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A comparison of theory and experiments on the dynamic plastic 
behavior of shells 

N. JONES and R. M. WALTERS (CAMBRIDGE, MASS.) 

A COMP.ARISON is made between the predictions of an approximate theoretical rigid-plastic 
procedure and some experimental values of the permanent deflections of hemispherical shells 
and cylindrical shell panels loaded impulsively. The initial kinetic energy of the dynamic loads 
in these tests was considerably larger than the maximum amount of strain energy which the 
shells could absorb in a wholly elastic manner. It emerged that reasonable agreement was obtained 
for the strain rate insensitive shells examined here and in Ref. [3] which should provide encour­
agement for the further development of these approximate procedures. 

W pracy dokonano por6wnania mie(dzy wynikami pewnego przybliZonego podej8cia teoretycz­
nego, opartego na modelu sztywno-plastycznym, a danymi doswiadczalnymi dotyez(lcymi trwa­
lych ugicce powlok p61kulistych oraz odcinkowych powlok walcowych obci~nych w spos6b 
nagly. Poezlltkowa energia kinetyczna obci~n dynamicznych, stosowanych w tych doswiad­
czeniach, przewyZsz.ala znacznie maksymaln~ wartosc energii odksztalcenia, jaq powloki byly 
w stanie pochlon(lc w spos6b calkowicie sp~sty. Okazuje si~. :ie uzyskano zadowalaj~ 
zgodnosc w przypadku rozwatanych w pracy powlok niewra.Zliwych na p~osc odksztalcenia 
z wynikami pracy [3]. Fakt ten powinien stanowic zach~bt do dalszego rozwijania przedstawionej 
w pracy metody przybliZonej. 

B pa6oTe Aaerc.R cpaBHCHHe Me>K,Izy peaym.TaTaMH HeKOTOporo npu6JllDKi:mloro TeOpcTHtlec­
Koro IIOAXOAa, OCHOBaHHOI'O Ha meCTKo•DJI&C'I'Hqea<oi: MOAeJIH, H A8HHb1MH OJibiTOB 110 Oil· 
peAeJieHI[IO OCTaTOtmbiX npol'll6<>B DO BHe38IIHO HarpYJK&eMhiX IIOJIY~HqecKHX HJIH: cerMeBT­
HbiX ~uqecKHX o6oJio'tiKax. Haqam.Ha.JI KHHerllllecKaJI 3Heprll.JI Alfii8.MH'IecKOro Harpy­
memm, upoH3BO,ttHMoro B 3THX oiihiT8X, auaquorem,uo IIpeBbiiiiaJia BCJIHt1H11Y 3Hepi"HII Ae­
<l»opMHpOBaHHJI, KOTOpyiO OOoJIO~ CllocOOHbl norJIOTBTh B 'lllCTO ynpyroM COCTOmDIH. ,n,m 
HCCJie,IzyeMLIX OOOJIOqeK ~ M8TepH8JIOB, HCqyBCTBilTCJU>HbiX K CKOpocTJIM A$pMHpOBIUIHJI, 
Uonyqeuo YAOBJICTBOpHTeJILBoe COBJI8.Ae!UlC C pe3yJibTaTaMB pa6o'l'bl [J]. 3TOT ci»BKT ,[(OJIJKC'H 
IIOOinPHTL ABJibHei:mee p83BHTHC npJl6JIIDKeaaoro MeTO,[(a, Ilpe,[(JIOJKCHHOI'O B AaHHOI pa6oTe. 

1. Introduction 

AN EXPERIMENTAL investigation into the dynamic inelastic behavior of cylindrical shell 
panels and hemispherical shells has been reported recently in Refs. [l] and [2]. The initial 
kinetic energies of the dynamic loads in these tests were much larger than the maximum 
strain energies which the shells could absorb in a wholly elastic manner. It appears from 
these experimental results that the influence of material elasticity and finite-deflections 
or geometry changes does not exhibit a significant effect on the overall structural response 
at least for transverse deflections up to twice the corresponding shell thickness. Therefore, 
a rigid-plastic theoretical procedure, which is developed for infinitesimal deflections, should 
provide reasonable engineering estimates of the behavior of the strain rate insensitive 
cylindrical shell panels and hemispherical shells studied in Refs. [1] and [2]. 

