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On the mechanical behaviour of quasi-linear bodies 

I. KISIEL (WROCLA W) 

CONSIDERED here are quasi-linear materials, having only two possible forms of equations of state 
(constitutive equations): the reversible (elastic) and the irreversible (viscous). They may also 
have two limit stresses: the yield limit and the strength of material. The symbols of the rheolog­
ical properties are discussed, together with the rules for composing the complicated bodies 
by means of simple elements. An examination is made of the elastic-plastic and linear hardening 
bodies, the linear visco-plastic and brittle materials. It is shown, that even simple rheological 
models of materials make it possible to describe certain complicated properties of matter. 

Rozpatrzono materialy quasi-liniowe, maj(lce tylko dwie mozliwe postacie r6wnan reologicznych 
stanu (r6wna.D. konstytutywnych): odwracaln(l (spre(zyst(l) i nieodwracaln(l (lepk(l). Mog(l one 
tez miee dwie wartosci granicznych napr((zen (dwie granice reologiczne): granicC( plastycznosci 
i graniee( wytrzymalosci. Om6wione zostaly symbole i reguly tworzenia modeli reologicznych 
z element6w. Rozpatrzono materialy elastoplastyczne i z liniowym wzmocnieniem, jak r6wniez 
materialy odznaczaj(lce siC( plyni~ciem plastycznym i materialy kruche. Pokazano, ze nawet 
ui;ycie bardzo prostych modeli pozwala na opis niekt6rych dose zlozonych wlasnosci materialu. 

PaccMaTpHBaiOTCH KBa3R-mmeihlhie MaTepRaJibi, .r(JUI KOTOpbiX B03MO>KHbl TOJII>KO ~e <i>opMbi 
peonorWieCKHX ypaaHemrn coCToKHIUI, onpeAeJIHIO~JOC ypaaHemtii): o6paTRMaH (ynpyraH) 
a Heo6paTRMaH (BH3I<aH). 3rn MaTepaaJibi MOryT TaroKe HMeTb ASa peonoraqecKHX npeAena, 
BbipameHHbiX B HanpiDKeHHHX: npeAeJI TeKyqecrn a upeAeJII>Hoe conponnmeHHe. 0Imcam.r 
npHMeHHeMbie B Aam.HeHweM CRMBOJibi peonoraqecKHX caoiiCTB MaTepHa.rra a npeACTaBJieHbi 
llpaBHJia KOHCTpYHPOBaHHH peoJiornqecKHX MOAeJieH H3 3TIOC CRMBOJIOB. PaCCMOTpeHbi ynpyro• 
IIJia~eCKHe MarepHaJibi a MaTepaaJibi mmeiiHo-ynpo~~ecH. KpoMe Toro paccMoTpeHbi 
MarepHaJibi, xapai<Tepa3yro~ecH UJia~eCKllM TeqeHJ{eM, a TaroKe xpynKHe MarepHaJibi. 
lloi<aaaHo, ~o npHMeHeHHe Aa>Ke npoCTefunHX MOAeJie:H no3BOJIHeT OllllCaTD Hei<oTopbie AO­
BOJII>HO CJIO)I(Hble CBOHCTBa paCCMOTpeHHbiX MaTepHaJIOB. 

1. Notations 

LET us deal with the quasi-linear materials. From thermodynamic considerations we 
obtain only two possible forms of equations of state (or constitutive equations): 

linear elasticity 

(1.1) O';~c = GiJklYJz, 

linear viscosity 

(1.2) aik = 1Jii"' syl, 
in which: a are the stresses, y are the strains, G and 1J are the moduli of elasticity and 
viscosity, respectively, s = dfdt. The moduli G and 1J are called the rheological moduli 
of the material. 

The following connections are valid: 

(1.3) 

(1.4) 
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804 I. KISIEL 

a;k and aik being the stress and strain tensors and rik and f}ik the stress and strain deviators, 
respectively, c5i1 is the Cronecker's delta; the Einstein summation convention is used. 

Some materials change their mechanical behaviour by exceeding the specified value 
of load. Each material shows a limited ability to carry load. The first limiting value of 
load we call the yield limit of material, the second value is denoted as strength of material. 
We shall denote the yield limit by simple tension using the character (), and the strength 
by simple tension using the character R. The stress () and R are the rheological limits of 
the material under consideration. On the illustration, we shall denote the rheological 

FIG. 1. 

moduli G and 17 by the usual symbols of spring and dashpot, respectively (Figs. 1 a and 
lb). For the rheological limits () and R we propose the denotations shown on Figs. le 
and ld, respectively. 

Two different states of behaviour of the material are defined as follows: 
before yielding 

(1.5) 

at yielding 

(1.6) 

(Jextr < ()' 

(Jextr = 0. 

The connection aextr > () for the denotation Fig. le is impossible. The term "yielding" 
denotes, in our meaning, that the critical value of stress is in the model constant: the 
increment of load will cause acceleration of motion. The diminishing of load will cause 
an instantaneous stop of motion. Similarly , the material can carry the load only if 
aextr < R. The connection aextr = R denotes exhaustion of the load carrying capacity 
of material. Therefore, the connection aextr > R is impossible. 
Valid for each material is: 

(1.7) () ~ R. 

