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Convexity in plasticity 

W. PRAGER (PROVIDENCE) 

CoNVEXITY of the admissible domain for a rigid, perfectly plastic continuum is considered. No
tions of the distance function of the admissible domain, the supporting function of the admissible 
domain and the directional derivative are defined and their importance to the discussion of 
convex domains is shown. As examples the linear combination of convex domains and dual 
convex domains are investigated. 

Rozwa.Zono wypuklosc dopuszczalnego obszaru dla sztywno, idealnie plastycznego osrodka 
ci~glego. Zdefiniowano pojf(Cia funkcji odleglo5ci obszaru dopuszczalnego i funkcji nosnej 
obszaru dopuszczalnego i kierunkowej pochodnej oraz pokazano ich znaczenie w dyskusji 
obszaru wypuklego. Jako przyklady zbadano liniow~ kombinacjf( obszar6w wypuklych oraz 
podw6jny obszar wypukly. 

HcCJie~oBaHa BbiiiyKJIOCTb o6JiaCTH ~onyCTHMbiX Hanp.IDKeHHH: B >KeCTKo-H~eam.Ho WiaCTH
'ICCKoM MaTepHaJie. ,IlaHbl onpe~eJICHIDI $ymandi paCCTOHHWI B ~onyCTHMOH o6JiaCTH H He
cyii.lCH $YJIK.QIUI B 3TOH o6JiaCTH, aTaK>KenpOH3BO~OHITOHanpaBJICHHIO. floKasaHO 3Ha'leHHe 
3THX ITOIDITHH B HCCJIC~OBaHHH CBOHCTB BbmyKJIOH o6JiaCTH. B Ka'leCTBe npHMepoB H3Y'JCHbl 
JIIUieHHbiC KOM6HHaqHH BbmyKJibiX 06JiaCTCH H ,qBOHHWI BbinyKJiaH o6JiaCTb. 

1. Distance function 

THE MECHANICAL behavior of a rigid, perfectly plastic continuum is described by relations 
between generalized stresses Q 1 , Q 2 , ... , Q,. and the associated generalized strain rates 
qh q2, ... , q,., the specific power of dissipation being Q1 q1 +Q2q2+ ... +Q,q,. [1]. In 
an arch, for instance, the state of stress at a cross-section is specified by two generalized
stresses, the bending moment M and the axial force N. The associated generalized strain 
rates are the rate of change " of the curvature of the center line and the rate of extension 
e of this line. Note that the shear force is treated not as a generalized stress but as the reaction 
to the kinematic constraint of the technical theory of arches, which stipulates that the 
center line remain normal to the cross-sections. 

According to the theory of plastic potential [2, 3], the mechanical behavior of a rigid, 
perfectly plastic continuum is completely defined by its yield condition. In the n-dimensional 
stress space with rectangular Cartesian coordinates Qi, the yield condition specifies the 
convex domain of admissible states of stress (admissible domain), which is bounded by the 
yield locus. Interior points of this domain represent states of stress below the yield limit 
for which all strain rates vanish. Points on the yield locus represent states of stress at the 
yield limit under which nonvanishing strain rates are possible. Points outside the admissible 
domain represent states of stress that cannot be attained in the considered continuum. 

Assume that the origin 0 of stress space is an interior point of the admissible domain. 
IfQ is the position vector of an arbitrary point Q of stress space (stress point), the ray OQ 
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828 W. PRAGER. 

intersects the yield locus at a single point Qo with position vector Q 0
• For varying Q, 

the value of the function 

(1.1) F(Q) = IQI/IQol 

is the reciprocal of the load factor by which the state of stress represented by Q must be 
multiplied to transform it into a state of stress at the yield limit. In the theory of convex 
domains, the function (1.1) is known as the distance function of the admissible domain, which 
is characterized by F(Q) ~ 1. The distance function of a convex domain has the following 
properties : 

(a) F(Q) > 0 if Q #:- 0, F(O) = 0; 

(1.2) (b) F(p,Q) = p,F(Q) for p, > 0; 

(c) F(Q+R) ~ F(Q)+F(R). 

While the propositions (a) and (b) are immediate consequences of the definition of the 
distance function, (c) may be established as follows. If Q and R are the position vectors 
of points of the admissible domain, Q/F(Q) and R/F(R) are the position vectors of points 
on the yield locus. It therefore follows from the convexity of this locus that 

(1.3) S = (1-A){Q/F(Q)} +AR/F(R), 0 ~A ~ 1, 

is a point of the admissible domain. Accordingly, 

(1.4) 

The substitution of 

(1.5) 

F(S) ~ 1. 

