Application of energy methods in creep mechanics

F. K. G. ODQVIST (STOCKHOLM)

Abstract

The validity of several energy theorems well known in theory of plasticity is extended to creep mechanics for the case of general relationships between stress and strain rate tensors, restriction being made to incompressible, small motions and isotropic behaviour only. The influence of the third invariant of stress tensor is neglected.

Słuszność kilku twierdzeń energetycznych, dobrze znanych w teorii plastyczności, zostały rozszerzone na mechanikę pelzania đla przypadku ogolnej zależnosci pomiędzy tensorami napreżenia i prędkości odksztalcenia. Ograniczono się do materiału nieścisliwego, małych ruchów i izotropowego zachowania się materiału. Wpływ trzeciego niezmiennika tensora napręzenia zostal pominięty.

Abstract

Для случая общей зависимости между тензорами напряжения и скоростей деформирования, описывающей механику ползучести, доказана справедливость нескольких энергетических теорем, хорошо известных в теории пластичности. Исследованы случаи несжимаемости, мальх перемещений и изотропного поведения материалов. При этом пренебрегается влиянием третьего инварианта тензора напряжений на механическое поведение в процессе ползучести.

In their work "Recent Trends in the Development of the Theory of Plasticity" (Pergamon Press, 1963), which covers what is generally known as time-independent plasticity, W. Olszak, Z. Mróz and P. Perzyna, on p. 184 point out that problems of Rheology (which they simply define as "investigations of time-dependent phenomena of inelastic behaviour of bodies") would hardly admit of a coherent presentation from a unified standpoint. This may well be so. The following lines are meant to show that in certain fields of Rheology, the methods of plasticity theory could be applied with advantage and, in fact have been so applied for a long time. This statement refers to energy methods, applicable particularly in Creep Mechanics of structural metals, where time-dependent plasticity is associated with strongly nonlinear relationship between the tensors of stress and strain rate. Lack of analytic methods for the treatment of special problems here particularly calls for approximate methods.

If we exclude forerunners like A. HaAR and Th. v. Karman, the first attempt to apply energy methods in Plasticity is due to W. Prager and P. G. Hodge (1948). In Creep Mechanics Sovjet-Russian scientists started an early attack, see for instance L. M. Kachanov (1949). This writer utilized what has subsequently become known as the elastic analogue, see N. J. Hoff (1953), deriving extremum theorems for the potential U and the complementary potential \bar{U}, cf. also F. K. G. OdQvist (1966). These theorems will now be extended to general relationships between stress and strain rate tensors, restriction being made to incompressible, small motions and isotropic behaviour only. The influence of stress invariants of higher order than the second one will be neglected.

We introduce Cartesian tensors of stress $\sigma_{i j}$ and strain $\varepsilon_{i j}$, using summation convention for the subscripts i, j, k only. Then,

$$
\begin{equation*}
\sigma_{e}^{2}=\frac{3}{2} s_{i j} s_{i j}, \quad \varepsilon_{e}^{2}=\frac{2}{3} \varepsilon_{i j} \varepsilon_{i j} \tag{1}
\end{equation*}
$$

are second-order invariants of the stress and strain tensors, where

$$
\begin{equation*}
s_{i j}=\sigma_{i j}-\frac{\delta_{i j}}{3} \sigma_{k k} \tag{2}
\end{equation*}
$$

is the stress deviator and $\delta_{i j}$ is Kronecker's symbol. Obviously, we have

$$
\begin{equation*}
s_{k k}=0 \tag{3}
\end{equation*}
$$

We shall utilize the elastic analogue, implying that the strain rate $\dot{\varepsilon}_{i j}$ may, during the analysis, be replaced by the strain $\varepsilon_{i j}$, this being permitted if secondary creep under timeindependent forces only is considered. If u_{i} is the displacement vector, the strain will be

