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A comparison of theory and experiments on the dynamic plastic
behavior of shells

N. JONES and R. M. WALTERS (CAMBRIDGE, MASS.)

A COMPARISON is made between the predictions of an approximate theoretical rigid-plastic
procedure and some experimental values of the permanent deflections of hemispherical shells
and cylindrical shell panels loaded impulsively. The initial kinetic energy of the dynamic loads
in these tests was considerably larger than the maximum amount of strain energy which the
shells could absorb in a wholly elastic manner, It emerged that reasonable agreement was obtained
for the strain rate insensitive shells examined here and in Ref, [3] which should provide encour-
agement for the further development of these approximate procedures.

W pracy dokonano poréwnania miedzy wynikami pewnego przyblizonego podejscia teoretycz-
nego, opartego na modelu sztywno-plastycznym, a danymi dofwiadczalnymi dotyczacymi trwa-
fych ugieé powlok p6tkulistych oraz odcinkowych powlok walcowych obciazonych w sposdb
nagly. Poczatkowa energia kinetyczna obciazef dynamiczaych, stosowanych w tych do$wiad-
czeniach, przewyiszala znacznie maksymalng warto$¢ energii odksztalcenia, jaka powloki byly
w stanic pochlongé w spos6b calkowicie sprezysty. Okazuje si¢, Ze uzyskano zadowalajaca
zgodno§¢ w przypadku rozwazanych w pracy powlok niewrazliwych na predko$é odksztalcenia
z wynikami pracy [3]. Fakt ten powinien stanowié zachete do dalszego rozwijania przedstawionej
w pracy metody przyblizonej,

B pabGore paérca cpaBHeHHE MEXAY PE3YILTATAMH HEKOTOPOro NMpHOMMDKEHHOIO TeopeTHdec-
KOr0 IOJX0Ja, OCHOBAHHOrO HA JKECTKO-IUIACTHYECKOW MOOeNmH, M JAHHBIMH OIIBITOB HO OHN-
PEASNIEHHIO OCTATOYHBIX MPOrHGOB BO BHESAIMHO HAMPY)KAEMBIX NoJTycepHUeCKHX HITH CETMEHT-
HBIX IMUMHApHYecknx obonouxax. HauamHan KMHEETHYECKAA SHEPIHA HHAMHYECKOTO HArPY-
JEHHA, MPOHIBOJHMOTO B ITHX ONLITAX, SHAYKTEHHO IPEBLIIANA BEIMYHEY JHCPIHH Je-
¢opmMupoBaHIA, KOTOPYIO 0BOJIOUKH CIOCOGHBI NOTJIOTHTE B YHCTO YIPYToM cocroaHuH. Jlnsa
HCC/IeyeMbIX 00ONOYeK M3 MATEPHANOB, HEUYBCTBHTEIBHEIX K CHOPOCTAM NethopMHDOBAHHS,
HOMY9YEHO yAOBJICTBOPHTE/LHOE COBOAAEHHE C peayibrarama paborwl [3]. Dror daxr momken
DOOLIPHTH JaybHelilee pa3sBuTHE MPROIDKERHOTO METONA, NPEJIOXKEHAOrO B NarHoH pabore.

1. Introduction

AN EXPERIMENTAL investigation into the dynamic inelastic behavior of cylindrical shell
panels and hemispherical shells has been reported recently in Refs. [1] and [2]. The initial
kinetic energies of the dynamic loads in these tests were much larger than the maximum
strain energies which the shells could absorb in a wholly elastic manner. It appears from
these experimental results that the influence of material elasticity and finite-deflections
or geometry changes does not exhibit a significant effect on the overall structural response
at least for transverse deflections up to twice the corresponding shell thickness. Therefore,
a rigid-plastic theoretical procedure, which is developed for infinitesimal deflections, should
provide reasonable engineering estimates of the behavior of the strain rate insensitive
cylindrical shell panels and hemispherical shells studied in Refs. [1] and [2].

An approximate theoretical procedure was developed in Ref. [3] in order to examine
the dynamic behavior of arbitrarily shaped shells made from a rigid perfectly plastic ma-
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terial. This method incorporated similar simplifications to those in the earlier analyses
of Sawczuk [4] and Ref. [5] on the respective static and dynamic behavior of initially
flat plates. It was observed that the theoretical predictions [3] for the behavior of a complete
spherical shell subjected to a spherically symmetric pressure puls and a fully clamped
cylindrical shell loaded impulsively agreed favorably with more exact rigid plastic analyses.

