a2 

what is equivalent to the positive increment of the voluminal strain rates (dilatation), 

{1.3) Eu > 0. 

2. Physical relations 

(i) Drucker-Prager model. The physical assumptions of the model are reduced to the requirements 
of isotropy and orthogonality of the iwvector to the yield surface. This leads to the following system of 
kinematic equations: 

(2.1) 
(Vx,x- Vy,y)sin2tp- (Vy,x+ Vx,y)cos2tp = 0, 

Vx,x(sintp-cos2tp)- Vy,y(sintp+cos2tp) = 0, 

tan tp being the inclination of the algebraically greatest principal stress to the x-axis, and tp - the angle of 
internal friction. The characteristics of Eqs. (2.1) are given by the equations 

(2.2) dy = tan[tp+(~ + ~)], a., {J. 
dx 4 tp 

Along the characteristics the relations 

(2.3) 

hold true. 

dV11 -(V«tantp+Vpsectp)dtp = 0 

dVp + (V« sec tp + Vp tan tp )dtp = 0 

along a., 

along {J 

Equations (2.2) mean that the stress and velocity characteristics coincide. Any of the velocity character
istics may be a line of discontinuity of the velocities; the tangential and normal components of the velocity 
jump are described by the relations 

(2.4) [V']= [VJ]exp[tantp(tp-tpo)], 

[VnJ = [Vt] tan tp. 
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(ii) Jenike and Shield model. In this model, the condition of isotropy and incompressibility are assumed, 
which leads to the equations 

(2.5) 
(Vx,x- V1 ,1 )sin2tp- (Vy,x+ Vx,y)cos2tp = 0, 

Vx,x+ Vy,y = 0 

whose characteristics are the lines 

(2.6) a., f3. 

Along the lines, the following relations are satisfied 

(2.7) 
dV«- Vp dtp = 0 along a., 

dVp + V« dtp = 0 along f3. 

From Eqs. (2.6) it follows that the velocity characteristics are orthogonal and do not coincide with 
the stress characteristics. The discontinuity line may be any of the velocity characteristics along which the. 
velocity jump remains constant and is tangent to that line. 

(iii) The Genev model. In this model, the deviation of principal directions of the tensors f1;j. e;j is as, 
sumed constant and equal to ± rp/2, and the material is incompressible. The kinematic relations hence havo 
the form 

(2.8) 
(Vx,x- V1 ,1)sin(2tp± rp)- (V1 ,x+ Vx,y)cos(2tp±rp) = 0, 

Vx,x+ Vy,y = 0. 

Owing to the deviation ± rp/2, Eqs. (2.8) yield two orthogonal sets of velocity characteristics, 

a.', /3', 
(2.9) 

a.", P", 

the characteristics a.' and f3" coinciding with the stress characteristics. The conditions along the character
istics are identical with (2.7). The line of discontinuity of velocity in the system (2.8) may be any of the 
characteristics of both systems; in spite of that, Genev assumed that the discontinuity lines were only those 
of the velocity characteristics which coincided with the stress characteristics. Consequently, in a field or 
characteristics which is continuous and does not contain any singularities, two discontinuity Jines cannot 
intersect each other. In this paper will be considered not only the model (iii) with the discontinuity lines 
imposed by Genev, but also the model (iv), which enables the di~ntinuity lines to coincide with any or 
the velocity characteristics. In the both cases, the jump of velocity along the discontinuity line is constant 
and tangent to it. 

For all the models considered, the characteristics are inextensible lines, which yields the orthogonality 
principle in the hodograph construction. 

3. Displacement of the retaining waU 

Let us consider one of the classical boundary value problems of flow of granular 
media- namely, the problem of displacement of a vertical retaining wall (with a rough 
surface) at a velocity V0 , in the direction of the medium bounded by a flat ground level. 
A passive state of stress occurs on the medium. The angle of friction at the wall is equal 
to (/Jw· 
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840 A.DRESCHER 

3.1. Weightless medium(t) 

The static solution for the weightless medium, well-known from the literature, assumes 
the existence of a Prandtl-type singularity at the point of contact of the wall with the 
ground level. The solution is obtained analytically under the assumption of a uniform 
loading of the ground surface, which does not influence the form of the field of stress 
characteristics. In Fig. la is shown the static solution for qJ = 30? and ({Jw = 15° consisting 

c'B'A" 
a 

Tr/4-rp 

iii} iv) 

Fio. 1. 

t>f two fields of rectilinear characteristics ABC and ADE and of the fan ACD. For the 
(i)-model, the field of velocity characteristics coincides with the stress field. In the case 
of other models, the velocity characteristics in ABC and ADE are rectilinear, and in the 
region of the fan they are determined by the following equations written in the r, 0-system: 

(3.1) 

where 

qJ 
v = ±0, f-l = 2 for a, {:J in the model (ii), 

., = ±0, f-l = qJ for a', {:J' I 
and in models (iii) and (iv). 
p = 0 for a" and 0 = const for {:J" 

Figs. la, lb demonstrate the fields of velocity characteristics in which- under a limited 
wall height - the characteristics a drawn from E to the ground surface is the line of 
discontinuity of the velocity; · the material lying below that line is at rest. Hence, in the 
case of model (iii), only a characteristics a' can be the discontinuity line. 