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{4}
\end{equation*}
$$

The analysis being completed, we may again replace $\varepsilon_{i j}$ by $\dot{\varepsilon}_{i j}$. In the following we will assume both $\varepsilon_{i j}$ and $\dot{\varepsilon}_{i j}$ to be small. Incompressibility implies

$$
\begin{equation*}
\varepsilon_{k k}=0 . \tag{5}
\end{equation*}
$$

As constitutive relation we may assume σ_{e} to be given as a function of ε_{e}, see Fig. 1. Together with the assumption that $\varepsilon_{i j}$ be orthogonal to the surfaces $\sigma_{e}=$ constant in stress

Fig. 1. Constitutive relationship between σ_{e} and ε_{e}.
space, assumed to be convex. Then, we obtain for the increment of elastic work per unit volume, remembering (2)

$$
\begin{equation*}
d W=\sigma_{e} d \varepsilon_{e}=\sigma_{i j} d \varepsilon_{i j}=s_{i j} d \varepsilon_{i j} \tag{6}
\end{equation*}
$$

and, similarly, for the complementary work \bar{W}

$$
\begin{equation*}
d \bar{W}=\varepsilon_{e} d \sigma_{e}=\varepsilon_{i j} d s_{i j}=\varepsilon_{i j} d \sigma_{i j} \tag{7}
\end{equation*}
$$

Of the functional relationships $W\left(\varepsilon_{e}\right)$ and $\bar{W}\left(\sigma_{e}\right)$, we shall require that they are continuous with their derivatives to the second order and that

$$
\begin{equation*}
W(0)=0, \quad \bar{W}(0)=0, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} W}{d \varepsilon_{e}^{2}}>0, \quad \frac{d^{2} \bar{W}}{d \sigma_{e}^{2}}>0 \tag{9}
\end{equation*}
$$

From (6) and (7) follows the relation

$$
\begin{equation*}
W+\bar{W}=\sigma_{e} \varepsilon_{e}=s_{i j} \varepsilon_{i j} \tag{10}
\end{equation*}
$$

We shall now consider the following boundary value problem (B. P.) of mixed type. Given a domain V in space, bounded by the surface S with the outer normal n_{j}, we shall try to find the state of deformation $u_{i}, \varepsilon_{i j}$ in the case when the body within V is subject to volume forces X_{i} and surface forces $\sigma_{i j} n_{j}=T_{i}$ over part S_{T} of the surface S, whereas u_{i} be given over the rest $S_{u}=S-S_{T}$ of S. Thus the boundary conditions are

$$
\begin{align*}
\sigma_{i j} n_{j}= & T_{i} \text { given on } S_{T} \tag{11}\\
& u_{i} \text { given on } S_{u}, \tag{12}
\end{align*}
$$

where T_{i} is supposed vanish.
The equilibrium conditions read

$$
\begin{equation*}
\frac{\partial \sigma_{i j}}{\partial x_{j}}+X_{i}=0 \text { within } V \tag{13}
\end{equation*}
$$

Equations (4), (5), (13) and the relationship $\sigma_{e}=\sigma_{e}\left(\varepsilon_{e}\right)$ enable us to obtain a system of four independent equations for the four unknown functions u_{i} and $\sigma_{k k}$, so the number of equations is sufficient. The constitutive relations being in general nonlinear, analytic methods usually will not be available for the treatment of special problems. In their stead, we shall utilize the extremum properties of U and \bar{U}.

The potential U and complementary potential \bar{U} are defined

$$
\begin{align*}
U & =\int_{V}\left[W\left(\varepsilon_{e}\right)-X_{i} u_{i}\right] d V-\int_{S_{T}} T_{i} u_{i} d S \tag{14}\\
\bar{U} & =\int_{V} \bar{W}\left(\sigma_{e}\right) d V-\int_{S_{u}} T_{i} u_{i} d S \tag{15}
\end{align*}
$$

As written down in (14) and (15), for the true solution $u_{i}, \varepsilon_{i j}, \sigma_{i j}$ of the problem B.P., the quantities U and \bar{U} are, of course, scalars. If u_{i}, etc. are replaced by other functions, U and \bar{U} become functionals.