In this article, the general procedure which is presented in Ref. [3] is used to study
the dynamic inelastic behavior of hemispherical shells and cylindrical shell panels. These
theoretical predictions are compared with the corresponding experimental results reported
in Refs. [1] and [2].

2. Fully clamped spherical shell

The behavior of a deep spherical shell cap (Fig. 1), which is subjected to a uniformly
distributed impulsive velocity ¥, which acts on the inner surface, will be examined using
the approximate procedure outlined in Ref. [3].

It is assumed that the velocity field which characterizes the dynamic response of this
problem is

wo(t) (cos ¢ —cos )
(1—cos¢y) 2

f
q_ﬂ
ot |

Fig. 1. Fully clamped spherical shell,

(2.1),2 Wo(9, 1) = and (¢, t) =0,

where #v,(2) is the transverse velocity at ¢ = 0. Equations (2.1) are the same as those
employed by ONAT and PRAGER [6] to obtain the static collapse pressure of a fully clamped
spherical shell cap.

In order to satisfy the normality requirements of plasticity associated with the Tresca
yield criterion, ONAT and PRAGER [6] showed that the velocity field (2.1) demands a mem-
brane state of stress throughout most of the spherical shell except in a small region ¢* <
< ¢ < ¢, near the supports where

2cos¢o_

(22) COS¢* = m W
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If o, is the tensile yield stress, Ny = aoH and M, = a,H?[4, then
(2.3) Ng=Ny=N, and My=M;=0
in the region 0 < ¢ < ¢* while

2R (cos¢p—cosgy)

(2.4), Ny = N,, = 'FNO cosé
and

4R? (cos¢—cosd,)?
(2-4)3 My = M¢ = Mo{l == H? cosqu 2

in the outer zone ¢* < ¢ < ¢o.

MARTIN and SYMONDS [7] showed for a rigid perfectly plastic structure, which is loaded
impulsively, that the best agreement between a mode approximation [time-independent
velocity field, for example, (2.1)] and the actual response, occurs when the initial character-
istic mode velocity is » times the exact impulsive velocity, where

f,uit?l/‘ds'

@2.5) v , i=1,23.

[t ds
2

In Eq. (2.5), s is the surface area, u the mass per unit area, ¥ is a mode approximation of
the initial velocity field and V; is the actual impulsive velocity field which is determined
from the applied impulse by momentum conservation. It is straightforward to show when
substituting (2.1) into (2.5) that

(2.6) Vﬁ-ﬂo = I.SVo,

where ¥V, is an impulsive transverse velocity distributed uniformly over the entire middle
surface of the spherical shell cap illustrated in Fig. 1.

The problem at hand involves the axisymmetric dynamic response of a shell of re-
volution for which the influence of finite-deflections is not significant according to the
observations in Ref. [2]. Thus, Eq. (15) in Ref. [3] becomes

@7 [ (p—pis)Rosingtodp = [ (Ny+Ne)Rsingiodg— [ Mycospirdd
= D[ Mysinga"dp— 2{M¢ sing},[@];,
k

which may be rewritten with the aid of Egs. (2.1)-(2.4) as
(2.8) asp—asio = azp.,
where

a; = 1/2(1 —cos®¢*)+cos Pocos p* —cos P,

R 2 2 4% * 2 cosp*
@ =4 1/2(3cos?¢o+cos?Pp*)—2cos gy cos p* +cos?d,log =

@9 a5 = 8—1;7[1/2(0052¢*'005¢0)— 4’_3;]
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Hsin2¢o
2.9),_ gy = ———\
[mt.]l 8 4 8R
as = 1/2(1—cos,)?,
as = 2[3uas,
a; =a,+2a,+2a;+a, and p. = 2a;H ;

It should be noted in passing that 27zR?w,/(1 —cos ¢,) times the right-hand side of Eq. (2.8)
is the internal energy dissipation D, while 27 R?%, /(1 —cos ¢,) times the left hand side of
Eq. (2.8) is the external work rate.

It may be shown when satisfying the initial conditions w, = 0 and &, = vV, that
Eq. (2.8) gives

— 2
(2.10) wo(t) = —27PL”

2a,

The duration of motion #, is obtained from the requirement that &, = 0 at ¢ = t, and the
associated maximum permanent transverse displacement w, is

+v¥,t.

