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Abstract 

The main aim of the symbolic approach in data analysis is to extend problems, methods and 
algorithms used on classical data to more complex data called "symbolic objects"which are well 
adapted to representing knowledge and which can "unify" unlike usual observations which 
characterize "individual things" . We focus herc on boolean and probabilist objects and we 
bńefly present some of their qualities and properties. We finally develop in the context of 
symbolic analysis of a classical data table, a factorial axis characterisation as a probabilist 
object; it completes the usual vectorial representation which is not so explicit for the standard 
user. We particularly show the application of learning algorithms to explain multiple 
correspondence analysis axis which are so useful for enquiry treatments. 

Key-words : Knowledge analysis, symbolic data analysis, uncertainty logic, factorial 
analysis. interpretation aids 

Introduction 

lf we wish to describe the fruits produced by a village, by the fact that ''The weight is between 
300 and 400 grammes and the co lor is white or red and if the color is white then the weight is 
!ower than 350 grammes", it is not possible to put this kind of information in a classical data 
table where rows represent villages and columns descriptors of the fruits. This is because there 
will not be a single value in cach cell of the table (for instance, for the weight) and also because 
it will not be easy to represent rules (if..., then ... ) in this table. lt is much easier to represent 
this kind of information by a logical expression such as : 

ai = [ weight = (300,400]] " [color = {red, white}] " [if [color = white] then [ weight ~ 350]], 

where ai, associated to represents the ith village, is a mapping defined on the set of fruits such 

that for a given fruit w, ai (w) = true if the weight of w belongs to the interval [300,400], its 

color is red or white and if it is white then its weight is less than 350 gr. Following the 
terminology of this paper ai is a kind of symbol ie object. If we have a set of 1 OOO villages 

represented by a set of 1000 symbolic objects a 1 , .. ., a 1000, an important problem is to know 

how to apply statistical methods to statistics on it. For instance, what is a histogram or a 
probability law for sucha set of objects? The aim of symbolic data analysis (Diday 1990,1991) 
is to provide tools for answering this problem. 
In some fields a boolean representation of the knowledge (a; (w)= true or false) is sufficient to 
get the main information, but in many cases we need to include uncertainty to represent the real 
world with more acc u racy. For in stance, if we say that in the ith village "the co lor of the fruits 
is often red and seidom white" we may represent this information by a;= [color = often red, 
seidom white I. More generally , in the case of boolean objects or objects where frequency 
appears . we may write a;= lcolor = q;l where q; is a characteristic function in the boolean 
case. and a probab,lny measure in the second case. More precisely, in the boolean case, if ai = 

lcolor = red, white! we have q; (redl= q; (white)= 1 and q; =O.for the other colors ;in the 
probabilist case, if ai = lcolor = 0.9 red. 0.1 white] we have q; (red) =0.9, q; (white)= O.I. 
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[color = red, white] we havc Qi (red)= Qi (white)= l and Qi= O, for the other colors ;in the 
probabilist case, if ¾ = [color = 0.9 red. 0.1 white] we havc Qi (red)= 0.9, Qi (white)= 0.1. 
If an cxpen says thai the fruits are red we may rcprescnt this infonnation by a symbolic objcct 
¾ = [ co lor = ąJ w herc Q.i is a "possibilist" function in the sense of Dubois and Prade (1986) ; 

we will havc for instancc Qi (white) = O, Qi (pink) =0.5 and Q.i (red) = 1. lf an cxpen who has 
to study a rcprcscntativc sample of fruits from the ith villagc, says that 60% arc red. 30% arc 
white and the color is unknown for 10% which werc too rottcn, we may rcprcscnt this 
information by I.i= [color = ąi] whcrc Qi is a bclicf function such that Qi (red)= 0.6, Qi (white) 
= 0.3 and Q.i (0) = l,whcrc O is the set of possiblc colors. Dcpcnding on the kind of the 
mapping Qi used. ai has bccn callcd a boolcan. probabilist, possibilist or belicf objcCL In all 
thesc cases ai is a mapping from O in [0,1]. Now, the problem is to know how to compute I.i 
( w) ; if thcrc is doubt about the color of a given fruit w, for instance, if the expen says thai "the 
color of w, is red or pink" then, w may be describcd by a charateristic function r and 

reprcsentcd by a symbolic object ws = [ color = r] such that r (red) = r (pink) = 1 and r = O for 
the other colors. Depending on the kind of knowlcdge that the user wishes to reprcsent, r may 

be a probability, possibility or bclief function. Having ¾ =[color = ąJ and ws== [color = r] to 

compute ¾ (w) we introduce a comparison function g such that ¾ (w)= g (Qi.r) measures the fit 
between Qi and r. What is the meaning of I.i (w)? May we say that I.i (w) measures a kind of 
probability. possibility or belief that w belongs to the class of fruits desąribed by ai when Q.i and 
r arc respectively charateristic, probability, possibility or belief functions ? To answer this 

* * . question we have extended aj to a "dual" mapping ai (such that ai (w)= ai (w8)) defincd on the 

set of symbolic objects of the ai kind denotcd ax and an extension of the union, intersection 

and complementary operators of classical sets denotcd OPx = { U x• /"'lx• ex) whcrc x depends 
upon the kind of knowledge used; then, we have shown that when x reprcsents probability , 

* then ai satisfies the axioms of probability measurcs by using OPpr(x= probability) and in the 

case of possibilist objects that a; satisfies the axioms of possibility functions by using some 

given operators denotcd OPpm (~ Diday (1991) for morc details). 

In probability theory , very littlc is said about events which arc generally identificd as parts of 

the sample set n. In computer science, object orientcd Ianguages consider more generał events 
callcd objects or "frames" defincd by intention. In data analysis (multidimensional scaling, 
clustering, exploratory data analysis etc.) morc importance is given to the elementary objects 

which belong to the sample O than in classical statistics where attention is focuscd on the 

probability laws of n ; however, objects of data analysis are generally identified to points of IRP 
and hence are unable to treat complex objects coming for insta"ce from large data bases, and 
knowlcdge bases. Our aim is to define complex objects callcd "symbolic objects" inspired by 
those of orientcd object languages in sucha way thai data analysis becomes generalizcd in 
knowledge analysis. Objects will be defined by intcntion by the properties of their extension. 
More precisely, we distinguish objects which "unify" rather than elementary observcd objects 
which characterize "individual things" (their extension) : for instance "the customers of my 
shop" instead of "a customer of my shop", "a species of mushroom" instead "the mushroom 
that I have in my hand". 
We h_ave not uscd the notion of "predicates" from classical logic, firstly, because by using only 
funcaons, things seem more understandable, especially to statisticians; secondly, because they 
cannot be uscd simply in the case of probabilist, possibilist and belief objects where unceqainty 
1s present. 