A= F(R)/{F(Q)+F(R)} 

into (1.3) and use of (1.4) and (1.2)b then yield (1.2)0 • 

We mention without proof that any function with the properties (1.2) is the distance 
function of a convex domain that has the origin as interior point. The points of this domain 
satisfy F(Q) ~ 1 (see, for instance, [4], p. 22). 

Examples of distance functions are: 
F(Q) = IQI for the unit sphere about the origin; and 
F(Q) = 2max IQ11 for the unit cube centered at the origin. 

Another use of the distance function in the theory of perfectly plastic solids will be 
discussed in Sec. 5. 

2. Supporting function 

While a state of stress Q specifies the position of the stress point, a strain rate q will 
be viewed as specifying a direction, namely the direction of the ray from the origin to the 
point with the position vector q. Note that, for positive A, the directions specified by q 
and ).q are identical. 

For a given constant c and a fixed direction q, the equation 

(2.1) Q . q = c' 

in which the dot indicates the scalar product, specifies an oriented plane. Points with posi
tion vectors Q satisfying Q · q ~ c fill the negative half-space bounded by the plane (2.1), 
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and the strict inequality applies to the interior points of this half-space. Note that the 
equation of a plane with the orientation q will always be written in the form (2.1) and 
not in the form - Q · q = - c, which represents the same plane with the opposite orienta
tion. 

In the following, it will be assumed that the admissible domain of the considered rigid, 
perfectly plastic solid does not extend to infinity. An oriented plane through a boundary 
point Q of the admissible domain is called a supporting plane of this domain, if the negative 
half-space bounded by this plane contains the admissible domain. This supporting plane 
is called regular · or singular according to whether Q is or is not the only common point 
of admissible domain and supporting plane. 

For a given direction q( ¥: 0), there is exactly one supporting plane of the admissible 
domain that has the orientation q. For varying q, the equations of these supporting planes 
will be written in the form 

(2.2) Q· q = H(q). 

To evaluate H(q) for a given q, we may choose Q in (2.2) asacommonpointofadmissible 
domain and supporting plane. For a regular supporting plane, this choice yields a unique Q, 
and for a singular supporting plane, the scalar product Q · q has the same value regardless 
of which common point of admissible domain and supporting plane is chosen. Thus, H(q) 
in (2.2) depends only on q. 

The function H(q) is called the supporting function of the admissible domain whose 
points Q satisfy the relations 

(2.3) Q · q ~ H(q) for all q. 

For a given q, there exists at least one point Q such that the equality sign holds in (2.3). 
In other words, the value of H(q) for a given q is the maximum value of the scalar product 
Q · q for all positions of Q in the admissible domain. 

The function H(~ has the following properties : 

(a) H(O) = 0; 

(2.4) (b) H(pq) = p,H(q) for p, > 0; 

(c) H(q+r) ~ H(q)+H(r). 

The properties (2.4). and (2.4)b follow from the definition of the supporting function 
and from the fact that, for positive p,, the directions q and p,q yield the same supporting 
plane. The property (2.4)

0 
is established as follows. All points Q of the admissible domain 

satisfy the inequalities Q · q ~ H(q) and Q • r ~ H(r), where q and rare fixed directions. 
Summation of these inequalities yields 

(2.5) Q · (q+r) ~ H(q)+H(r). 

By the maximum characterization of the supporting function, there exists at least one 
point Q in the admissible domain for which the left side of (2.5) has the value H(q+r), 
and this establishes the property (2.4)0 • 

It can be shown that any function H(q) that is defined for all directions q and has the 
properties (2.4) is the supporting function of a convex domain (see, for instance, [4], p. 26). 
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Examples of supporting functions are: 

H(q) = Q<0> • q for the point with the position vector Q<0 >; 

H(q) = Q<0 > • q + IQ<1> • ql for the line segment with the end points Q<0
> ± QU>; 

H(q) = ~ .}; lqil for the unit cube centered at the origin. 
i 

The value of the supporting function H(q) of the admissible domain of a rigid, per
fectly plastic solid is the specific power of dissipation for the strain rate q. The maximum 
characterization of the supporting function yields the principle of maximum specific power 
of dissipation. The common points of the admissible domain and its supporting plane for 
the direction q represent the states of stress that are capable of producing the strain rate q. 