(1) The problem has been considered partly in [1]. 
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The determination of the velocity vectors starts from the point Eat which the velocity V0 

is decomposed into the velocity along the discontinuity line and the relative slip velocity 
at the wall. Once the velocities on the discontinuity line are known, the mixed problem 
is formulated in the region between the line and the wall, and a characteristic problem 
is formulated in the remaining region. The hodographs obtained are shown in Figs. 
le, d, e, f. 

All the solutions thus obtained ensure satisfaction of the first three conditicr.ts to be 
satisfied by the kinematic field. The fourth conditi.on is satisfied only for the models (i) 
and (iv) in the system r:x", {1"; to prove the solutions to be incorrect in the case of the 
other models, it is sufficient to consider the region G HJ or BCL where the dissipation power 
is negative. The analysis of solutions for other values of q; and q;w is now limited to the 
investigation of the influence of changes of (/Jw at a constant q;. 

In the case of models (i) and (iv) and the system r:x", {1", the field of velocity character
istics at varying fPw remains qualitatively similar and, as is easily verified, ensures the 
solution to be correct. For the remaining models, the form of the fields remains similar 
only in the case in which are satisfied the inequalities: 

(3.2) 

(/Jw < arc tan sin q; 

( 
1 +sin2 q;) 

(/Jw < arctan -=-.--~ 
smq;cosq; 

for the model (ii), 

for models (iii), (iv). 

In the opposite case the characteristics starting from the wall do not run to the discon
tinuity lines (as in Figs. la, b) but to the boundary AB, Fig. 2. This situation leads, in the 
case of model (ii), to two possible velocity fields: the first may be assumed to be the field 

AP J 
1£/4 

ii) 

ex 
G 

FiG. 2. 

bounded by the discontinuity line EP coinciding with the characteristics {1 running from E 
to the boundary, and to the right of which the material is at rest. The second velocity 
field is obtained by assuming two discontinuity lines EGH and EP and a rigid motion 
(with velocity V0 ) to the left from the EP-line. The latter case leads, however, to a negative 
dissipation power on the line EP. Considering the model (iii) and the non-satisfied inequality 
(3.2), the solution can not be found since the conditions on AE and EGH do not form 
any of the boundary value problems for the velocities (EP cannot be assumed to be a dis
continuity line). In the case of the model (iv) and the system r:x', {1', the remarks referring 
to model (ii) remain valid. 
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842 A. DRESCHER 

3.2. Ponderable medium 

The analysis of kinematic solutions of ponderable media will be limited to the static 
solution, which assumes the existence of a radial stress distribution in the vicinity of the 

c A' 

B 

E 

b 

1T/4+rp/2 F A' 

iii)iv) 
e L' C'B' 

~:: 
o'~ o'"------=---va 

£' 

E 

FIG. 3. 

wall(Z). The velocity characteristics for the radial state are determined by the following 
formulae written in the polar coordinate system r, 0 and the origin at A (Fig. 3a): 

(3.3) 

where 

and 

8 

r = r0 exp (J cot{1p+w)dO), 
0 

w = +(~- £) - 4 2 

W= 
n 

+-4 

W=+~-_!!_ 
- 4 2 

W= 
n cp 

+-+- 4 2 

for cx, f3 for the model (i), 

for ex, f3 for the model (ii), 

for ex', {3' I 
1 for models (iii), (iv), 

for ex", {3" J 

tan 'P being the inclination of the algebraically smallest principal stress to the radius r. 
In Figs. 3a, b are demonstrated the fields of velocity characteristics for the models 

considered, constructed on the basis of the static solution derived by SOKOLOVSKI [12] for 

(2) Another type of solution assumes the existence of Prandtl-type singularities. 
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'P = 30° and 'Pw = 15°. Construction of the hodographs shown in Figs. 3c, d, e, f is 
similar to that in the case of a weightless medium. Among the solutions presented, only 
the solution referring to model (iii) does not satisfy the condition (1.1)1 • Generalization 
of that conclusion to other values of 'P and 'Pw requires the consideration of a number 
of solutions. It should be stressed, however, that the inequalities (3.2) defining the jump 
change of the form of the velocity field in models (ii), (iii) and (iv) still remain valid, together 
with the resulting conclusions concerning the correctness of solutions, presented in (3.1). 