1. Boolean symbolic objects 
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We consider n a· set of individual things called "elementary objects" and a set of descńptor 

functions Yi : n - Oj. 

A basie kind of symbolic object arc "events ". An event denoted Ci= IYi=ViJ where Vi i::Oi is 

a function n - { true, false} such that Ci(w) = true iff Yi (w) e V i . For instance, if 
Ci = [color=red,white], then Cj(w) = true iff the color of w is red or white. When Yi(W) is 

meaningless (the kind of computer used by a company without computer) Vi = q, and when it 

has a meaning but this is not known Vi = Oi. The extension of Ci in n denoted by ext (Cj/Q) is 

the set of elements w e n such that Cj (w)= true. 

An assertion is a conjunction of evcnts a= 'i' [yj=VJ ; the cxtcnsion of a denoted cxt(a/Q) is 

the set of elements of n such that '<I i Yi (w) e Vi . 
A "horde "is a symbolic object which appcars, for instancc, when we nced to cxpress relations 
bctwcen parts of a picturc that we wish to descńbc. More gencrally a horde is a function h from 

QP in {truc, falsc} such that h(u) = 'i' [yi(Ui) = Vi] if u= (u1, .... ,up) . For example : 

h = [y1(u1) = l] A [Y2(u2) = {3,5}] A [y3(u1) = [30,35]] A [neighbour (u1,u2) = yes]. 

A synthesis object is a conjunction or a semantic link bctwcen hordes denoted in the case of 

conjunction by s = 1 hi wherc cach horde may be defined on a differcnt set ni by differcnt 

descriptors. For instance il1 may be 1ndividuals, 02 location, 03 kind of job etc. All thcse 
objects arc detailed in Diday (1991). 

2. External modal objects 

Suppose that we wish to use a symbolic object to reprcscnt individuals of a set satisfying the 
following sentence : "It is possible that their wcight be bctwcen 300 and 500 grammcs and thcir 
color is often red or seidom white" ; this scntence contains two cvcnts c1 = [color = {red, 
white J] which lack the modcs possible , o/ten and seidom , a new kind of cvent, denoted f1 
and f2, is ncedcd if we wish to introduce them f1 = possible [height = 300,500)) and f2 = 
[ color = { of ten red , seidom white}] ; we can sec that ft contains an exrernal mode possible 
affecting e1 whereas f2 contains interna! modes affecting the values contained in ei. Hcncc, it 

is possible to describe informally the sentence by a modal assertion object denoted a= f1 Ax f2 

where Ax represents a kind of conjunction related to the background knowledge of the domain. 

The case of modal assenions of the kind a = A fi where all the fi arc events with extemal modes 
I 

has bcen studied, for instance, in Diday (1990). 

3. Internal modal objects 

3.1. A formal definition of internal modal objects 

Let x be the background knowledge and 

. Mx a set ofmodcs, forinstance MX= {often, sometimes, seidom, never} or Mx= [0,1]. 

• Qi = { ~ J j a set of mappings ~ from Oi in MX, for instance Oi = { red, yellow, green J, 

MX= [0,1] and ~ (red)= 0.1 ; ~ (yellow)= 0.3 ; ~(green)= 1, where the meaning of the 

values 0.1, 0.3, 1 depends on the background knowledge (for instance ~ may express a 

possibility ) 
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• Yi is a descriptor (the co/or for instance) ; it is a mapping from n in Qj. Nońce that in the 

case of boolean objects Yi was a mapping from n in Oi, and not Qj. 

Example : if Oi and MX an: chosen as in the pn:vious example and the coloc of w is red thcn 
Yi(w) = r mcans that re Qj be dcfined by r (red)= 1, r(yellow) = O, r (green)= O . 

• OPx = ( U x, n x, ex) whcrc U x • n x exprcsscs a kind of union and intersccńon between 

subsets of Qj and ex (qj) (sometimes denoted Qi, the complementary of Qi e Qj). 

Example : if ~ e Qj and~ ~ Qj 

1 2 1 2 1 2 
qi U xąj =qi +qi -qi 'li 

1 2 1 2 12 1 2 · 
qi n x qi = qi qi wherc qi qi (v) = qi (v) qi (v) ; Cx (qj) = l-Qi 

1 2 1 2. 
~ *x Qi = b(Qi) *x b(Qi) wherc *x e { U x, n xl and 

b(~) = { U x qj/ ąi e ~} and ex(~)= 1-cx (b(~)). 

This choice of OPx is "archimedian" because it sańsfies a family of properńes studied by 
Shweizcr and Sklar (1960) and recalled by Dubois and Pradc (1988). 

,gx is a "comparison" mapping from Qj x Qj in an ordercd space LX. 

1 2 1 2 
Example: Lx= MX= [0,1) and~ ((łj_ • qi) = <qi • qi > the scalarproduct 

. fx is an "aggregańon" mapping from P(LX) the power set of LX in LX. For instance, 
fx ((L1, ... ,L,.J) = Max Lj. 

Let Y = (yil be a set of descriptors and V = {Vil a set of subsets of Qj such that 

Vi = ( ~} ~ Q. Now we an: able to give the formal definińon of an internal object (called "im". 

object). 

Dejinition of an im assertion 

Given OP :c, gx and f :c, an im assertion is a mapping ayy from !li.~ an ordered space V denoted 

a= 1' [y; = r/;}jl such thai we n is describedfor any i by Yi(W) = r,J;j then 

ay,Jw) =fx({gx(Vx ~. Vx ~)};). 
J J 

We denote by ax the set of im objects associated to background knowledge x and ą, the 

mapping from n in ax such that ą, (w) =w5 = ,;-x cyi= Yi (w)] . 