If we allow the solution u_{i} of B.P. to be varied in such a way (admissible state of deformation) that the varied displacement $u_{i}+\delta u_{i}=u_{i}^{*}$ obeys the same boundary conditions on the surface S_{u} as u_{i}, whereas the prescribed external forces, i.e., the volume force X_{i} in V and the surface tractions T_{i} on S_{T} remain unvaried, we may prove that U is a true minimum for $u_{i}^{*}=u_{i}$. Here and later, we may use Gauss-Green's theorem in the form

$$
\begin{equation*}
\int_{V} \frac{\partial F}{\partial x_{j}} d V=\int_{S} F n_{j} d S, \tag{16}
\end{equation*}
$$

where F is a function, continuous with $\partial F / \partial x_{j}$ in $V+S$.
In fact, let us form

$$
\delta U=\int_{S}\left(\frac{\partial W}{\partial \varepsilon_{i j}} \delta \varepsilon_{i j}-X_{i} \delta u_{i}\right) d V-\int_{S_{T}} T_{i} \delta u_{i} d S .
$$

Here we have

$$
\delta \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial \delta u_{i}}{\partial x_{j}}+\frac{\partial \delta u_{j}}{\partial x_{i}}\right)
$$

Utilizing (6), we obtain

$$
\begin{equation*}
\frac{\partial W}{\partial \varepsilon_{i j}} \delta \varepsilon_{i j}=\sigma_{i j} \delta \varepsilon_{i j}=\frac{1}{2}\left[\frac{\partial}{\partial x_{j}}\left(\sigma_{i j} \delta u_{i}\right)+\frac{\partial}{\partial x_{i}}\left(\sigma_{i j} \delta u_{j}\right)-\delta u_{i} \frac{\delta \sigma_{i j}}{\partial x_{j}}-\delta u_{j} \frac{\partial \sigma_{i j}}{\partial x_{i}}\right] \tag{17}
\end{equation*}
$$

Remembering that $\sigma_{i j}=\sigma_{j i}$, we obtain, utilizing (16),

$$
\delta U=-\int_{V}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+X_{i}\right) \delta u_{i} d V+\int_{S_{T}}\left(\sigma_{i j} n_{j}-T_{i}\right) \delta u_{i} d S+\int_{S_{u}} \sigma_{i j} n_{j} \delta u_{i} d S .
$$

Here, the three integrands all vanish, due to (13), (11) and (12), respectively, and the result is

$$
\begin{equation*}
\delta U=0 . \tag{18}
\end{equation*}
$$

Further, we have, due to (9),

$$
\begin{equation*}
\delta^{2} U=\frac{1}{2} \int_{V} \frac{d^{2} W}{d \varepsilon_{e}^{2}}\left(\delta \varepsilon_{e}\right)^{2} d V>0 \tag{19}
\end{equation*}
$$

Thus, as a consequence of (18) and (19), we have prooved
Theorem 1. The potential U has a true minimum for the solution of problem B.P. if the state of strain is varied within the field of admissible states of deformation.

Further, we may vary the state of stress $\sigma_{i j}$ in such a way that the varied stress system $\hat{\sigma}_{i j}=\sigma_{i j}+\delta \sigma_{i j}$ fulfils the differential Eqs. (13) and the boundary conditions (11) (admissible state of stress) and form, utilizing (7) and (2),

$$
\delta \bar{U}=\int_{V} \varepsilon_{i j} \delta \sigma_{i j} d V-\int_{S_{u}} \delta T_{i} u_{1} d S .
$$

After a similar partial integration as in (17), we obtain, using (16) and observing that $\delta \sigma_{i j}=\delta \sigma_{j i}$

$$
\delta \bar{U}=-\int_{V} \frac{\partial \delta \sigma_{i j}}{\partial x_{j}} u_{i} d V+\int_{S_{u}}\left(n_{j} \delta \sigma_{i j}-\delta T_{i}\right) u_{i} d S+\int_{S_{T}} n_{j} \delta \sigma_{i j} u_{i} d S
$$

Here, the integrands will vanish due to (13), (12) and (11) respectively, and we obtain $\delta \bar{U}=0$. Further, we have

$$
\delta^{2} \bar{U}=\frac{1}{2} \int_{V} \frac{d^{2} \bar{W}}{d \sigma_{e}^{2}}\left(d \sigma_{e}\right)^{2} d V>0
$$

due to (9), and thus we have proved
Theorem 2. The complementary potential \bar{U} has a true minimum for the solution of problem B.P., if the state of stress be varied within the field of admissible states of stress.