2. Rules 

We shall distinguish two parts of coupling the symbols on the illustration of the rheolog­
ical model of material: the parallel and the in-series couplings, shown in Fig. 2a and 2b, 
respectively. The coupling in Fig. 2a shows the known Kelvin body; the coupling in Fig. 2b 
shows the Maxwell liquid. No difference results from coupling the symbols of moduli 
and of limits: each of them may be coupled with the other. 

There exist two rules of coupling two different symbols - say, A and B: 
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(a) the kinematic rule, governing the strains and having the form: 
in parallel coupling: 

(2.1) /'A = /'B = y, 

a b 

FIG. 2. 

in series coupling: 

(2.2) 

(b) the dynamic rule, governing the stresses and having the form: 
in parallel coupling: 

(2.3) 

in series coupling: 

(2.4) 

805 

in which the indices A and B denote the symbols to be coupled, and the stress a and strain i' 
without indices de11ote the values for the model as a whole. 

It is possible to couple an arbitrary number of elements in either manner. It will be 
borne in mind that the parallel coupling of similar parallel coupled elements (e.g., the 
parallel coupling of Kelvin elements) can be replaced by a single element of appropriate 
values of elasticity and viscosity; the same applies to coupling in series of elements consisting 
of similar symbols coupled in series (e.g., coupling in series of Maxwell fluids). 

We shall note the difference in behaviour of yield limit () and of strength R. If the 
value of() is exceeded, than the element () still bears the stress ;; = 0, and the excess load 
will be borne by other elements coupled in parallel with the element 0. By exceeding the 
strength R, the element R is damaged and loses its capacity to bear. By diminution of the 
load the element() is immobilized and checks further movement, if the stress acting on it 
is ;; < (); by contrast, the element R in such case entirely loses its capacity for resistance, 
even with diminution of load. 

3. Models of bodies 

10* 

It is usual to distinguish three general and different kinds of behaviour of a material; 
purely elastic, 
purely viscous, 
purely plastic. 
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The first two kinds of behaviour were described by means of the Eqs. (1.1) and (1.2). 
The third, we attempt to describe by means of the relation: 

(3.1) (f~(), 

which is in fact not the equation of state, since it does not yield a connection between 
stress and strain (cause and consequence) "in the thermodynamical meaning. Therefore, 
we introduce certain sophisticated explanations of what is called "plasticity", using a func­
tion of plasticity, a plastic potential and so on. 

Plasticity can be quite generally explained by means of only three characteristics of 
material in the rheological meaning: the values of elasticity and of viscosity and the yield 
limit. We must bear in mind that we are considering only quasi-linear materials. Our 
arguments are valid, therefore, only for such materials. 

We set out to find the rheological model for a linearly-hardening body. Consider the 
model shown in Fig. 3; it consists of three elements: the spring G 1 , which is coupled in 

FIG. 3. 

parallel with the St-Venant element G2 -0. Before reaching the yield limit() in the St Venant 
body (1), the deviatoric load -c is borne by two springs G1 and G2 • The deformation of 
the body is described by means of the Eq. 

(3.2) 

The yield limit in the St-Venant body will be reached if: 

(3.3) 

or, substituting (3.2), if for the whole body: 

(3.4) 

where 

(3.5) 

In exceeding the yield limit, the stress 

1) We assume compressive loading of the body. 
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---------------------------------------------------------

in the St Venant element cannot be exceeded and remains constant. Therefore the difference 
of load: 

will be borne by the element G1 only. The strain in the body shown in Fig. 3 is, after exceed­
ing yield limit, therefore: 

(3.6) 
f} () 2 Tma.x -fJ 

ma.x = 4G 2 + 4G 1 • 

The dependence of the strain upon the stress applied is shown in Fig. 4. The line 1 shows 
the process of application of the load on a linearly-hardening body. 

Let us now consider the process of unloading. Note that even the infinitesimal 
diminution of load, say, at point B in Fig. 4, will cause instantaneous joining of the spring 

FIG. 4. 

G2 • Therefore any diminution of deformation will instantly stiffen the element() and the 
further process will occur according to the formula: 

(3.7) 

When this diminution reaches the value: 

(3.8) 
() 

- f}max = - 4G2 

the stress in the St. Venant element will be equal to zero, but the stress in the Hookean 
element G1 is not zero but is equal to: 

(3.9) - H_ - () 
Lres- T - Tmax r2T 

according to formula (3.2)-(3.5). This stress will cause further deformation of our model 
of the body producing a pull in the St Venant element. The zero-state of external forces 
(the total unloading) will occur, if the pull in the St Venant element and the push in the 
Hookean element are equal - i.e.,: 

(3.10) 
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The residual tensile stress in the St-Venant element is therefore: 

(3.11) 

If we now apply the load of the opposite sign to the material, we find that the yield limit 
in the direction opposite to the first loading direction will be smaller (stretch CD) than 
in the case of the direct application of the load to the virgin material (stretch OE). That is 
the well-known Baushinger's effect. The yield limit in the opposite direction will be: 

(3.12) 

The material described above might be called H /V material. 
Another model representing plastic flow may be called the M/V model of material. 