3. Directional derivative 

Let H(q) be the supporting function of the admissible domain of a rigid, perfectly plastic 
solid. For a fixed strain rate r, the function 

(3.1) H'(q; r) = lim {H(q+hr)-H(q)}/h 
h-++0 

is called the directional derivative of H in the direction r. When q is kept fixed, while r is 
allowed to vary, the function H'(q; r) has the following properties: 

(a) H'(q; 0) = 0; 

(3.2) (b) H'(q; p,r) = p,H'(q; r); 

(c) H'(q; r+s) ~ H'(q; r)+H'(q;s). 

The properties (3.2)a and (3.2)b follow from the definition of the directional derivative. 
To establish the property (3.2)c, note that, according to (2.4)c, 

(3.3) 1 1 [I 1 J h H[q+h(r+s)] = ~z-H T(q+2hr)+ T(q+2hs) 

1 I 
~ 

2
h H(q+2hr)+ 

2
h H(q+2hs). 

Use of (3.3) in the definition of the directional derivative yields (3.2)c. 
According to the relations (3.2), the function H'(q; r) for fixed q and variable r has the 

characteristic properties (2.4) of a supporting function. It can, in fact, be shown that 
H'(q; r) is the supporting function of the convex domain that the admissible domain and 
its supporting plane for the direction q have in common (see [4], p. 26). 

Assume, for instance, that the admissible domain is the unit cube centered at the origin. 
In three dimensions, with q = (q1 , q2 , q3 ), this cube has the supporting function 

(3.4) 

For a fixed q with, say q1 > 0, q2 = 0, q3 < 0, and sufficiently small positive h, 

lq1 +hrd = ql +hr1, lq2+hr2l = hlr2l, lq3+hr31 = q3-hr3. 
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Accordingly, 

(3.5) 

and this is the supporting function of the edge of the unit cube that has the endpoints 

. ~ (l, ± 1, -1). Any point on this edge represents a state of stress that is capable ofpro

ducing the assumed strain rate q. 
It follows from the definition of the directional derivative and (3.2)b that, to within 

higher order terms in h, 

(3.6) 

Accordingly, 

(3.7) 

H(q+hr)-H(q) = hH'(q; r) = H'(q; hr). 

H'(q; r) = r· gradH 

provided that the gradient with the components oHfoqi exists for the direction q. For 
a state of stress Q that can produce the strain rate q, we have not only Q · q = H(q), 
but also 

(3.8) Q · r = H'(q; r). 

Comparison of (3. 7) and (3.8) finally yields 

Q = gradH. 

4. Linear combination of convex domains 

Let D1 and D 2 be convex domains with the supporting functions fl< 1>(q) and fi<2>(q), 
and let Q<1> and Q<2> be the generic points of these domains. If A1 and A2 are fixed, nonnega
tive numbers, the points 

(4.1) 

where Q(1 > and Q< 2 
l assume all positions in D 1 and D 2 , are the points of a convex domain 

D, which is called the linear combination of the domains D1 and D 2 with the weights A1 

and A2 • Indeed, Q< 1> and Q<2> satisfy the inequalities 

(4.2) Q(l> · q ~ H(l>(q), Q< 2 > · q ~ H< 2>(q) 

for arbitrary q. Accordingly, the vector Q in (4.1) satisfies 

(4.3) Q. q ~ A1H(l>(q)+I.2 H<2 >(q). 

By the maximum property of supporting functions, there exist points Q<1> and Q< 2 > for 
which (4.2) holds with the equality sign. For the corresponding point Q given by (4.1), the 
equality sign holds in (4.3). It follows that the right-hand side of (4.3) is the supporting 
function H(q) of the domain D. 

H'(q; r), considered as function of r, is the supporting function of the convex domain 
D' that the convex domain D and its supporting plane for the direction q have in common. 
It therefore follows from 

(4.4) 
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that D' is obtained from the similarly defined convex domains D~ and D~ by linear combi
nation with the weights A1 and .?.2 • 

The generalization of the concept of the linear combination of convex domains to more 
than two domains is immediate, as is the transition to a continuous linear combination 
of convex domains D('YJ) whose supporting functions H(q, 'YJ) depend on a parameter 'YJ. 
If A('YJ) ~ 0 is the weighting function for the linear combination D, the supporting function 
of D is defined as the integral 

(4.5) H(q) = f A('YJ)H(q, 'YJ)d'YJ 

extended over a certain interval of 'YJ· 
As example for the linear combination of admissible domains in plasticity, consider 

the sandwich cross-section in Fig. la, which is subject to an axial force N (positive if tensile) 

M/ChN 0 ) 

(-1,1) 
Cl.... 