Wor _ as¥?V3 woy _ (1—cosgo)»*AH
@101 H 2ap.H ° H~ 48a,R  °
where
_ uViR?
@.11), 1=

is a non-dimensional impulse parameter.

MoraLes and NevILL [8] showed that the maximum permanent displacement field
of an impulsively loaded rigid perfectly plastic continuum of density ¢ and volume V is
bounded from below, viz.,

c

s
tr\f eViiuav— [ D))

where i is any time-independent kinematically admissible velocity field and ¥; and D
are defined previously,

(2.12), Wi fmax =

»

[ eViav
D(w,)
If Egs. (2.1), (2.6) and D(u,) = 2nR%to,/(1 —cos¢,) times the right-hand side of Eq. (2.8)

are substituted into (2.12), then

(2.12),5 1 = and  #° = iy(1—1/t).

Woys aﬁszé
H ~ 3a;p.H’

which is two-thirds of the value predicted by (Eq. (2.11),. The corresponding upper bound
theorem of MARTIN [9] cannot be used in this particular case because no statically admis-

(2.13)
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sible rigid-plastic solutions are available for a point load which acts on a deep spherical
shell. A linear elastic solution is statically admissible and could be used but might not
give a good upper bound.

3. Approximate dynamic response of non-symmetric shells

The analytical procedure presented in Ref. [3] can be applied, in principle, to any
structure which satisfies the usual assumptions of thin-shell theory. However, a cylindrical
shell panel is examined in the following section using a simple extension of the method
employed by JANAS [10, 11] for the limit analysis of non-symmetric shells. In this particular
procedure the structural deformation is idealized as several rigid regions separated by
narrow plastic hinges. These plastic hinges are viewed mathematically as curves with
certain permissible velocity discontinuities and relative rotation rates between the adjacent
rigid regions and physically as narrow zones produced by severe strains and curvature
changes. The total internal energy dissipation of a structure, which is concentrated in the

(A)

FiG. 2. Velocity discontinuities at a plastic hinge 71
of width b and length ¢.

plastic hinges, must be equal to the external work rate according to the principle of virtual
work.

Consider two rigid regions 4 and B separated by a plastic hinge of width b as indi-
cated in Fig. 2. If the displacement rates vary linearly across this hinge, then the strain
rates are

Oy & wL0lEmB . _ Dleosh g 5 lulcoshtlblung
b b b
Similarly, the curvature rates are
Q,sin & 0,cos . Q,cosf+2,sin
lb ﬁ s Xy = Zb ﬁ ﬂ.ﬂd 2"12 o 1 ﬂb 2 ﬁ ;

B3 =
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where (2, are the components along the 7, axes of the relative rotation rates between the
rigid regions 4 and B. The internal energy dissipation rate is

(3.3), D= f (N8 +Nyé3+ Nyo Yo+ Mty + My, +2M 5 %,,)dS

hi;IB
or, if it is assumed that the generalized stress values are uniform across a hinge zone,
then

(33): D = [ {N,[i]sinp+N;liz]cosp+Ny,li]cos+ Ny, [it]sinf

+ M, 2, sin 8+ Mzﬂzcosﬁ+Muf21cosﬁ+MuQ2 sinf}dC,

since dS = bdC. The positive directions of the generalized stress resultants in Egs. (3.3)
are defined in Ref. [3].

4. Cylindrical panel

The dynamic response of the rigid, perfectly plastic cylindrical shell panel, which is
illustrated in Fig. 3, is now examined using the approximate procedure outlined in the

u
T Fi1G. 3. Cylindrical shell panel which is fully clamped
I along the two longitudinal sides and free at the circum-
I ferential edges.

previous section. The panel is fully clamped along the longitudinal sides, free at the circum-
ferential edges and is subjected to an internal impulse distributed uniformly over the zone
0<6<80, L-I, < x< L of the middle surface. This analysis is developed with the
aid of the same velocity field which JANAs [10, 11] employed for the static collapse of
a similar structure. Thus, in region 1 of Fig. 4

(4.1)1_3 l.‘ = 0, f.) = —!;ﬂosine and f.&' = {000058,
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——— Qutline of
loaded zone

/]

FiG. 4. Pattern of plastic hinges in a cylindrical shell panel.

in region 2
(4.2)1—‘ u= 0, U= ?}.'&Jo{l ""COS(GO —6)}, éﬂ = ﬂ‘fbosin(eo—a),
where
_ cosb,
e = Sin(0,—0,)
while in region 3

@43), , PO R I Y e YR
’ Xo Xo
and
5 X .
(4.3); i wocosf.