Notice that more complex objects may occur when instead of only one, as in the preceding 

definition, several events concem the same variable ; if we notice a= 'i' ei with ei = [yi= { qil J for 

in stance, for the ith variable, instead of only Ci = [Yi = { 4i} ], we may have the event 
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ai = ~x [Yi = '¼ ] ; in which case, it is necessary to introducc a third mapping h from P(LX) in 

LX such that aj (w)= h (g(<lj_, r;)}A); hcncc, morc gencrally if a= fx aj=fx ~x [yj = <lj_] thcn 

Example: Let Mf = (0,1], Oj =(v1,v2} , and Qi be the set of probability mcasures P(OJ • 

(0.1] ; y is a mapping from a set n in Qi and w5 = (yj = r] is such that r(v1) = r(v2) = ½; the set 

of im assertions Ci = [y = qi] such that aj (w)~½ is defincd by the set of probability mcasurcs 

qj which satisfy the inequality Cj (w) = fx (gx (qj, r)) ~ ½ ; if fx is the mcan and gx is the sca1ar 

product we gct Cj (w)= Mcan (( <qj,r.>}) = <qj,r.> as thcrc is only one variablc. Hencc <li has to 
satisfy the following inequality : 

Ci (w) = <(łi, r.> = qj (v1) r(v1) + <li (vz) r(v2) ~ ½ which is cquivalcnt to½ <li (v1) + ½ <li (v2) 

~ ½ which is sańsficd by any assertion a, as q(v1)+q(v2) = 1 for any mcasurc ofprobability 
A A 1 A 

defincd on Oi. Let be aj= ~x (ei / (ei (w)~ 2 } ) then aj (w)= hx ((ci (w))A); if hx = min 

3.2. Extension of im objects 

Thcrc arc at least two ways to define the extcnsion of an im objcct a. The first consists in 

considcring that cach element we · n is morc or less in the extcnsion of a accorrling to its weight 
givcn by a(w); in this case the extension of a denotcd Ext (a/Q) will be the set of couples ((w, 
a(w)) /we Q} . The second rcquircs a givcn thrcshold a and then, the extension of a will be 

Ext (a/Q, a)= ((w, a(w)) /we n, a(w) ~ a}. 

3.3. Semantic of im objects 

In addińon to the modcs, scvcral othcr nońons may be expresscd by an im objcct a : 

a) Certitudc : a( w) is not true or falsc as for boolcan objects but cxprcsscs a dcgrce of cerńtude. 

b) Variation : this appears at two lcvcls in an im object denotcd a= 1x [yi = (~ li]; first in cach 

~. for instance if Yi is the color and ąf (red) = 0.5, q: (green) = 0.3 it means that a variation 

cxists betwecn the individual objects which belong to the cxtcnsion of a (for instancc a spccics 
of mushrooms) wherc some arc red and othcrs arc green; second, for given descripńon Yi 

between the~ (cach~ exprcsscs for instancc the variańon in a differcnt kind of spccies). 

c) Doubt : if we say that the color of a spccics of mushroom is red "or" green, it is an "or" of 
variańon, but if we say that the color of the mushroom which is in my hand is red "or" green, it 
is an "or" of doubt. 
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Hence. if we describe we O by <p(w) =ws= 'i' [Yi = Yi (w)] where Yi (w)= {~lj we 

exprcss a doubt in cach ~ and among the~ provided, for instance, by severa! expens. 

3.4. An example of background knowledge expressing "intensity". 

Herc the background knowledge x is denoted i, for intensity. Each individual object we n is a 
manufactered object described by two featurcs Yt which expresses the degree of "roundness" 
and "flatness" and Y2 the "heaviness''.: Ot= {flat, round}, 0i = {heavy}; Mi= {very, quite, a 
linie, very linie, nil) 

Let a and ws be defined by : 

a= [y1 = a little flat, quire rounded] "i [y2 = a linie heavy] 

ws= [y1 = quite rounded] "i [y2 = very heavy, quite heavy]. 

(The user has a doubt for w bctween very and quite heavy). 
The problem is to know if it is acceptable IO say that w bclongs IO the class of manufactured 
objects described by a. 

Hence ąi (fiat)= a linie ; ąi (munded) = quite; q~ (heavy)= a little, ri (fiat)= nil; 

ri (rounded) = quite; r~ (heavy)= very, r~ (heavy)= quite. 

A given taxonomy Tax which expresses the background knowledge on the values of W mak:es 
il possible to say that Tax (very, quite) = somewhm; hence ifwe settle that 

12 1 2 12 . 
r2 Uj r2 (v) = Tax (rz (v), rz (v)) we have rz Uj rz (heavy)= Tax (very, quzte) = somewhm. 

We define Li by L1 = not acceptable, L2 = acceptable, L3 = completely acceptable and we 
suppose thai the comparison mapping gi is given by a table T gi such that 

gi (q i, r; ) = T gj ((a little fiat, quite rounded), (nil flat, qui1e rounded)) = acceptable and 

1 I 2 
gi (q2, r2 Ui r2 ) = T gj (a linie heavy, somewhm heavy)= not acccptable. 

Finally if we senle f((Li}) = Min Li and LI< L2 < L3 we obtain 
I I I l 2 . 

a(w) =fi (gi (q 1, r 1 ) , gi (q2, r2 Ui r2 )) = fi (not acceptable, acceptable) = not acceptable. 

4. Probabilist objects 

4.1. The probabilist approach 

First we recall the well known axioms of Kolmogorov : 

If C(O) is a <r-algebra on n (i.e. a set of subse!:S stable for numerable intersection or union and 
for complementary).We say that pis a measure of probability on (il, C(il)) if 
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i) p(Q) = I 
ii) p (ui ~) = L p(~) if ~ e C(Q) and Ai r, Aj = q>. 
There are severa! semantics which follow these axioms : for instance luck in games, 
frequencies, some kind of uncertainty by subjective probability. Let Q be a set of measures of 
probabilities defined on (Oi, C (Qi)). 

Definition 

A probabilist assertion is an im assertion which taJces its values in IP= [0,1] 

1 2 1 2 12121 2 12 .. 
OPp, : Vqi,qi e Qi qi Upr qi =qi +qi -qi qi;qi nprQi =qi qi which1sthe 

mapping which associate 10 v e O;, ąf (v) ąf (v); Cpr (q) = q = 1 - q. 