" " " " 
N/N 0 

" " " " 'tl 
(1,-1) 

(a) (b) 

FIG. 1. 

and a bending moment M (positive if the lower cover plate is stressed in tension). The 
material of the cover plates is rigid, perfectly plastic with the uniaxial yield stresses ± (]0 , 

and the core does not carry axial stresses. If q1 denotes the rate of extension of the central 
fiber and q2 is the product of h and the rate of curvature, the specific rates of dissipation 
in the lower and upper cover plates are (]0 lq1 +q2l and <10 lq1 -q2l, and the total power 
of dissipation in these plates is <70 bt{2lq1 +q2l + lq1 -q2 1}. Dividing by the maximum 
axial force N0 = 3<70 bt, we obtain the reduced power of dissipation 

(4.6) 

The generalized stresses corresponding to this reduced dissipation function are Q1 = NfN0 

and Q2 = Mf(hNo). 
The function ( 4.6) is the linear combination of the functions 

(4.7) H(l> = lqt +q2!, Hc2
> = !q1-q2! 

with the weights A1 = 2/3, .?.2 = 1/3. The supporting functions (4.7) represent the line 
segments with the endpoints ± (1, 1) and ± (1, -1) shown by the dashed lines in Fig. lb. 
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Their linear combination with the weights 2/3 and 1 /3 is the full-line rectangle in Fig. I b, 
which is the admissible domain for the considered sandwich section. 

Figure 2a shows an example involving a continuous linear combination of convex 
domains. The rectangular section is subject to a bending moment M and an axial force N 

~b~ 
T 

h 

h 

(a) 

N/(<T0 bh) 

I 

(b) 

FIG. 2. 

and consists of two rigid, perfectly plastic materials with the uniaxial yield stresses 
- 0' 0 , 0 for the solid upper part and ± 0' 1 for the thin reinforcing plate at the bottom. 

We first determine the supporting function HC1>(q) for the upper part. If q1 and q2 

have the same meaning as before, a layer of thickness dy at the distance y below the central 

fiber contributes the amount ~ 0' o bh. {- ( q 1 + f}q 2) + lq 1 + f}q 2 1} dfJ to the power of 

dissipation, where fJ = yfh. Using 0'0 bh as the reduction factor, we obtain the reduced 
power of dissipation of the upper part as 

(4.8) 
1 

H 0 >(q) = -q1 + ~ .r ,ql +f}qlldfJ. 
-1 

Here, - q 1 is the supporting function of the point (- I, 0), while the expression under the 

integral sign is the supporting function of the line element with the end points ± ~ (dfJ, fJdfJ). 

These line elements must be linearly combined with unit weights. Since each of them is 
symmetric with respect to the origin, their linear combination has the same central sym
metry. Finally, the resulting convex domain must be given a unit translation in the negative 
q1-direction as is expressed by the additive term -q1 in (4.8). 

To obtain the form of the yield locus, we string together the infinitesimal vectors repre
sented by the line elements above in a sequence that furnishes a convex locus. If we start 
at the origin and use the elements - (dfJ, fJdfJ) from fJ = -1 to fJ = f)*, we arrive at the 
point with the coordinates 

(4.9) Qt = - l dr] = -(f}*+ !), 

'I* 

Q~ = J f}df) = ~ (I-1}*2). 
-1 -1 
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In particular, for 'YJ* = 1, we arrive at the point (- 2, 0). A unit translation in the positive 
q1-direction is therefore required to make the origin a center of symmetry, but this transla
tion will be cancelled by the equal and opposite translation required by the additive term 
-q1 in (4.8). Eliminating 'YJ* from the Eqs. (4.9), dropping the asterisks, and completing 
the yield locus by symmetry with respect to the origin, one obtains 

1 
(4.10) Q2 = ± T Q1CQ1 +2), -1 ~ Ql ~ 1. 

This yield locus is shown by the dashed line in Fig. 2b. 
The reduced power of dissipation for the cover plate at the bottom of the section in 

Fig. 2a is 

(4.11) 

This is the supporting function of the line segment with the endpoints ± (1, 1)a1 tf(a0 h). 
For a 1 tf(a0 h) = 1/2, the linear combination of the convex domains with the supporting 
functions (4.8) and (4.11) is bounded by the full line in Fig. 2b, which is the yield locus 
for the composite section in Fig. 2a. 