The Theorems 1 and 2 were first proved by Kachanov (1949) in the case of a special, time-hardening body and by OdQvist (1966) for the special case

$$
\begin{equation*}
W\left(\varepsilon_{e}\right)=\frac{n \sigma_{c}}{n+1} \varepsilon_{e}^{1+1 / n}, \quad \bar{W}\left(\sigma_{e}\right)=\frac{\sigma_{c}}{n+1}\left(\frac{\sigma_{e}}{\sigma_{c}}\right)^{n+1}, \tag{20}
\end{equation*}
$$

where n and σ_{c} are material constants. Remembering (6), (7) and (10), we then also have

$$
\begin{equation*}
\varepsilon_{e}=\left(\frac{\sigma_{e}}{\sigma_{c}}\right)^{n}, \quad W=\frac{n}{n+1} \sigma_{e} \varepsilon_{e}, \quad \bar{W}=\frac{1}{n+1} \sigma_{e} \varepsilon_{e} \tag{21}
\end{equation*}
$$

The present proof allows the Theorems 1 and 2 to be extended to more general constitutive equations, holding true over much larger intervals of strain ε_{e}, for example to those published by Odqvist (1970), see Fig. 2.

Fig. 2. Constitutive relationship for Mg alloy ZRE1 $260^{\circ} \mathrm{C}$ (Söderquist, Storakers) containing 0.6 per cent Zr and 2.95 per cent rare earths.

If we add the two Eqs. (14) and (15), we obtain, using (10),

$$
U+\bar{U}=\int_{V}\left(\sigma_{i j} \varepsilon_{i j}-X_{i} u_{i}\right) d V-\int_{S} T_{i} u_{i} d S
$$

Introducing (4) and repeating a transformation like the one in (17) in combination with (16), we get, using (11), (12) and (13),

$$
\begin{equation*}
U+\bar{U}=-\int_{V}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+X_{i}\right) u_{i} d V+\int_{S}\left(\sigma_{i j} n_{j}-T_{i}\right) u_{i} d S=0 \tag{22}
\end{equation*}
$$

This relation in combination with the Theorems 1 and 2 may be used to give upper and lower bounds for U and \bar{U}. If we form U with any admissible state of strain $u_{i}^{*}, \varepsilon_{i j}^{*}$, it may be denoted with U^{*}. Similarly, \bar{U} formed with any admissible state of stress $\hat{\sigma}_{i j}$, may be denoted with $\hat{\bar{U}}$. Then, we have

$$
\begin{equation*}
U^{*}>U, \quad \hat{\bar{U}}>\bar{U} \tag{23}
\end{equation*}
$$

hence also

$$
-U^{*}<-U, \quad-\hat{\bar{U}}<-\bar{U}
$$

and then, from (22),

$$
\begin{equation*}
U^{*}>U>-\hat{\bar{U}}, \quad \hat{\bar{U}}>\bar{U}>-U^{*} . \tag{24}
\end{equation*}
$$

Also, adding the inequalities (23), we have

$$
\begin{equation*}
U^{*}+\hat{\bar{U}} \geqslant 0 \tag{25}
\end{equation*}
$$

equality being reserved for the case, when $u_{i}^{*}=u_{i}$ and $\hat{\sigma}_{i j}=\sigma_{i j}$.
If we now introduce Drucker's postulate (1951) in the form

$$
\begin{equation*}
\int_{\varepsilon_{i j}^{\prime \prime}}^{\varepsilon_{i j}^{\prime}}\left(\sigma_{i j}^{\prime}-\sigma_{i j}^{\prime \prime}\right) d \varepsilon_{i j} \geqslant 0, \tag{26}
\end{equation*}
$$