12 12 12 1 2 
gpr : Vqi• qi e Q; gpr(Qi• qi) = <qi• qi > = I(qi v) qi (v)I v e OJ . 

/pr :fpr ({LJ) = mean of the L;. 

Notice that it may happen that if thae arc some characteristic dependancy between variables, 
[Yi = qJ may represent them;for instance,if the expert wishes to descńbe the dependencies 
between Yl ,Y3 ,y7,then,this information may be represented by the event denoted [y137 = 
pr(y1 ,y3 ,Y7)l where pr(y1 ,Y3 ,y7) represents the conjoint probability of YI ,y3 ,Y7;this event 
is of the form [Yi = Clił where Yi = YI37 and qi =pr(y1 ,Y3 ,y7).ln the case where the same 
dependencies do not appear in the probabilist assertion a and in w5 (becausc they arc not given 
by the expert), to compute a(w) it is needed to use propagation technics in a belief network may 
be used (see J. Pearl (1988) or D.J.Speegelhalter & al (1989)) for finding the missing one. 
To give an intuitive idea of the notion of union of measures of probabilities it is easy to sec that 

if I d 2 th f . b b"li . . ted di l 2 (V) . th qi an qi arc e measure o pro a 1 nes assoc1a to two ce, qi Upr qi 1s e 

probability that the event V occurs, for one diec or (not exclusive) for the other ,when the two 

dices are thrown independently. Notice that q[ Upr qf is not a measure of probability because 

even if q[ Upt-q~ (v) e (0,1] the sum of the qf uprq~ (v) on Oi is larger then 1. Also, 

qf n pr q~ is not necessarily a measure of probability because the sum of the qf n pr q~ (v) 

on Oi may be !ower than 1. 

4.2. Example 

An object w is descńbed by its color YI (w) which may be red or blue and its roundness Y2(w) 

which may be round or flat. 
I 2 · · I 

Let a= [y1 = q 1, q 1J "pr [y2 = qil and ws= [YI = ril "pr [yz =rz] where q1 (red)= 0.9; 

I 2 2 
q 1 (blue)= O.I; q 1 (red)= 0.5; q 1 (blue)= 0.5; q2 (round) = 0.2; q2 (flat) = 0.8. It results that 

a is descńbed by two kind of objects : either often red and rarely blue, or red or blue with equal 
probability. 

B . 3 lu 2 1 2 1 2 b . yusmgq1 =q1 pr q1 =q 1 + q 1-q1 q 1 weo tam 
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3 q I (red) = 0.9 + 0.5 - 0.9 x 0.5 = 0.95 

3 q I (blue) = 0.1 +0.5 - 0.1 x 0.5 = 0.55 

If q and f2 arc defincd as follows : 

q (red) = 1, r1 (blue) = O; f2 (round) = 1, rz (fiat) = O, it results that 
3 

a (w) = gpr (q1, rl) "pr gpr ('12, r2) 

= (0.95 X I + 0.55 X 0) /\pr (0.2 X 1 + 0.8 X 0) 

= 0.95 "pr 0.20 = ½ (0.95 + 0.20) = 0.57, which rcpresents a mcmbcrship degrcc for w IO the 

im object defincd by a. 

5. The particular case of boolean objects 

A boolean object a= 1' [Yi = VJ is an im object llb = 'f [yi = qi] where <li is the charactcristic 

mapping of Vi in Oi, OPi, = {Ub, llb, Cb)is such thatq1 Ub ą2 = Max(q1, ąv, ą1 llbą2 = 

min(q1, q2) and Cb (q) = I - q ;if w= t [Yi = rJ where I'i is the charactcristic mapping of Yi(w) 

in O;, gb (<łi, rj) = <% Ij> and fb = min; it results that if there exists only a single v e Oi such 

that Ii (v) ~ O then %(w)= 1 (thus Ij ~ qj) c::> a(w) = true and then ab(w) = O c::> a(w) = false. 

If we denote lalo the set of elements of n such that a(w) = true, we have lalo= Ext(%/ n, a) 

';f (l E ]0,1]. 

6. Some qualities and properties of symbolic objects 

6.1. Order, union and intersection between im objects 

It is possible to define a partial1)reorder ~ on the im objects by setting that: a1 ~ a2 iff 
'tw E Q a~ a1 (w)~ a2 (w). 

We deduce from this preorder an equivalence relation R by a1 R a2 iff Ext (a1 / n, a) = 
Ext (a2 / n, a) and a partia! order denoted ~ and called "symbolic order" on the equivalence 
classes induced from R. 
We say that a1 inherits from a2 or that ai is more generał than a1, at the level a, iff 
a1 ~ a2 (which implies Exta (a1 / n, a) c;:; Exta (a2 / n, a)). 

We call intention at the level a of a subset n 1 >G n the symbolic object b defincd by the 

conjunction of events whose extension at the level a contains l.11. 

The symbolic union-a1 Ux, a a2 (resp. intersection a1 "x.a a:z) at the level a is the intention of 

Ext (a1 / Q, a) U Ext (a2 / Q, a) (resp. Ext (a2 / l.1, a) 11 Ext (b / O, a)). 

6.2. Some qualities of symbolic objects 

As in the boolean case, sec Brito, Diday (1989), it is possible IO define different kinds of 
qualities of symbolic objects (refinement, simplicity, completeness etc.). 

For instance, we say that a symbolic object s is complete iff the properties which characterize 
its extension arc exactly those whose conjunction defines the object; in other words s is a 
complete symbolic object if it is the intenńon of its extension. More intuitively, if I can sec 
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some white dogs and I state "I can see somc dogs", my statemcnt docsn't dcscribe the dogs in 
a complete way, since I am not saying that thcy arc white. 

On the othcr hand.the simplicity at lcvcl a of an im object is the smallcst number of clcmcntary 

events whose cxtension at lcvcl a coincidcs with the cxtension of s at the same lcvcl. 