(]

Clearly w and v must be continuous throughout a panel in order to achieve zero trans-
verse shear strains. Thus the equation for the curved plastic hinge separating regions 2

and 3 is

) X23 = XoTlg — — 7

The discontinuities in the various quantities at the plastic hinges according to Egs.

(4.1)-(4.3) are
@5.s  []=0, [6]={7,—7.,c080o—6,)+sinb,}io,, [6&] =0,

4 Arch. Mech. Stos. nr 5—6/72
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and
(4.5)s [%*] = {sin6,—,c08(6o—0,)} %o
between regions 1 and 2 (( ) = 8()/dx, ()* = a()/ab)),

[ = £ (cosf —cosfy)w,,
Xo

(4.6);3 [6] = 74{1—cos(6,—0) +tanBsin(6,—6)} oo,
.o =
[] = o cosf
and
(4.6)4 [&0*] = —n,{cos(B,—0)—tanbsin(f,—0)}w,
between regions 2 and 3,
@D [i]= X (cosh—cosbo)ive, [] =0, [&]=—2°cosd
Xo Xo
and
(4.7)s [20*] =0
between regions 1 and 3, and
(4.8),,2 [l = 0] = [@] =0 and [&*] = 7,%0

at the clamped boundary. It may be shown when integrating the curvature rate expressions
in Ref. [3] across a plastic hinge that the relative rotation rates between conterminous
rigid zones are

: o]— [
(4.9),., Q, = —[#] and Q& e .[_]#
]Hs Ng
Moa"" No ///
v 1,
A i A 8
7 i
a s i[
A ll - b I P
/// i ﬂl‘ ™ Mg M, //j( | /// ND Nx
e —— o S S Sy S A e Sl T . ¢ E— [
24 T|_ /z/ | /” f iy ¥ |
Mo/2 | ,/l/Na /2 Il
|
i L___-I = Yo ),—————lr =
- o
/1/ | /// 1
7= -

FiG, 5, Limited interaction yield surface.
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The strain and curvature rates in the plastic zones may be determined by substituting
Egs. (4.5)-(4.9) into (3.1)-(3.2). Thus the normality requirements of plasticity associated
with the limited interaction yield surface shown in Fig. 5 demands

(4.10), My = M,, Ny=N,

and

(4.10), O0SM.< M,, _:%gsstgf_;_ﬂ_’ 0< N:<N,, ——);EQN“%&;
between regions 1 and 2,

4.11), M, = M,, N:.=N,

and

4.11), 0< My < M,, —%%sté%, O0SNy< N, _%QN"@E'&;&
between regions 1 and 3,

(4‘12)1.2 Mx = Mﬂ = zMxG = MO and Nx = Na = ZN” = NO'

between regions 2 and 3, and

@13): Mo=—-M, and -My<M<0, -2ogp, <M

at the clamped boundary (8 = 6,).
Now substituting Egs. (4.10)-(4.13) and (4.5)-(4.9) into (3.3), gives the internal energy
dissipation

(4.14), , D = FMyw,, where F = F(L,R, H, x,,90,,0,).
The external work rate for transverse loading is [3]
4.15), E = [ {(p—pibyio—piiic— s | ds

which in view of the nature of the velocity field described by (4.1)-(4.3) may be rewrittenr
in the form

(4.15); 4 E = (pg—pewg)iw,, where g = g(L, xo,1,0,,0,,0,)
and
(4.15), e=e(L, xg, 1., 00,0,).

Equating (4.14), and (4.15), provides the governing equation of motion
(4.16) FM, = pg—uei,.

The upper bound static collapse pressure p¥ = FM,[g (from (4.16) with @, = 0) of a cy-
lindrical panel of given dimensions, which is loaded within the zone 0 < 6 < 6, and
L—1, < x < L, is clearly a function of the mode shape parameters x, and #,. A parametric
optimization was performed for discrete combinations of x, and 6, and it was found
over the range of parameters examined in Ref. [1] that the minimum collapse pressure
occurred for x, = L and 0, somewhat less than 6,. Thus region 1 in Fig. 4 degenerates
into a curve as indicated in Fig. 6.