4. Indentation of a punch 

For the problem of a rigid punch driven at a constant velocity V0 into the surface 
of a plane granular half-space, two symmetric solution schemes are known in the static 
case corresponding to the schemes proposed by HILL and PRANDTL for metals. For a weight
less medium loaded uniformly by a pressure applied to the surface and with no friction 
at the contact, they can be obtained analyticallye). The kinematic solution for a weightless 
medium and the model (i) was considered by SmELD [11]. 

4.1. Weightless medium 

Hill's scheme (4
). In the case of a smooth punch, the static field consists of three elementary 

regions similar to the case of the retaining wall. In Fig. 4a are shown the characteristics 
of stress for 'P = 30°, and the corresponding velocity characteristics - in Figs. 4a, b. 

a c 

i) 

b 

e 8 
C'B' 

FIG. 4. 

(3) In Hill's scheme, the solution for fPw = const > 0 is impossible. 
( 4) The problem has been considered partly in [1]. 

d 

G'H' 

r 
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844 A.DRESCHER 

The lines of discontinuity of velocities for each of the models considered is the character~ 
istic running from E towards the boundary AB. From the condition that the material 
located below the discontinuity line remains at rest, we can determine the velocity of the 
material at E, and next - along the entire discontinuity line. The velocities in the deform
ation field are then determined by solving first the mixed problem, and next - the charac
teristic problem. Figs. 4c, d, e, f show the hodographs obtained in this manner. 

The kinematic solutions presented above ensure · the satisfaction of all conditions of 
the correct velocity field only in the case of models (i) or (iv) and for the system a.", {J". 

a 

b 

c ~ 

FIG. 5. 

c'a'A" d 

'~ ~~/ 
c'a' e 

r 

g 

h 

Prandtl's scheme. The static solution with Prandtl's scheme consists of two elementary 
regions only, ABC and CD, presented for q> = 30° in Fig. Sa. In the region EAD a statical 
continuation can be found, though the region is not necessarily in a plastic state. Different 
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velocity fields are found, depending on the assumption of plasticity or rigidity of the region 
EAD. Moreover, in the case of plasticity of the region EAD, the boundary condition on the 
line of contact with the punch, V = V0 , is not sufficient for a unique formulation of the 
boundary condition in the entire region of EAD. Similarly to the case of frictionless mate
rials, there occurs a possibility of construction of various velocity fields (cf. [9]). 

Let us first assume the region EAD to be rigid. The lines of discontinuity for the model 
(i) are AD and DCB. Starting from the point D, we can first determine the velocities at the 
discontinuity lines and then solve the characteristic problem in the region ADCB. The 
hodograph obtained is shown in Fig. 5d; the solution is correct. When the remaining 
models are considered, it should be observed that the velocity characteristics network 
is qualitatively similar to the network shown in Fig. 2. Consequently, the velocities referred 
to the model (iii) cannot be determined. Considering the models (ii) and (iv), various 
forms of the velocity field may be assumed, depending upon the choice of the lines of veloc
ity discontinuities. In Fig. 5b is presented the field in the case of model (ii) under the 
assumption of two discontinuity lines MD and DGH, and Fig. 5f- the hodograph. The 
dissipation power on the lines MD and DGHis now positive, while in GHJ it is negative. 
Qualitatively similar solutions are obtained for the model (iv) by assuming the system 
a.', {3' and two discontinuity lines, Fig. 5a, e; a correct solution for the model (iv) will be 
obtained using the system a.", {3", Fig. 5b, g. 

When a plastic state is assumed in the region EAD, let us consider two of the many 
possible velocity distributions on AE: (a) material particle velocity is constant on AE 
and equals V0 ; (b) the vertical velocity equals V0 , while the horizontal velocity increases 
linearly with the distance from the symm~ry axis. In both cases the network of velocity 
characteristics is the same, and the differences concerning the discontinuity lines are: 
for (a) the discontinuity lines are KA and KGH; for (b) no discontinuity line (strong 
discontinuity) is present. From the hodographs corresponding to the cases mentioned, 
Fig. 5h, j, it follows that a correct solution is furnished by the assumption (b). 

4.2. Ponderable medium 

As regadrs this type of medium, let us consider only the static solution corresponding 
to the Prandtl scheme. The form of solution, which may be established in a numerical 
way only, depends on the value of q;, on the specific weight y, on the surface load q, and 
on the width b of the punch. Let us confine ourselves to the sole statical solution given 
in [2] for q; = 38°, y = 1.66 G/cm3 and q/b = 0.166 G, and to the kinematic solution for 
the model (ii). The velocity field for the model (i) was considered in [2]; it fulfills all the 
requirements of a correct solution. 