6.3. Some properties of im objects : lattice and completeness 

It may be shown, sec Diday ( 1992) for instancc, that givcn a lcvcl a the set of im objccts is a 
latticc for the symbolic order and that the symbolic union and inlCrSCCtion dcfinc the supremum 
and infimum of any couple. To do so, fx, gx and hx (sec§ 3.1) havc to be wcll choscn and we 
introduce a "full" and an "cmpty" symbolic objcct dcnoted as and~ such that 'vwe a, 
as (w)= l and~ (w)= O· 

It may also be shown that the symbolic union and intcrscction of complcte im objccts arc 
complete im objects and hence that the set of complcte im objcets is also a lattice. 

7. Statistics and data analysis of symbolic objects 

a) Four kinds of data analysis problems 

Scvcral studies havc recently bccn carricd out in this field : for histograms of symbolic objects, 
sec De Carvalho & al (1990) and (1991); for gencrating rules by dccision graph on im objects 
in the case of possibilist objccts with typicalities as modes sec Lebbc and Vignes (1991); for 
gcnerating ovcrlapping clusters by pyramids on symbolic objects sec Brito, Diday (l 990). 

More gcncrally, four kinds of data analysis may roughly be dcfincd dcpcnding on the input and 
output: a) numerical analysis of classical data tablcs b) symbolic analysis of classical data 
tables, (for instance obtaining a: factor analysis or a clustering automatically intcrpretcd by 
symbolic objects) c) nurnerical analysis of symbolic objccts (for instance by dcfining distances 
between objects) d) symbolic analysis of symbolic objects where the input and output of the 
mcthods arc symbolic objccts. We shall herc illustrate only the second approach which is the 
point of view we nccd for factorial axis symbolic interpretation. 

b) Symbolic analysis of classical data table. 

Let T be the following data table whcre the set of individual objccts is a = { w1 , ... ,w5 }which 
arc five companies describcd by two variables Yl : the cmploymcnt rate and Y2 : the profit 

Yl 
Y2 

TableT 
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1/2 1/1. 2 

Graplńcal n:presentation of table T 

. Principal component analysis of Table T: From the covariance matrix V= (8:~ i·J) we 

deduce the eigen values A.I = 1.6 and A.2 = 0.2 and the eigen vectors ui = J2 (1 1) , 

ui = J2 (1 - 1). Finally we get the principal component representation given in figure 1, 

where the projection of Wj on the axis i is given by Fi ( Wj)= u; Xj where xf = (y1 ( w1 )-Y 1, 

Y2 (w2)-Y:z} where Yi=l, is the mean of Yi ;far instance, F1(w1) = J2 (1 1) c~i). 
axis 2 .. 

a/21----..-W4 

-
-3a/2 -a/2 a/2 a axis 1 

-a/2 t----..... 
W3 

Figure l .Principal component analysis of table T wlńth a= ✓2. 

The corrclation between (w1, .. . , w5) with the first axis of the principal component analysis is 
respectively (-1, -0.707, 0.707, 0.707, 1); if we associate to cach side of the first axis the 
objccts whose corrclation is higher than 0.707 or !ower than -0.707, we obtain two classes of 
objccts; the first class, C1 = I w1, w2}, explains the left side of the axis and the second one C2 
= I w3, w4, ws} explains the right side. By using these classes, we get two kinds of symbolic 
interpretation of the first axis, by using assertion we may say that the left side is explained by : 

a1 = [y1 = -1/2, 1/2] A [Y2 = -1/2, 1/1.]; the right side is explained by a2 = [yi = 1,2] "[Y2 = 
1,2]. If at the input we have a taxonomy saying that the rate of employment and the profit arc 

low when they arc lower than ½ and high when they arc higher than 1, we may use the 

assertions a I and a2 to get the following explanańon of the first axis : it is explained by two 
opposite assertions which characterize two classes of companies : 

92 



a1=[Rate of employment = low] A [Profit= low] 

a2=[Rate of employment = high] A [Profit= high) 

Of course, in real examples things become much more complicated; for instancc, to get more 
accuracy when the two classes contain numerous objects, each side of the axis may be 
explained by a disjunction of assertions obtained by a symbolic interpretation of a clustering 
done on each class. We may also enrich the interpretation by adding certain properties; for 

instance, we may add to a1 the following rules : [if Yt = ½ then Y2 = -½) " [if Yl = ½ then Y2 = 

½) and to a2 the rule [if Yt = 1 then Y2 = 2). 

We may also give an interpretation of the first axis by a horde object h : h = a1 (u1) A a2 (u2) = 

[Rate of employment (u1) = low] A [Profit (u1) =low]" [Rate of employment (u2) = high) A 

[Profit (u2) = high] whose extension is composed of couples of companies (Wj, Wj) the first 
element of the couple Wj ,being of low rate of employment and profit and the second one Wj, of 
high rate of employment and profiL If an extemal variable gives the age of the companies the 

horde object h may become: h = a1(u1) A a2(u2)" [age(u1) <age(ul)] . 

Lets consider Fran~oise Benzecri's example ( Benzćcri F. 1980 ) which was proposed for 
Tenon Hospital conference on factorial and clustering methods by P. and M Curie University 
statistical laboratory in June 1980. 
Rows are diseases and columns treatments. 
Each data represents the number of cases in which a treatment has been applied to a disease. 
In the case of a correspondence analysis, coordinates, absolute and relative contributions, and 
related representation on the two first axis B1 and B2 are the following : 

................................ C ood, ............................. ,.&$ ,o .. ,.A ............ ""' tc:N 

81 Ba • S, 8a • B, B, ······································•···························································· . TYPH 0.087 5 .39 · 2.31 O. QI 0 . 11 0 . 03 0.00 0 . 00 • 53.0 0 . 3 4 . 3 0 .4 0.1 O.O• O.H 0.00 
SALM 0 . 043 5.39 · 2 . 31 o·.oa O. Hl 0.03 0 . 00 0 . 00 • 26.5 0 .1 2 .1 0 . 2 o.o o.o• O . H o.oo 
OJIL 0.275 0.22 0 , 44 0 . 1• O. Ol -o.aa · O. Cl 0 . 00 • • . , 2 . lł 1 . 1 ł .7 10 . 5 o.o• o. ee o, oi; 
PN!U 0 . 248 0 , 23 0.44 o.os 0 . 11 - o . 1e O. Ol o . oo • 5,4 0 . 1 1 ,1 22 . 1 37.4 o.o• O.Bł o.o , 
Yl!Nl 0 ,07 2 ~.os -o.n ; 0 . 31 · 0. 73 ·0,17 0 , 00 o.oo • 3.2 3 . S 79 . 1 e.9 o . o o . o• 0 . 37 O.O t 
.OUR 0 .1 74 o .ni 0 . 41 • 0.78 0.04 0.22 o . oo o . oo • 3.S 411 . 1 o.a 29 . 8 o . o o.o• 0.21 0 . 72 
STAP 0 . 101 1.22 0. 48 o.a , • 0 .17 0 , 31 o . oo 0 . 00 • 2 . 4 44.1 5 . ł 34 . 2 2.5 o. o• 0.17 0 .72 