An approximate theoretical procedure was developed in Ref. [3] in order to examine 
the dynamic behavior of arbitrarily shaped shells made from a rigid perfectly plastic ma-
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terial. This method incorporated similar simplifications to those in the earlier analyses 
of SAWCZUK [4] and Ref. [5] on the respective static and dynamic behavior of initially 
fiat plates. It was observed that the theoretical predictions [3] for the behavior of a complete 
spherical shell subjected to a spherically symmetric pressure puis and a fully clamped 
cylindrical shell loaded impulsively agreed favorably with more exact rigid plastic analyses. 

In this article, the general procedure which is presented in Ref. [3] is used to study 
the dynamic inelastic behavior of hemispherical shells and cylindrical shell panels. These 
theoretical predictions are compared with the corresponding experimental results reported 
in Refs. [1] and [2]. 

2. Fully clamped spherical shell 

The behavior of a deep spherical shell cap (Fig. 1), which is subjected to a uniformly 
distributed impulsive velocity V0 which acts on the inner surface, will be examined using 
the approximate procedure outlined in Ref. [3]. 

It is assumed that the velocity field which characterizes the dynamic response of this 
problem is 

w0 (t) (coslj>-cosl/>0 ) w0 ( 4>, t) = _ __.:___:__,.~----=--"""7""""":""----=----..:...;_ 
(1-cosl/>0) 

and u(lj>, t) = 0, 

FIG. 1. Fully clamped spherical shell. 

where w0 (t) is the transverse velocity at 4> = 0. Equations (2.1) are the same as those 
employed by 0NAT and PRAGER [6] to obtain the static collapse pressure of a fully clamped 
spherical shell cap. 

In order to satisfy the normality requirements of plasticity associated with the Tresca 
yield criterion, 0NAT and PRAGER [6] showed that the velocity field (2.1) demands a mem­
brane state of stress throughout most of the spherical shell except in a small region 4>* ~ 
~ 4> ~ l/> 0 near the supports where 

(2.2) 
2coslj>0 Cos ""'* = ---:-----'-:-'Y 2~H/R-. 
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If (]0 is the tensile yield stress, N 0 = (]0 H and M 0 = (]0 H 2 /4, then 

(2.3) N8 = Nq, = N0 and M8 = Mq, = 0 

in the region 0 ~ cjJ ~ cjJ* while 

(2.4)1 
N. _ N _ 2R N (coscjJ -coscjJ0) 

8 - 41 - li o cos c/J 

and 

in the outer zone c/J* ~ cjJ ~ cPo. 
MARTIN and SYMONDS [7] showed for a rigid perfectly plastic structure, which is loaded 

impulsively, that the best agreement between a mode approximation [time-independent 
velocity field, for example, (2.1 )] and the actual response, occurs when the initial character­
istic mode velocity is v times the exact impulsive velocity, where 

f p,urvids 
s (2.5) Y=----
f p,ururas ' 

i = 1, 2, 3. 

I 

In Eq. (2.5), s is the surface area, p, the mass per unit area, ur is a mode approximation of 
the initial velocity field and Vi is the actual impulsive velocity field which is determined 
from the applied impulse by momentum conservation. It is straightforward to show when 
substituting (2.1) into (2.5) that 

(2.6) 

where V0 is an impulsive transverse velocity distributed uniformly over the entire middle 
surface of the spherical shell cap illustrated in Fig. 1. 