This model has been described in other publications by the present author (e.g. [1, 2, 3, 4]) 
and will not be discussed here. 

As a third example, we shall consider a brittle material. Let us discuss the model shown 
in Fig. 5a: the Maxwell fluid, supplemented by an R-element coupled in series, is coupled 

a b 

FIG. 5. 

in parallel with a Hookean body connected in series with an R-element, similar to that 
in the Maxwell fluid. We shall call this model the S/K-model. In this case, by loading the 
model we observe the redistribution of load from Maxwell fluid to Hookean solid (similar­
ly as in the case of the M /V model). If the total loading of our body exceeds the value 
of R, there exists a time of failure: 

(3.13) r TI 2rmax 
tR = 2 n r (2 _ ) 

1 rmax R 

in which 

{3.14) 

The derivation of this formula is entirely similar to that of the critical time of the 
M /V-body and will be not repeated here. 

Therefore, if 

(3.15) 
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there exists a time of failure- i.e., the material will be not destroyed instantaneously after 
application of the load, but after the passage of the time tR. This material adequately 
describes the behaviour of brittle rocks, concrete, etc., if we assume, that R is the tensile 
strength of the material. An example of solving the problem of a tunnel in brittle rock was 
given in [5]. 

4. Remarks 

The H/V-material described above is cited by 0LSZAK, PERZYNA, SAWCZUK [6], Chapt. 4. 
All the principles of the solution of problems cited in the monograph referred to may be 
applied to the H/V-body. The importance of the introduction of the H/V-body is that 
this body can be treated in the same way as the elastic body without the necessity to intro­
duce the function m(e)i of the intensity of deformation ([6] Chapt. 4, Form. 2.3). Further­
more, the existence of Bauschinger's effects in the case of an H/V-body is a natural conse­
quence of a single general assumption: that the yield limit is constant and is the same in 
both directions of loading of virgin material. 

To represent what is called the visco-plastic flow of material, we can use the M /V-model 
(Fig. 6). It may be worthwhile to observe that in the theory of the M /V-body there is 

FIG. 6. 

no necessity to introduce the Drucker's postulate concerning the positive sign of the work 
of hardening. This positive nature of the M /V-body is a simple consequence of basic laws 
of irreversible thermodynamics, which are the basis of the equations of state. 

From the investigations of the properties of an M /V-body it follows that: 
(a) the limit shear stress of a body is not a constant value. It varies between an instanta-

neous value Tum = ~ F 2 () and a permanent value -r11m = ~ (). Its value is dependent 

on the time of action of load on the body: the shorter this time, the larger the limit shear 
stress of the M/V-body. 

(b) The plastic flow of an M/V-body need not necessarily be coaxial with the stress 
deviator. Such a coaxiality may be assumed; but one may also assume, for instance, the 
validity of the following hypothesis [4]: 

The directions of plastic flow of an M/V-body are determined by the value of the 
actual partial shear stress in the St-Venant element during flow. 
That assumption gives the angle between the maximal principal stress and the direction 
of flow, variable with time and determined by means of the formula: 

(4.1) sin 2tp(t) = () , 
0+(2Tma.-O)exp(- I-;•• ) 
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where tkr is the time of reaching the yield limit at the point under consideration, "P is the 
angle mentioned above. 

(c) It is obvious that the theory of plastic flow developed by [6] can be applied to the 
MfV-body; the simplicity of the meaning of parameters of state in this body makes it 
possible to introduce considerable simplifications. For instance, it is possible to apply 
the rules of viscous flow to the state of an M/V-body after exceeding the yield limit. 

(d) It follows from (a) that plastic zones are not invariant after application of cons­
tant load. Therefore, the application of the M/V-model of a solid makes it possible to 
find in an elementary manner the development of plastic zones with time, even by an 
invariable load. No known theory of plastic flow can give such possibilities. 

To explain the properties of brittle materials, the S/K-model has been proposed. This 
model is characterized by existence of the time of failure. Before failure, it behaves like 
a standard material (Zener's material) and therefore it can describe quite a wide class 
of materials, in particular almost all rocks and unreinforced concretes. The possibility 
of determining the development of cracked zones with time is entirely similar to that of 
the M I V-model. 

An objection may be raised concerning the disregard of the influence of the plastic 
(respectively, cracked) zone on the reversible (viscoelastic) regions of the body under 
consideration. Such an objection is valid; investigations concerning the problem con­
cerned have not yet been made. Nevertheless, there are indications that the influence refer­
red to is considerably lower than might be assumed. In the textbook [7] are cited some 
numerical examples [Chapt. 18]; it can easily be seen that taking into account the interac­
tion between cracked (resp. plastic) and reversible zones exerts only a small influence 
on the stress distribution around the cracked (plastic) zone. Therefore, the present author 
believes that by assuming quasi-linear behaviour of the material, the interaction between 
elastic (reversible) and cracked (plastic, irreversible) zones may be disregarded. A precise 
investigation of this problem is, of course, desirable. 
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