•••••••••••••••••••••••••••••••••••• •,!bl:,"I( ,, .......................... ~.l ·c"&.\t'lt ••• ••••••••• ;.:i~ ·.ce:~' 
................... • •• 6 1 ... B, ......................... • .. S. .. s, ...................... • .. 13, ... B2 
P!Nt 0 . 341 0 . 11 0 . 37 O. OS • 0 , 11 -0.07 · 0 . 01 0 . 00 • S. S 0.5 1 . 4 O. I 44 .1 O.O• 0 . 17 0.0ł 

~i;~ i:~!: ci :~~ -r ~: ·tg; ·g::~ :t~1 g:g! tgg : 5!:: t; :;:~ 2::! 2~ :: tg : t:: g:~~ 
EAYT 0.118 1.ts o . 41 O.U -0 . 07 0 . 27 0 . 01 0.00 • 3 . 0 41 . 2 1 . 0 29 . 0 7 . 1 O.O • 0 .20 0. 74 
no, 0 . 043 s . e1 . 2 .41 o. u 0 . 10 0 . 20 -0.01 0 . 00 • so . 2 0 .1 •1 .e e . 2 u.t o . o· o . t1 0 .0 1 
QUT 0 . 111 0 . 72 0 . 37 . Q.74 O.DO 0 . 11 O. DO O. OD• 2 . 1 S0 . 2 O.O 25 . 0 3.0 O.O • O.U O .Tt 

, . ,no, 

i __ _ _ ~~ 

' ' 
' 
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Among disease data, "typhoide" and "salmonellose" may be chosen, as representative of the 
negative part of BI and with a contribution threshold of 25% . 

Those diseases can be resumed in terms of original variables as those who are never treated 
with "penicilline" : 

[ "penicilline " treattnent = never ) 
and this description perfectly discriminates them from the other diseases. In fact they are the 
only diseases which have zero in correspondance with "penicilline " 

We shall now focuse on multiple correspondence analysis axis interpretation. 

3 . Characteristic assertion generator for a factorial axis in 
correspondence analysis 

Let a table of a classical nominał data set T on two finite sets I and J; !et { m5 } be the r 
different levels of the q J-variables and { Wj } the N units of I 

3.1. Factorial axis interpretational aid summary 

a) Barycentric interpretation 

In two-way correspondence analysis, relations between elements of I and J can be made 
explicit by Transition Formu/as. Let FA ( wj) and GA ( Yi) be the coordinates on A axis 
assocjated to the eigen value AA (not equal to zero) of a unit wj and a variable Yi . Let kij, 
k(i), k(j) , fij, fi and fj the Wj and Yj associated values, weights and profiles in classical 
Benzecri's notation. The following relations hold : 

FA ( wj ) = Lj fij GA ( Yj )/(t,.A )112fi 

GA(Yj)= Lj fjj FA(Wj ) / (AA)l/2 fj 

The coordinate of an element wj of I is the centroid of the coordinates of the elemems Yi of J 
with masses having for values the coordinates of the profile f1i ( close to the multiplicative 
factor ). 
This poim of view is w wke in accoum when imerpreting the factorial planes : ie gives an 
indicarion on unit and variahle associarions which may be allowed from the mapping 
ohservation . 
ln the case of multiple correspondence, analysis is generally carried on the Burt table B, 
which is built from the complete disjunctive form D of the origjnaJ data set T. D lays as a 
supplementary table, by B. Let GBA ( ffit) be the coordinates on Burt table axis of the 
modality fit from variable Yj . 
The cransition relation shows chat each modality is the centroid of the individuals which have 
that modaliry : 

GBA < mt > = r { FA< wj >. wj e 1. Yi < wj > = mt } / k ( mt J 
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On a similar way, one can demonstrate rhat Wi coordinate on Dis the mean value of the 
associared modality coordinates on A normalized eigen vector. 

Finally, by analogy with active modalities, similar results can be established for a 
supplementary attribute m5 from variable Yj+. 

• Ell e ---'ndividual 

llH Fzl 

El! IEl~.,.••ltrs 

We may say that a suppiemenrary response in a survey is on eachfactoriai piane a quasi 
barycenrer of the resporuiants who have chosen that modaiiry of response. 

For example : 

b) Coordinares, absolute and relative conoibutions 

Units and modaliry projections can be placed all along every factorial axis (which is not 
associated to an eigen value equal to zero ) by their coordinates; they are computed from the 
original data set on the new basis vectors which are the correspondence analysis normalized 
eigen vectors. 

More extreme is the place of an element on a factorial axis, more imponant is that element 
generally considered for the axis interpretation. 

The percentage of absolute coooibution of a point to the moment of inertia A.A is cofiputed 
as follows: 

CTR (fik) = fj GA2 ( mk) / AA 

CTR ( yj) = L { CTR ( fik ) , mk e Yj 

CTR ( Wi ) = fi FA 2 ( Wi ) / AA 
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The rclative contribuńon of the factor A to the point wj is computed as fellows : 

The above numbers arc the principal interpretational aids f<r a factor : 

REMARK 

a factor is dependant on the elements which contribute ·the most to its 
dispersion. The CTR will be therefore examined in priority in order to 
identify Ot name the facur 

the cos2 numbers arc similar to correlation coefficients; when they are 
summarized on the l first axis, they give a percentage of the quality of the 
explanation of the element Wj in the factorial space of dimension I. In 
order to study factorial axes with high rank, which gencrally express 
localized effects. cos2 arc more useful than CTR · 