The problem at hand involves the axisymmetric dynamic response of a shell of re­
volution for which the influence of finite-deflections is not significant according to the 
observations in Ref. [2]. Thus, Eq. (15) in Ref. [3] becomes 

(2.7) J (p-p,w)R2sincjJiodcjJ = J (Nq,+N8)RsincjJiodcjJ- J M8 coscjJio'dcjJ 

-2 J M41 sincjJio"dcjJ- 2 {M41 sincjJ }1[io']1, 

k I 

which may be rewritten with the aid of Eqs. (2.1 )-(2.4) as 

(2.8) 

where 

a 1 = 1/2(1-cos2cjJ*)+coscjJ0coscjJ*-coscjJ0 , 

a2 = ! [ l/2(3cos2 </>0 +cos2</>*)-2cos</>0 cos4>* +cos2 </>0 log ( ::::)]. 

(2.9),-s a,= 8~ [l/2(cos2</>*-cos</>0)-
4~2 ]. 
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(2.9)1-8 
(cont.) 

as = 1/2(1-cost/>0 )
2

, 

a6 = 2/3p.a5 , 

and 
2u0 H 

Pc=-R-. 

It should be noted in passing that2nR2w0 /(1-coscp0 ) times the right-hand side ofEq. (2.8) 
is the internal energy dissipation D, while 2nR2 io0 /(1-costf>0 ) times the left hand side of 
Eq. (2.8) is the external work rate. 

It may be shown when satisfying the initial conditions w0 = 0 and io0 = 11V0 that 
Eq. (2.8) gives 

(2.10) 

The duration of motion t1 is obtained from the requirement that io0 = 0 at t = t1 and the 
associated maximum permanent transverse displacement w01 is 

(2.11)1,2 
Wof a6P2 V~ 
H= 2a,pcH 

or, 
w01 (l-cost/>0)

2
P

2AH 
H = 48a1 R 

where 

(2.11)3 

is a non-dimensional impulse parameter. 
MoRALES and NEVILL [8] showed that the maximum permanent displacement field 

of an impulsively loaded rigid perfectly plastic continuum of density e and volume V is 
bounded from below, viz., 

(2.12)1 

tl 
tl{f ev.u~dv- J D(u{)dt} 

0 
fJ)I/max ;;::: -----:J:------­

eu,dV 

where u1 is any time-independent kinematically admissible velocity field and 
are defined previously, 

(2.12h,3 
c - f eV,uldV and • c • (I I C) t, - D(u,) u, = u, - t t1 . 

V1 and D 

If Eqs. (2.1), (2.6) and D(u1) = 2nR2w0 /(l-coscp0 ) times the right-hand side of Eq. (2.8) 
are substituted into (2.12), then 

2v2 
Wof ;;::: Q6P 0 

H 3a1 pcH' 
(2.13) 

which is two-thirds of the value predicted by (Eq. (2.11)1. The corresponding upper bound 
theorem of MARTIN [9] cannot be used in this particular case because no statically admis-
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sible rigid-plastic solutions are available for a point load which acts on a deep spherical 
shell. A linear elastic solution is statically admissible and could be used but might not 
give a good upper bound. 

3. Approximate dynamic response of non-symmetric shells 

The analytical procedure presented in Ref. [3] can be applied, in principle, to any 
structure which satisfies the usual assumptions of thin-shell theory. However, a cylindrical 
shell panel is examined in the following section using a simple extension of the method 
employed by JANAS [10, 11] for the limit analysis of non-symmetric shells. In this particular 
procedure the structural deformation is idealized as several rigid regions separated by 
narrow plastic hinges. These plastic hinges are viewed mathematically as curves with 
certain permissible velocity discontinuities and relative rotation rates between the adjacent 
rigid regions and physically as narrow zones produced by severe strains and curvature 
changes. The total internal energy dissipation of a structure, which is concentrated in the 

Fio. 2. Velocity discontinuities at a plastic hinge 
of width b and length c. 

plastic hinges, must be equal to the external work rate according to the principle of virtual 
work. 