4%
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FiG. 6. Optimum pattern of plastic hinges in a cylindrical shell panel.

In this case, it may be shown that

Ly, , 2Ry,
R TR/

2
@1n, F=2R (sin60—60c0560)+-§-sin80+

LH { (60 —6,)

i ~ Mk secf,+tanf, }
cos?0y(tanfy—tanb,)} + 2 {(B" 90 +-costly In( sec,+tanf,

+ 2ot n2cosfy(tanf, —tanf,) + -% nZcosf, {(tan 6, —tan6,)

R
1 secf,+tanf,
_-2— 0056{] [lﬂ (m) +tan9° Seceo—tanﬁa Secﬁa]}
and
e 6, R*[6, 1 . . 3
“.17), RE=3 o Iz (—5- + 7 sin26,— 2cosf, sinf,+6,cos 60)
" .
+ %ﬁ— [-12- (66~0,) sinf, + S"f’“ (5200 — 2sin6,) — sin 20, (sinf, —sin0,)
cosf,

+ (8, —06,)sinf,cos%6, + (cos26,—cos20,)—2 cos?B,(cosby, —cost,)

e secly
cos*0,In 5o,

]+2n2[eo—o,—sin(6o—a,n+n2 {% (9o—0,)sin*6,
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(4.17), —sin?6,cosf, In se:g° +sinfl, cos?6,(tanf, — tanf,— 0, +6,) —2(6,—6,)sinb,
[cont.] a
Seceu i . .
+2cosf, In = +25in20,(sinf, —sinf,) + 2cos 20, (cosf, —cosh,)
: secly+tanf, cosf, | 1 % 5 secll,

—sin20, In secl,+tand, 3 -2-(tan 6o—tan?0,)—In sect, ||’

The MARTIN and SymoNDs mode factor [Eq. (2.5)] may be written
J
(4.18), y = P
where
_7)2

4.18), J= % sinf,— % sinf, + RLn,{sinf,(sinf,—sin0,)

2
+cosfy(cosf,—cosb,) } — RI;“ ‘cos 20,(sinf,—sinf,)
+sin20,(cosf, —cosf,) +cos?f, log Sectattangy }

t £ 07%e\ sech,+tanb, /| "

The equation of motion (4.16) for impulsive loading has the solution
_ —FM,t*
- 2ue
when satisfying the initial conditions w, = 0 and =, = »V,. Finally, the permanent
maximum displacement is

wor _ J*A _ WV3R?
B = 5eRRE where 1= M H

is a non-dimensional impulse parameter.

(4.19) wo Wt

(4.20),,»

5. Discussion

The maximum permanent transverse deflections of impulsively loaded hemispherical
shells and cylindrical shell panels which are predicted by Egs. (2.11),, (2.13) and (4.20),
are presented in Figs. 7 and 8, together with the corresponding experimental results re-
ported in Refs. [1] and [2]. Equation (2.11), agrees favorably with the experimental results
recorded on aluminum 6061 T6 hemispherical shells with R/H = 10.9 and R/H = 14.7.
However, the approximate procedure and the lower bound predictions of MORALES and
NEviLL exhibit a greater dependence on R/H than the experimental values suggest. Equa-
tion (4.20), was evaluated using every combination of the parameters of the aluminum
6061 T6 cylindrical shell panels which were tested in Ref. [1]. It was observed that, within
plotting accuracy, all these calculations fell on the same straight line which is indicated
in Fig. 8. This analysis was based on the limited interaction yield surface (Fig. 5) which
circumscribes the exact Tresca yield surface. The upper straight line presented in Fig. 8
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R/H=147
Wor/H A R/H=224
20} =
P
-~
/I
16 e
-~
e
12+
08l Experimental results [2]
- o :R/H=109
a iR/H=147
04 o R/H=224
I I i
0 200 400 600 800 3
Fig. 7. Comparison of theoretical predictions and experimental results [2] on aluminum 6061T6 fully
clamped deep spherical shell caps.
Eqguation (2.11)3; —~————— Lower bound of MoraLes and NeviLL given by Eq. (2.13).
Wor/HA 4
16} Experimental results [1]
o :H=0082in.
A& :H=0091in.
o :H=0124 in. =
12 &
B -
,,/
08f- @ e
DDA . -
- /”
/’,
(=] e -
M- FaY ,/”
-
= /’AY
I”, 6
= L 1 1 I | -
e 4 8 2 6 20 AH/R
FiG, 8. Comparison of theoretical predictions and experimental results [1] on aluminum 6061T6 cylindrical
shell panels.
——————— Equation (4.20);, ————  Equation (4.20); evaluated using 0.618 oy,