All these coefficients may be computed on I elements as on J active elements; but the 
absolute contribution of a supplementary element has no meaning as it does not take part in 
the construction of the factorial axis. 

c) Test- value notions for supplementary modalities 

It is often interesting for enquiry results to characterize the respondants by descriptions such 
as sex, age, etc. But generally, they are only supplementary elements for a factorial 
analysis which is much more concerned by the problem concepts as active variables. 
So, it is consequently difficult to appreciate supplentary element imponancc as they have no 
CfR on factorial axis as previous remark ( 8.2 ) mentioned. 
To have nevertheless a quantitative information on such an element position, A. Morineau 
[Morineau ( Mars 1986) ] proposed a test on the hypothesis Ho of an hypergeometric law as 
a theoretical model for the coordinate distribution. Expccted means and standard deviation 
can so be computed on cach factorial axis. One can demonstrate that the variance then should 
be : 

VHo[ GA ( m ) l 

B.:cause of central limit theorem, 

2 
~ N-n 1 --=-

N-1 nm will follow a 

centered reduced norma! law. The following quantity is called rest value for the modality m 

1/2 
[ N-nm 

tm.A= N::-r- n~ ] GA(m ) 

These computations are also meaningful for active modalities where they usually take high 
values, but they are essenrially used for supplementary variables. 

d) Principal interpretarion difficulries 
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In spite of the numerous numerical coefficients which are listed as analysis results, and in 
spite of the classical factorial mappings which are usually displayed, correspondence 
interpretation is a delicate phase for different reasons ( see Escoffier -Pages [ 1990 ] ) : 

thresholds are ncccssary to select "good" contributions, correlations and so on 

an abuse of graphical proximity leads the standard user to state conjunctions or 
even rules between elements on the mapping when the method gives no 
justification for them; in the following example [ Grec~ 1991 ], Grecnacre 
demonstratcs that the statment, from dimensional interpretation, of an 
association between "małe " and " does not play " , or bctwccn " Bach " and 
"female " would be crroneous : 

J ltl'TltOt'U 

' . ' 
' ' , 1 . • ......,_, 

' ' ) .... ' --J ,,.. ... ~ J 

'•urz.u , ···· •·1 ..... ~ 
J J ~ 

J~;I • I IA.i6 -
. -==-u 

I 

' 

a factorial axis is a vectorial element the componants of which are not explicit in 
the terms of initial data 

to appreciate unit subset densities all along factorial axis, cluster center 
projections are often represented on factorial planes. But they lack of a direct 
explanation as monothetic classes have : in fact, their descriptors are quantified 
by statistical tcsts which represent tendencies in the group so that they are not so 
easily undcrstandable and cannot be easily managed by the user 

An experienced analyst and an expen of the data domain are both irnponant to extract correct 
knowledge from the analysis proceeding. 

The following descriptions of factorial axis as true conjunctions of initial variables, and finally 
as disjunctions of modal assenions on mitial data, will be a real aid to undcrstand the factorial 
analysis results. 

3.2 Assertion generator for axis extremities 
The main idea consists in producing the bcst adapted symbolic objects (see Diday, 1989) 
for a partition of monothetic classes, created at an axis extremity ( that is classes cf 
respective individuals such as all of them have the same common modalities ). 
Let CA 1 a threshold of" good contribution " on one of the two A extremities. 
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Let E the set of I unitS of the concemed extremity ( see coordinate signs ) which CTR ( see 
8.1 b) ) are eąual at least to CA 1 • 

Let CE be the I-complement of E. 
E will be called the set of examples and CE, set of counter examples for the concept of 
"good contribution" on A exttemity. 

We shall now use a supervised rule generator on E and CE to characterize by artribute 
conjunctions subsets of E. 

We propose for example an adaptation of the learning algorithm CABRO to the context of 
multiple correspondence analysis. · 

The principle steps of the proceeding will be the followings : 

Let a be a threshold of discrimination for E froni CE 

Let f3 be a threshold of generalization for assertion on E 
Let CTR ( IIlk ) or Test-value ( IIlk ) be the elements of an ordered list L 
associated to the modalities of the data table ( active and supplementary) 

Remark : for every I-unit the conjunction of all its modalińes represent an asserńon 
which is true on that unit . 

I n search of amore generał assertion tłum the original one for each w; of I 
. one starts from an empty conjunction, which is obviously very generał 

and non discriminant 
. then one ties the best axis extremity related modality, m1, thanks to the L 

list information . The generality of the conjuncńon diminishes but it 
may still remain non discriminant. 
The ratio 

ext (m1 /E) 

R1 = 
ext(m1/E) + ext(m1/CE) 

is a measurement of m1 discriminating power . 
. This phase is repeated with the remaining modalińes of Wj unńl one 

finds a conjunction such as the associated ratio R is at least eąual to 

a , and which extension contains a percentage of examples greater 

than f3 

Find a set of assertions characterizing the classes of a partition on A exrremity 

.one determines with the previous approach an asscnion from each 
example 

. one keeps from the previous research the asserńon of maximal 
extension in E, amax , as an element of the finał result. 

. one repeats these phases on E \ ext ( amax / E ) unńl there arc no 
more example 

Find assertions quickly for a large data ser 

. one determines an ordered set of fictitious objects in the form of a 
rree the root and nodes of which are defined as in CABRO's 
algorithm, but replacing the freąuencies by the L scores 

. one finds for each fictitious object its nearest neighbour in the real 
data set ( for example with Hamming punctual distance ) 
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. one proceeds as in the generał case to find the finał characteristic 
assertions, but the assenions are computed only on the set of 
fictitious objectS nearest neighbours. 

One must point out , after this brief recall of CABRO's approach, that this adaptation has 
imponant pecularities : 

- as the user's demand is a great prcoccupation, therc is no systematic 
attempt to optimize a generalization criteria as in original CABRO. On 
the contrary, an on-line implementation should be able to follow user's 
consttaints on variable choices. For example, the age of the respondant 
may be requested and forced in the result , even if it is not the most 
efficient variable for the axis extremity, in order to garantee a morc 
explicit description. 