Consider two rigid regions A and B separated by a plastic hinge of width b as indi­
cated in Fig. 2. If the displacement rates vary linearly across this hinge, then the strain 
rates are 

(3.1)1-3 
. [u.]sinp 
Et= b ' and 

Similarly, the· curvature rates are 

(3.2)1-3 and 
iJ 1 cos P + D 2 sin P 

2~12 = b 
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where Qa. are the components along the 'YJa. axes of the relative rotation rates between the 
rigid regions A and B. The internal energy dissipation rate is 

(3.3)1 D = j (N1e1 +N2e2+N12Yo+M1ie1 +M2it2+2M12x12)dS 
s 

binge 

or, if it is assumed that the generalized stress values are uniform across a hinge zone, 
then 

(3.3)2 D = J {Ndu1]sinP+N2[u2]cosP+N12[u1]cosP+N12[u2]sinP 
c 

+M1D1sinP+M2Q2cosP+Mt2b1 cosP+M12Q2 sinP}dC, 

since dS = bdC. The positive directions of the generalized stress resultants in Eqs. (3.3) 
are defined in Ref. [3]. 

4. Cylindrical panel 

The dynamic response of the rigid, perfectly plastic cylindrical shell panel, which is 
illustrated in Fig. 3, is now examined using the approximate procedure outlined in the 

u 
FIG. 3. Cylindrical shell panel which is fully clamped 
along the two longitudinal sides and free at the circum­

ferential edges. 

previous section. The panel is fully clamped along the longitudinal sides, free at the circum­
ferential edges and is subjected to an internal impulse distributed uniformly over the zone 
0 ~ 0 ~ 0 e. L -le ~ x ~ L of the middle surface. This analysis is developed with the 
aid of the same velocity field which JANAS [10, 11] employed for the static collapse of 
a similar structure. Thus, in region 1 of Fig. 4 

(4.1)1-3 u = 0, v = -w0 sin0 and io = io0 cos0, 
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in region 2 

(4.2)1-4 

where 

while in region 3 

(4.3)1,2 

and 

(4.3h 

---Outline or 
loaded zane 

Fio. 4. Pattern of plastic hinges in a cylindrical shell panel. 

-Rioo u = (cos0-cos00), 
Xo 

• -X • . ll 
V= --w0 smv 

Xo 

• X • ll 
W =- W 0 COSv. 

Xo 

Clearly w and io must be continuous throughout a panel in order to achieve zero trans· 
verse shear strains. Thus the equation for the curved plastic hinge separating regions 2 
and 3 is 

(4.4) 
sin(00 -0) 

x23 = Xo "la cosO . 

The discontinuities in the various quantities at the plastic hinges according to Eqs. 
(4.1)-(4.3) are 

(4.5)1-3 

4 Arch. Mech. Stos. nr 5--6/72 
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and 

(4.5)4 [w*] = {sinOa-nacos(Oo-Oa)}wo 

between regions and 2 ( ( )' = o( ) I ox, ( )* = o( ) I oO) ), 

[u] = ~ (cos0-cos00)w0 , 
Xo 

(4.6) 1_ 3 [v] = 17a{l-cos(Oo-O)+tan0sin(Oo-O)}wo, 

and 

(4.6)4 

[ . ,1 
-wo 0 w =--cos 

Xo 

[w*] = -na{cos(Oo-O)-tan0sin(00 -0)}wo 

between regions 2 and 3, 

(4.7)1-3 [u]= ~ (cos0-cos00)wo, [v] = 0, 
Xo 

[ • '] - Wo O w =--cos 
Xo 

and 

(4.7)4 [iD*]= 0 

between regions 1 and 3, and 

(4.8)1,2 [u] = [v] = [w'] = o and [io*] = nawo 
at the clamped boundary. It may be shown when integrating the curvature rate expressions 
in Ref. [3] across a plastic hinge that the relative rotation rates between conterminous 
rigid zones are 

(4.9)1,2 iJ;f; = - [w'l and 
. [vJ- [iv*l 
Q9=---­

R 

FIG. 5. Limited interaction yield surface. 
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The strain and curvature rates in the plastic zones may be determined by substituting 
Eqs. ( 4.5)-( 4.9) into (3.1 )-(3.2). Thus the normality requirements of plasticity associated 
with the limited interaction yield surface shown in Fig. 5 demands 

(4.10) 1 Me= Mo, Ne= No 

and 

between regions 1 and 2, 

(4.11)1 

and 

between regions 1 and 3, 

(4.12)1,2 Mx = Me = 2Mxe = M 0 and Nx = Ne = 2Nxe = N0 • 

between regions 2 and 3, and 

(4.13)1,2 Me= -M0 and -M0 ::s;; Mx ::s;; 0, 

at the clamped boundary (0 = 00 ). 