where $\sigma_{i j}^{\prime}, \varepsilon_{i j}^{\prime}$ and $\sigma_{i j}^{\prime \prime}, \varepsilon_{i j}^{\prime \prime}$ are any two states of stress and the corresponding strains according to (6) and Fig. 1, we may carry out the integration in (26) while keeping $\sigma_{i j}^{\prime \prime}, \varepsilon_{i j}^{\prime \prime}$ constant. Thus we obtain

$$
W\left(\varepsilon_{i j}^{\prime}\right)-W\left(\varepsilon_{i j}^{\prime \prime}\right)-\sigma_{i j}^{\prime \prime}\left(\varepsilon_{i j}^{\prime}-\varepsilon_{i j}^{\prime \prime}\right) \geqslant 0 .
$$

Remembering (10), this finally yields

$$
\begin{equation*}
W\left(\varepsilon_{i j}^{\prime}\right)+\bar{W}\left(\sigma_{i j}^{\prime \prime}\right) \geqslant \sigma_{i j}^{\prime \prime} \varepsilon_{i j}^{\prime} \tag{27}
\end{equation*}
$$

an inequality, derived by J. B. Martin (1964), and used by him to estimate, in the case of constitutive relations of the type of (20), an upper bound for the displacement δ in an arbitrary point Q of the body, Martin (1966). Martin assumes $\varepsilon_{i j}^{\prime}$ to be an admissible state of strain. Neglecting volume forces, he assumes $\sigma_{i j}^{\prime \prime}$ to be a state of stress in internal and external equilibrium with the given surface tractions $T_{i}^{\prime \prime}$. Integrating (27) over the volume V, he obtains

$$
\begin{equation*}
\frac{n}{n+1} \int_{V} \sigma_{i j}^{\prime} \varepsilon_{i j}^{\prime} d V+\frac{1}{n+1} \int_{V} \sigma_{i j}^{\prime \prime} \varepsilon_{i j}^{\prime \prime} d V \geqslant \int_{V} \sigma_{i j}^{\prime \prime} \varepsilon_{i j}^{\prime} d V . \tag{28}
\end{equation*}
$$

With a transformation like the one in (17), utilizing (16), he finds

$$
\frac{1}{n+1} \int_{V} \sigma_{i j}^{\prime \prime} \varepsilon_{i j}^{\prime \prime} d V \geqslant \int_{S}\left(T_{i}^{\prime \prime}-\frac{n}{n+1} T_{i}\right) u_{i}^{\prime} d S .
$$

The surface traction $T_{i}^{\prime \prime}$ are used to eliminate the unknown displacements u_{i}^{\prime} corresponding to $\varepsilon_{i j}^{\prime}$ except the displacement δ. Adding a force P in the point Q and in the direction in which δ is required, from (28) he finally obtains

$$
\begin{equation*}
\frac{1}{n+1} \int_{V} \sigma_{i j}^{\prime \prime} \varepsilon_{i j}^{\prime \prime} d V \geqslant P \delta . \tag{29}
\end{equation*}
$$

The upper bound for δ thus contains but the state of stress $\sigma_{i j}^{\prime \prime}$, which may be guessed in advance with the only requirement to be in internal and external equilibrium with the tractions $n T_{i} / n+1$, to which we have to add the force P, so that P occurs implicitely also on the left side of (29). The upper bound for δ may then be optimized with respect to P.

Inequalities of the type of (29) have been generalized to simultaneously elastic and creeping materials, i.e., to problems of relaxation and redistribution of stress. Further,
also to strain-hardening creeping materials and to bodies creeping in the time-independent plastic range, see F. A. Leckie and J. B. Martin (1967), A. R. S. Ponter (1969), F. A. LeCKie and A. R. S. Ponter (1970).