- another reason not to optimize a generalization criteria is that the 
modality choice depends herc on their L scores ( contributions etc. ) 
and not on their frequency; which would have been more related with a 
generality notion 

4 . Disjunction of modal assertions to interpret 
factorial axis 

Cabro's approach is not the only possible one for multiple correspondence analysis, to build 
assenions. For example, any supervised decision tree for qualitative data will give a 
response, but it is necessary to make it flexible to the user's point of view ( for example 
allowing priority to sorne variables he requests ). It is panicularly imponant in some case to 
abandon eventual probability testS on misclassification and contingency thresholds in order 
to go on with the dichotomies to obtain enough detail on the extreme classes which arc really 
the most intercsting for the axis interpretation. 

4.1 Discrimination, generalization, contributions levels 

Generally a problem one rnay go. through, consists in balancing the different parameters : 
contribution, discrimination, and generalization thresholds. For example, as factorial axis 
show the extreme points of the data spatial disposition , sometimes there are very few 
individuals in these regions so that the generated assenions may have very weak extensions 
if no generalization. level is requested.. 
One can also choose a !ower contribution level to increase the extensions. 

4.2 Union, intersection, background knowledge 

One can also enhance the generality of the assenions using the two operators intersection or 
union , but stili taking into account the discriminating and generalization consttaints. In the 
panicular case of preexisting taxonomies, either on the modalities of the same variable, or on 
different variables, one can rnerge a disjunction of attributes obtained by union, rewriting it 
with the related level in the taxonorny. 

Example: 

Original assenions 
[ age = [ 13, 19 ] ] /\ ( practiće = with friends j /\ .. . 
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I age = [ 18. 25 J J " [ practice = with the family J " .•. 
[ member of an association = yes I " ... 

A background knowledge simply oonsists in the following taXonomy: 
13- 14_ 15 _ 16_ 17 _ 18 _ 19 _ [ 20 ,25] ____ young 
with fńends _ with the family --------~not alonc 

union operator 

[ age= [ 13. 19] • [ 18. 25] ] " [ practicc = with fricnds. with the family] " .. . 

( membcr of an association = ycs } A ••• 

rewriting 

[ (age= young J " [ practice = not alone] A ... ] V [ member of an association = ycs ]A. 

( required condition ; disaimination levcl verification) 

4 • 3 Imperfect discrimination 

The most frequent siruation one has to front is that of an imperfect discrimination ; for 
example, one may find that left side of A axis is represented by " joung and athletic people, 
who use mountain bikes for competition " • but some exceptional " young. athletic and 
competiting person " may have a projection near the gravity center or even on the other side 
of the axis. as he is also a very · good swimmer. In that case, the strategy consists in 
decreasing the discrimination level in order to find a sufficicnt generalization level for the 
assertions ( bccause of course cach original example considered as an assertion is 1 OO'Fo 
discriminating but rcally too specific ! ) .One can anyway save the information on 
misclassified elements and "misdescriptions" by introducing previous ratio Ras an external 
mode on the assertion. 

Example : 

4 . 4 

0.9 [ age= [ 13. 19}] 
means that 90% of the teenagers of the data are at that 
axis extremity 
the remaining 10% are on the remaining pan of the 
axis 

Moda! symbolic object for factorial axis interpretation 

Assertion extensions may be considered in two different ways : 

. on subsets that constitutes one axis cxtremity 

. on subsets that all well reprcsented on one axis extremity 

Example : 

. tecnagers reprcscnt 20% of the axis extremitv 

. 90 % of the teenagers are at that axis cxtremity 
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Extemal modes may preserve thcsc informations 

More, when merging assertions by union or intcrsection, intemal modcs may be necessary 
to exprcss thosc types of information : 

[ age= 0.8 [ 13. 19 J . 0.2 [ 18 , 25 J J 

One can also prcfer the contńbution scmantic and save the global contńbution of the obtaincd 
subscts ( this global contńbution is the individual contńbution sum ), to the axis : 

Finally, afactorial axis inlerpretalion can be written as a disjunction of modal assertions, 
which semanrics are to be precised , buz which are essenlialiy of probabilistic type as modes 
often come from relative frequencies. 

5 . CONCLUSION 

Symbolic descriptions for factorial axis fulfill much more than any other intcrpretation aid 
the 3rd Yule's condition : a statistical index should have a concretc meaning; it is better to 
choosc a real value than a characteristic which is none of the possible values. 

But, on the other hand, their welcome flexibility to the user's requires put them very far 
from any optimality, validation or robusmess preoccupation. These arc some of the main 
directions to improve that approach. 

Other dcvelopments will be an extcnsion of symbolic intcrprctation to factorial planes and also 
to any kind of factorial analysis; one can for example use a scgmcntation algorithm on continue 
variables to charactcrize by conjunctions of interval disjunctions the classes of the required 
partition on "well contńbuting" elcmeilts. 

Answers to threshold JDanagement will be obtained by applying the method to the greatest 
number of possible diffcrent domains. 

Thanks to the comparison operators on modal symbolic objects [ Diday, 1991] , symbolic 
axis description can also be used for example to study the evolution of the principal axis of a 
given situation on different periods by comparing them directly with their symbolic 
formulations. In that type of developipent, one could think the whole procecding appears to be 
referred to probabilistic induction, that is numeric one. In fact, the symbolic definition A5 of a 
factorial axis A is true on a certain subset of the original data, which is precisely the extent of 
the related symbolic object; that subset can be considered as statistically meaningful for this 
axis in terms, for example, of summarized contributions ( sec 3 - 4). 
But generally, on real data, -,AS has a non empty extension (examples 2 arc too simple ! ) so 
that AS and -,As arc to some extcnt simultaneously true; we may so consider that AS gives an 
incertain information on principal direction A for the original data, and that we have to handle 
with contradiction. These last considerations and the large use of background knowledge both 
argue for symbolic rather for merc numeric approach. 

More generally, one should think on the following two aspects: 
. numcrically, a " principal axis " has no incertainty : it is one of the eigen vector 

of a given matrix computed from the original data 
. semantically, " principal " is not a perfectly defined concept, and it brings 

incertainty in the user's interpretation 
The symbolic expression of a factorial axis transfonns it from a vectorial nature to a nature 
similar to other symbolic objects that statistics will be able to computc, data bases to manar~ 
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and data analysis to provide with numcrous trcanncnts ( sec for example De CaravalhoFAT, 
1991 ). 
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