Now substituting Eqs. (4.10)-(4.13) and (4.5)-(4.9) into (3.3h gives the internal energy 
dissipation 

(4.14)1,2 D = FM0 w0 , where F = F(L, R, H, x0 , 011 , 00 ). 

The external work rate for transverse loading is [3] 

(4.15)1 E = f {Cp-,uw)w-,uuu-,uvv}as 

which in view of the nature of the velocity field described by (4.1)-(4.3) may be rewritten 
in the form 

(4.15)2,3 

and 

(4.15)4 

Equating (4.14) 1 and (4.15h provides the governing equation of motion 

(4.16) FMo = pg-,uewo. 

The upper bound static collapse pressure p~ = FM0 fg (from (4.16) with w0 = 0) of a cy­
lindrical panel of given dimensions, which is loaded within the zone 0 ::s;; () ::s;; ()e and 
L-Ie ::s;; x ::s;; L, is clearly a function of the mode shape parameters x 0 and ()a· A parametric 
optimization was performed for discrete combinations of x0 and Oa and it was found 
over the range of parameters examined in Ref. [1] that the minimum collapse pressure 
occurred for x 0 = L and ()a somewhat less than ()e· Thus region 1 in Fig. 4 degenerates. 
into a curve as indicated in Fig. 6. 
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FIG. 6. Optimum pattern of plastic hinges in a cylindrical shell panel. 

In this case, it may be shown that 

(4 ) 4R
2 

( • () () () ) R . () L'YJa 2R'YJa { (O () ) .17 1 F= LH sm 0 - 0 cos o +-ysm o+R+-n o- a 

and 

(4.17h 

-cos20o(tan0o -tanOa)} + 'YJ
2
a {coo -Oa)+cos00 In ( sec~o +tan:o )} 

sec a+tan a 

+ ~ '1;cos00 (tan00 -tan0.)+ ~:; '1;cos00 {{tan00 -tanO.) 

1 [ ( sec00 + tan00 ) ]} --
2 

cos00 In () () +tan00 sec00 -tan0asec0a 
sec a +tan a 

e ()a R2 (()a 1 . 20 2 () . () () 2() ) 
RL = 3 + L 2 2 + 4 sm a- cos 0 sm a+ a cos 0 

+ 71£~2 

[ ~ (00 - 0 .) sin00 + si~Oo (sin200 - 2sin 0.)- sin 200 (sin0o- si nO.) 

+ (00 -Oa)sin00cos200 + co;Oo (cos200 - cos20a)- 2 cos200 (cos00 -cosOa) 

-cos3 00 ln :~:: J +2'1; [00 -0.-sin{00 -0.)] +77~ {! {00 -0.)sin300 
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(4.17h 
[cont.] 

+ 2cos00 In secO(jo + 2sin200 (sin00 - sinOa) + 2cos200 (cos00 - cosOa) 
sec a 

. 20 1 sec00 + tanOo cos
3
00 [ 1 ( 2(} 20 ) 1 sec00 ]} 

- sm 0 n (j + t (j - 3 -2 tan 0 -tan a - n --(}- . sec a an a sec a 

The MARTIN and SYMONDS mode factor [Eq. (2.5)] may be written 

J 
v = e' 

where 

(4.18h RL . (} R(L -le)
2 

• (} RL { . (} ( · 0 · 0 ) J = 2 sm a- 2L sm e + 'YJa sm 0 sm e- sm a 

+ cos60 ( cos 6.- cos6 .)} - ~,; {cos 260 (sin6.- sin 6 .) 