Thus, for example, these writers have treated the problem of simultaneous creep rate $\dot{v}_{i j}$ and time-independent plastic strain rate $\dot{p}_{i j}$, where the dots indicate differentiation with respect to the time, as before. The yield surface may be $f\left(\sigma_{i j}\right)=0$, assumed to be convex, i.e.,

$$
\begin{equation*}
\left(\sigma_{i j}-\sigma_{i j}^{c}\right) \dot{p}_{i j}>0, \tag{30}
\end{equation*}
$$

where $\sigma_{i j}$ is on the yield surface in a point where $\dot{p}_{i j}$ is normal to this surface and $\sigma_{i j}$ is any state of stress within or on the yield surface. Neglecting elastic strain, the total strain rate is $\dot{\varepsilon}_{i j}=\dot{v}_{i j}+\dot{p}_{i j}$, assumed to be derived from the velocity \dot{u}_{i} according to (4), differentiated with respect to the time. Utilizing the inequality (28), Leckie and Ponter (1970) have proved that estimates of the type of (29) may still be used if $\sigma_{i j}^{c}$ in (30) be put

$$
\sigma_{i j}^{c}=\frac{n+1}{n} \sigma_{i j}^{\prime \prime},
$$

that is, if the stress $\sigma_{i j}^{\prime \prime}$ be within the surface

$$
f\left(\frac{n+1}{n} \sigma_{i j}^{\prime \prime}\right)=0,
$$

see Fig. 3. This result must be valued highly, as it gives the computer a possibility to estimate creep deformations in particularly interesting stress regions, which have been inaccessible so far.

Fig. 3. Yield surface.

In further papers, independent of the assumption of the elastic analogue, A. R. S. PonTER has also treated more complicated loading cases, including problems of shakedown in the presence of creep, to establish deformation bounds for bodies approaching rupture, see A. R. S. Ponter (1971) and also F. A. Leckie and A. R. S. Ponter (1971).

In order to demonstrate the use of the inequality (29), Martin treats the simple problem of a cantilever beam loaded uniformly with p per unit of length according to Fig. 5.

In this case, an exact solution is available for comparison. For the deflection w, positive upwards as in Fig. 4, we have

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}=-\mu M^{n} \tag{31}
\end{equation*}
$$

Fig. 4. Coordinate system.

Fig. 5. Cantilever beam uniformly loaded.
where μ is a constant, and the minus sign corresponds to $M>0$ for a beam bent concave from below. For simplicity, n is assumed to be an odd integer >1.

$$
\mu=\sigma_{e}^{-n} I_{n}^{-n}, \quad I_{n}=\int z^{1+1 / n} d A
$$

Further, we have

$$
M=\frac{p x^{2}}{2}
$$

and hence

$$
\frac{d^{2} v}{d x^{2}}=-\mu\left(\frac{p}{2}\right)^{n} x^{2 n}
$$

Fig. 6. J. B. Martin's auxiliary loading system.
to be integrated with the conditions $w(0)=0, w(l)=\delta,(d w / d x)_{x=l}=0$, yielding

$$
\delta=\mu\left(\frac{p}{2}\right)^{n} \frac{l^{2 n+2}}{2 n+2}
$$

For the dimensionless deflection Δ, we obtain

$$
\begin{equation*}
\Delta=\frac{\delta}{\mu}\left(\frac{2}{p}\right)^{n} l^{-2 n-2}=\frac{1}{2 n+2} . \tag{32}
\end{equation*}
$$

The equilibrium system considered by Martin is seen in Fig. 6. In this case, we have

$$
M^{\prime \prime}=\frac{p n}{2(n+1)} x^{2}+P x
$$

Application of (29) yields

$$
\begin{equation*}
\frac{1}{n+1} \int_{0}^{l} \mu\left(M^{\prime \prime}\right)^{n+1} d x \geqslant P \delta \tag{33}
\end{equation*}
$$

Martin has maximized δ from (33) as a function of the parameter $2 P / p l$, see the table below.
For comparison, we may utilize Theorem 1 and compute

$$
\begin{equation*}
U=\int_{0}^{l}\left(\frac{n}{n+1} \mu^{-1 / n}\left|\frac{d^{2} w}{d x^{2}}\right|^{1+1 / n}+p w v\right) d x-p l \delta . \tag{34}
\end{equation*}
$$