The integral in (4.8) can be evaluated as follows. The position 'Y/o of the neutral axis 
is found from q1 +rJ0 q2 = 0. Thus, 

1 1 

(4.12) H(l>(q) = -qt + ~ · ~( lq1 +'YJq2ld'YJ = -qt + ~ lq2l f lrJ-rJoldrJ. 
-J -1 

With 'YJ restricted to -1 ~ 'YJ ~ 1, the absolute value I'YJ-'YJol equals 'Yj-'YJ0 for n0 < -1 
and 'YJo-'YJ for 'YJo > 1. For -1 ~ 'YJo ~ 1, the interval of integration in (4.12) consists of 
the subintervals -1 ~ 'YJ ~ 'YJo where I'YJ-'YJol = 'YJo-'YJ and 'YJo ~ 'YJ ~ 1 where I'YJ-'YJol = 
= 'Yj-'YJo· Accordingly, 

l
-ql-qtsgnq2 for qdq2 < -1, 

(4.13) H'1'{q) = -q. _ ~ Jq,J ( 1 + :D for -1 ,; qtfq, ,; 1. 

l -qt +q1sgnq2 for q1 /q2 > 1. 

For q2 > 0, the first and third expressions in (4.13) are the supporting functions of the 
points ( -2, 0) and (0, 0); for q2 < 0, these points change roles. For q2 > 0, the second 
expression in (4.13) is differentiable and furnishes 

(4.14) Q1 = OH'
1
'f0q1 = -1 + :: , Q2 = OH'1'f0q2 = ~ ( 1- :n. 

For q2 < 0, the sign of Q2 in (4.14) must be changed. Elimination of q1 fq2 between the 
equations for Q1 and Q2 again yields (4.10). 

5. Dual convex domains 

The built-in beam in Fig. 3 has a constant cross-section with the yield moment Y. It 
carries the loads Q1 , Q2 , which will be taken as the generalized stresses. The corresponding 
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FIG. 3. 

generalized strain rates are the rates of deflection q 1 , q 2 of the points of application of the 
loads. Table 1 shows the rates of rotation in the plastic hinges at the cross-sections 1 through 
4 that are caused by q1 = 1, q2 = 0 or q1 = 0, q2 = I. 

-1 
0 

Table 1 

Section 

2 

2 
-1 

3 

-1 
2 

4 

0 
-1 

Factor 

If Yfa is used as the reduction factor, the reduced power of dissipation is 

(5.1) 

(a) (b) 

FIG. 4. 

Figure 4a shows the admissible domain for the beam, which is the linear combination, 
with unit weights, of the line segments with the endpoints ± (1, 0), ± (2, - 1 ), ± (1, - 2), 
± (0, 1). 

The load factor p, that will bring a given stress point Q into the supporting plane for 
a given direction q is found from 

(5.2) 1-'Q. q = H(q). 

The load factor ;. for plastic collapse is the smallest possible value of p,. Thus, 

(5.3) ). = min{H(q)/(Q · q)}. 

12 Arch. Mech. Stos. nr 5-6/72 
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Note that, in evaluating A., we need only consider the directions q that are normal to the 
line segments whose linear combination is the admissible region. These directions are: 
(0, 1), (1, 2), (2, 1), and (1, 0). Since the distance function F(Q) of the admissible domain 
is the reciprocal of the load factor for plastic collapse, we have 

(5.4) F(Q) = max {IQ21/4, !Q1 +2Q21/6, l2Ql +Q2I/6, IQll/4}. 

In view of (1.2) and (2.4), the distance function F(Q) has the characteristic properties 
of a supporting function. The convex domain with the supporting function F(Q) is called 
the dual of the admissible domain with the distance function F(Q). The points q that this 
dual (Fig. 4b) has in common with its supporting plane for the direction Q represent strain 
rates that can occur under a yield point stress of the direction Q and that result in unit 
reduced power of dissipation. 

The coordinates of the vertices in Fig. 4b are obtained as the factors of Q1 and Q2 

in the four terms of (5.4). For example, to the term IQ1 +2Q21/6 there correspond the 
vertices ± (1 /6, 1 /3). Having determined the vertices of the dual in this manner, we may 
construct an alternative form of the supporting function of the dual by regarding it as 
a linear combination of line segments. This supporting function is 

(5.5) 

it provides a closed-form expression for the load factor for plastic collapse, A. = 1 /F(Q), 
in dependence on the loads Q 1 , Q2 • 
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