The equation of motion (4.16) for impulsive loading has the solution 

(4.19) 
-FM0 t 2 

W 0 = 
2 

+vV0 t 
p,e 

when satisfying the initial conditions w 0 = 0 and w0 = vV0 • Finally, the permanent 
maximum displacement is 

(4.20)1,2 
Wof J2). 

H = 2eFR2 ' 
where 

is a non-dimensional impulse parameter. 

5. Discussion 

The maximum permanent transverse deflections of impulsively loaded hemispherical 
shells and cylindrical shell panels which are predicted by Eqs. (2.1l)z, (2.13) and (4.20)1 

are presented in Figs. 7 and 8, together with the corresponding experimental results re­
ported in Refs. [1] and [2]. Equation (2.1l)z agrees favorably with the experimental results 
recorded on aluminum 6061 T6 hemispherical shells with RJH = 10.9 and R/H = 14.7. 
However, the approximate procedure and the lower bound predictions of MoRALES and 
NEVILL exhibit a greater dependence on R/ H than the experimental values suggest. Equa­
tion (4.20)1 was evaluated using every combination of the parameters of the aluminum 
6061 T6 cylindrical shell panels which were tested in Ref. [1]. It was observed that, within 
plotting accuracy, all these calculations fell on the same straight line which is indicated 
in Fig. 8. This analysis was based on the limited interaction yield surface (Fig. 5) which 
circumscribes the exact Tresca yield surface. The upper straight line presented in Fig. 8 
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2.0 

1.6 

1.2 

0.8 

Q4 

N. JoNES and R. M. W ALTERS 

Experimental results [2] 
o :R/H=10.9 
t:> :R/H=14.7 
o :R/H=22.4 

400 600 

FIG. 7. Comparison of theoretical predictions and experimental results [2] on aluminum 6061T6 fully 
clamped deep spherical shell caps. 

----Equation (2.11)2; -------Lower bound of MouLBS and NEVILL given by Eq. (2.13). 

0.4 

0 

Experimental results [1] 

o =H==0.082in. 
t:> :H==0.091 in. 
o :H==0124 in. 

0 

0 

[] 

20 ?.H/R 

FIG. 8. Comparison of theoretical predictions and experimental results [1] on aluminum 6061T6 cylindrical 
shell panels. 

------- Equation (4.20)1, ---- Equation (4.20)1 evaluated using 0.618 ao. 

is calculated using an approximate yield surface with a scale 0.618 times that of the circum­
scribing approximate yield surface. This smaller yield surface may not completely inscribe the 
exact yield surface. However, no approximate yield surface which reduces to Hodge's two 
moment limited interaction yield surface can possibly inscribe the Tresca yield surface 
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with a scale factor larger than 0.618. It is not surprising that the smaller yield surface pro­
vides better agreement with the experimental results than the larger one because a large 
portion of the plastic hinges in this particular problem have generalized stresses correspond­
ing to the corners A and B of the yield surface illustrated in Fig. 5. These corners lie out­
side the exact yield surface, while those on the smaller yield surface may lie near the exact 
yield surface. 

The approximate theoretical results presented herein were developed for rigid perfectly 
plastic shells which undergo infinitesimal deflections. Thus the influence of material 
elasticity, strain hardening and strain rate sensitivity were disregarded. Although the 
comparisons between the experimental and theoretical results shown in Figs. 7 and 8 are 
quite encouraging, one should be mindful of the above approximations and others [3] 
when applying this procedure to shells with different material properties and structural 
geometries. 

6. Conclusions 

A comparison is made between the predictions of an approximate theoretical rigid­
plastic procedure and some experimental values of the permanent deflections of hemi­
spherical shells and cylindrical shell panels loaded impulsively. The initial kinetic energy 
of the dynamic loads in these tests was considerably larger than the maximum amount 
of strain energy which the shells could absorb in a wholly elastic manner. It emerged that 
reasonable agreement was obtained for the strain rate insensitive shells examined here 
and in Ref. [3] which should provide encouragement for the further development of these 
approximate procedures. 
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