Here, we may use a form for w, capable of satisfying the boundary conditions, say

$$
\begin{align*}
& \frac{d^{2} w}{d x^{2}}=C x^{m}, \quad \frac{d w}{d x}=\frac{C}{m+1}\left(x^{m+1}-l^{m+1}\right) \\
& w=\frac{C}{m+1}\left(\frac{x^{m+2}}{m+2}-x l^{m+1}\right), \quad \delta=-\frac{C l^{m+2}}{m+2} \tag{35}
\end{align*}
$$

where the two constants C and m are free for minimizing U. Inserting in (34), we obtain

$$
U=\frac{n}{n+1} \mu^{-1 / n} \frac{l^{m(1+1 / n)+1}}{m(1+1 / n)+1} C^{1+1 / n}+\frac{p l^{m+3} C}{2(m+3)} .
$$

Putting $\partial U / \partial C=0$, we obtain for the dimensionless deflection

$$
\begin{equation*}
\Delta=\frac{1}{m+2}\left[\frac{m(1+1 / n)+1}{m+3}\right]^{n} \tag{36}
\end{equation*}
$$

Minimizing U with respect to m means maximizing Δ. This has been carried out, and the result is seen in the table below. Obviously, $m=2 n$ renders Δ maximum and corresponds to the exact solution (32).

	Martin (1966)		Theorem 1		Exact. Eq. (32, 36)
n	Δ_{M}	$2 P / p l$	Δ_{I}		Δ
1	0.254	0.387	0.2500	2	0.2500
3	0.126	0.25	0.1250	6	0.1250
5	0.083	0.15	0.0833	10	0.0833

Martin produced this simple example just to show how the inequality (29) is to be used. It is possible that more interesting applications could be found. For the time being, I find the Theorem 1 as powerful as (29). Moreover, Theorem 1 yields the deflection in all points of the beam, whereas (29) gives it in one point only. In fact, Martin's method is more related to Theorem 2, which would need introduction of an auxiliary force P in the way done by Martin and is well-known in structural mechanics as Castigliano's method.

Still I think that the work initiated by J. B. Martin is well justified. Particularly, the further development, due mainly to F. A. Leckie and A. R. S. Ponter, must be highly appreciated.

References

W. Olszak, Z. Mróz and P. Perzyna, Recent trends in the development of the theory of plasticity, Pergamon, 1963.
W. Prager and P. G. Hodge, J. Math. Phys., 27, 1-10, 1948.
L. M. Kachanov, Some problems in the theory of creep [in Russian], Gos. Izdat. Techn.-Teor. Lit., Moscow 1949.
N. J. Hoff, J. Appl. Mech., 20, 105-108, 1953.
F. K. G. OdQvist, Math. theory of creep and creep rupture, Clarendon, Oxford 1966.
F. K. G. OdQVISt, Inelastic behavior of solids, Battelle Inst. Mat. Sc. Coll. 1969, Proc. (Ed.: M. F. KanniNEN et al) McGraw-Hill, 3-18, 1970.
D. C. Drucker, First U.S. Nat. Congr. Appl. Mech., 1950. Proc., ASME, 487-491, 1951.
J. B. Martin, J. Mech. Phys. Solids, 12, 165-175, 1964.
J. B. Martin, J. Appl. Mech., 33, 216-217, 1966.
F. A. Leckie and J. B. Martin, J. Appl. Mech., 34, 411-417, 1967.
A. R. S. Ponter, J. Mech. Phys. Solids, 17, 493-509, 1969.
F. A. Leckie and A. R. S. Ponter, J. Appl. Mech., 37, 426-430, 1970.
A. R.S. Ponter, Deformation bounds for a creeping structure approaching rupture, Univ. Leicester, Engn. Dept. Rep. 71, 6 March 1971.
F. A. Leckie and A. R. S. Ponter, Theoretical and experimental investigation of the relationship between plastic and creep deformation of structures, Univ. Leicester, Engn. Dept. Rep 71, 21 August 1971.
A. R. S. Ponter, J. Appl: Mech., 38, 437-440, 1971.

Received March 2, 1972