The stress field presented in Fig. 6a consists of the region ABC of rectilinear character
istics and the region ACD where the both families of characteristics are curvilinear. Assum
ing the region EAD to be rigid, we obtain the network of velocity characteristics presented 
in Fig. 6b; of two possible forms of the field, we select the case in which MD and DGH are 
the discontinuity lines. The corresponding hodograph is presented in Fig. 6c which indi
cates that the dissipation power in GHJ is negative. 
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If we assumed a plastic state in EAD, the stress characteristics in the region would 
approach the contact line at various angles, corresponding to a certain distribution of 
(/Jw· If (/Jw equals the right-hand side of Eq. (3.2), then one of the velocity characteristics 
is tangent to the contact. Such a situation occurs in the case of the static solution consider-

~ 

B c 

M' 

d 

b 
R AM 

KT~a 
~ p 

H 
[ e 

FiG. 6. 

ed, yielding a very complex course of characteristics in the vicinity of point A, Fig. 6d. 
Assuming the existence of a rigid region under the punch, bounded by the discontinuity 
line coinciding with the characteristics tangent to the contact line at R, a rather complex 
hodograph is obtained, Fig. 6e, and a negative dissipation power in a part of the region. 

A detailed analysis of other velocity fields under the assumption of a plastic state in 
EAD is difficult owing to the complex form of characteristics in the vicinity of point A. 
Estimation of the correctness of these solutions for other \ alues of the parameters requires 
the construction of numerous static fields. Certain information may be furnished by the 
solutions presented by STUTz [13] in which the analysis of the dissipation power indicates 
that - depending on the parameters of the problem - both correct and incorrect results 
are obtained. 

5. Flow through a channel 

Let us consider the flow of a weightless material through a parallel-walled channel 
closed by a bottom containing a hole, Fig. 7a. The material velocity is assumed to be 
equal to V0 at a sufficiently large distance from the hole. The static solution in the vicinity 
of the hole depends on the ratio of dimensions of the channel and the hole, and on the 
friction at the walls. Let us assume that the channel is perfectly smooth and its dimensions 
are such that, for a given value of cp, the static solution corresponds to the characteristics 
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network shown(5
) in Fig. 7a (in the case of cp = 40°). This solution, identical with the 

region ABCD from the punch problem, requires the action of a certain pressure on AB 
in the case of cohesionless media. 

In the case of model (i), for which the discontinuity lines are AD, DC, CA, the hodograph 
presented in Fig. 7c is obtained. The solution is correct. If the model (ii) is considered and 
the inequality holds 

(5.1) (I +sin<p)exp(; tan 'I') > 2, 

the velocity field does not intersect the axis of symmetry, Fig. 7a, and MD, DGH are the 
discontinuity lines. In the opposite case, HL is the additional discontinuity line, Fig. 7b. 
The corresponding hodographs are shown in Fig. 7d, e. In the both cases the dissipation 
power in GJH is negative. 

For the model (iii), the field of velocity characteristics cannot be constructed, since 
the system a.", {3" is not admissible, and the system a.', {3' - owing to symmetry of the 
problem - leads to a contradiction in selecting the characteristics in the region ABC. 
An analogous inconsistency is found in discussing the model (iv) and system a.", {3" if the 
field intersects the symmetry axis, which is true provided that 

(5.2) {I +tan i) ex{; {<tan<p-tan i )] < 2. 

The inequality (5.2) not satisfied, the velocity field and the hodograph presented in 
Fig. 7b, fare obtained; the solution is correct. 

(
5

) A continuation into the rigid region exists in this case. 
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6. Conclusions 

The analysis presented of the kinematic solutions based on static solutions demon
strates that for the assumed values of physical parameters, the models (ii) and (iii) yield in 
several problems certain thermodynamically incorrect velocity fields. The models whose 
velocity characteristics do not coincide with the stress characteristics may lead to very 
complicated (and difficult for exact numerical determination) fields of characteristics. 

The remarks presented here do not yield any conclusions concerning the correctness 
of the models. The physical relations for the models to the velocities sought for, and hence 
the field of characteristics is independent of the kinematical boundary conditions. Incorrect
ness of the solutions is then the result of inadmissible - in view of Eq. ( 1.1) - kinematical 
boundary conditions. The problem was considered by RYCHLEWSKI [10] in the case of fric
tionless media and the punch indentation, where the criteria of admissible boundary 
conditions were formulated. 

The conclusions of the present paper are of great importance for the experimental 
verification of the models considered, consisting in comparing the experimental and theoret
ical velocity fields in boundary value problems. The cases of retaining walls and of the 
punch indentation are the most fundamental and frequently considered. In these considera
tions, it is always necessary to make sure whether the theoretical solution corresponding 
to the physical and geometrical parameters appearing in the experiments is correct. 
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