is calculated using an approximate yield surface with a scale 0.618 times that of the circum-
scribing approximate yield surface. This smaller yield surface may not completely inscribe the
exact yield surface. However, no approximate yield surface which reduces to Hodge’s two
moment limited interaction yield surface can possibly inscribe the Tresca yield surface
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with a scale factor larger than 0.618. It is not surprising that the smaller yield surface pro-
vides better agreement with the experimental results than the larger one because a large
portion of the plastic hinges in this particular problem have generalized stresses correspond-
ing to the corners A and B of the yield surface illustrated in Fig. 5. These corners lie out-
side the exact yield surface, while those on the smaller yield surface may lie near the exact
yield surface.

The approximate theoretical results presented herein were developed for rigid perfectly
plastic shells which undergo infinitesimal deflections. Thus the influence of material
elasticity, strain hardening and strain rate sensitivity were disregarded. Although the
comparisons between the experimental and theoretical results shown in Figs. 7 and 8 are
quite encouraging, one should be mindful of the above approximations and others [3]
when applying this procedure to shells with different material properties and structural
geometries.

6. Conclusions

A comparison is made between the predictions of an approximate theoretical rigid-
plastic procedure and some experimental values of the permanent deflections of hemi-
spherical shells and cylindrical shell panels loaded impulsively. The initial kinetic energy
of the dynamic loads in these tests was considerably larger than the maximum amount
of strain energy which the shells could absorb in a wholly elastic manner. It emerged that
reasonable agreement was obtained for the strain rate insensitive shells examined here
and in Ref. [3] which should provide encouragement for the further development of these
approximate procedures.

Acknowledgements

The work reported herein was supported by the Structural Mechanics Branch of O.N.R.
under Contract Number N00014-67-A-0204-0032.

References

1. N, Jongs, J. W. DuMas, J. G. GiannorTi and K. E. Grassit, The dynamic elastic behavior of shells,
Symp. Dynamic Response of Structures, Stanford 1971. To be published by Pergamon Press, Ed.
G. HERRMANN,

2. N. Jongs, J. G. GiannotTI and K. E, GRASSIT, An experimental study into the dynamic inelastic behav-
ior of spherical shells and shell intersections, M.L.T., Dept. of Ocean Engineering, Report 71-15, 1971.

3. R. M. WALTERs and N. JONES, An approximate theoretical study of the dynamic plastic behavior of shells,
M.LT., Dept, of Ocean Engineering, Report 71-12, 1971,

4, A, Sawczuk, Large deflections of rigid-plastic plates, Proc. 11th Int. Cong. App. Mech., 224-228,
1964,

5. N. Jones, A theoretical study of the dynamic plastic behavior of beams and pluates with finite deflections,
Int. J, of Solids and Structures, 7, 1007-1029, 1971.

6. E. T, ONAT and W. PRAGER, Limit analysis of shells of revolution, Proc. Roy. Netherlands Acad. Sci.,
B57, 534-548, 1954,



714 N, Jones and R. M. WALTERS

7. J. B. MaRTIN and P. S. SYMonDs, Mode approximations for impulsively loaded rigid-plastic structures,
Proc. A.S.C.E., 92, EMS5, 43-66, 1966.
8. W. J. MoraLes and G. E. NeviLL, Lower bounds on defermations of dynamically loaded rigid-plastic
continua, ALLA.A. Journal, 8, 11, 2043-2046, 1970,
9. J. B. MARTIN, Impulsive loading theorems for rigid-plastic continua, Proc A.S.C.E., 90, EMS, 2742,
1964,
10. M. Janas, Limit analysis of non-symmetric plastic shells by a generalized yield line method, Non-classical
Shell Problems, North Holland Publishing Company, 997-1010, Amsterdam 1964,
11. W. Ouszak and A. SAWCZUK, Inelastic behavior in shells, P. Noordhoff Ltd., Groningen 1967.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF OCEAN ENGINEERING
CAMBRIDGE, MASS. 0213%

Received January 21, 1972





