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Abstract

The main aim of the symbolic approach in data analysis is to extend problems, methods and
algorithms used on classical data to more complex data called "symbolic objects"which are well
adapted to representing knowledge and which can "unify” unlike usual observations which
characterize "individual things". We focus here on boolean and probabilist objects and we
briefly present some of their qualities and properties. We finaily develop 1in the context of
symbolic analysis of a classical data table, a factorial axis characterisation as a probabilist
object; it completes the usual vectonal representation which is not so explicit for the standard
user. We particularly show the application of learning algorithms to explain muitiple
correspondence analysis axis which are so useful for enquiry treatments.

Key-words : Knowledge analysis, symbolic data analysis, uncertainty logic, factorial
analysis, interpretation aids

Introduction

If we wish to describe the fruits produced by a village, by the fact that "The weight is between
300 and 400 grammes and the color is white or red and if the color is white then the weight is
lower than 350 grammes". it is not possible to put this kind of information in a classical data
table where rows represent villages and columns descriptors of the fruits. This is because there
will not be a single value in each cell of the table (for instance, for the weight) and aiso because
it will not be easy to represent rules (if..., then...) in this table. It is much easier to represent
this kind of information by a logical expression such as :

a; =[weight = [300,400]] A [color = {red, white}] A [if [color = white]| then [weight £ 350]],
where a;, associated to represents the ith village, is a mapping defined on the set of fruits such
that for a given fruit w, g (w) = true if the weight of w  longs to the interval [300,400], its

color is red or white and if it is white then its weight is less than 350 gr. Following the
terminology of this paper a; is a kind of symbolic object. If we have a set of 1000 villages

represented by a set of 1000 symbolic objects a...., 2}y, an important problem is to know

how 1o apply statistical methods to statistics on it. For instance, what is a histogram or a
probability law for such a set of objects ? The aim of symbolic data analysis (Diday 1990,1991)
1s to provide tools for answe g this problem.

In some fields a boolean representation of the knowledge (a; (w) = true or false) is sufficient to
get the main information, but in many cases we need to include uncertainty to represent the real
world with more accuracy. For instance. if we say that in the ith village "the color of the fruits
is often red and seldom white” we may represent this information by a; = {color = often red.
seldom white]. More generally, in the case of boolean objects or objects where frequency
appears. we may write a; = {color = g;| where q; is a characteristic function in the boolean
case. and 2 probability measure in the second case. More precisely. in the boolean case, if a, =

color = red, white] we have y; (red) = q; (white) = | and g; = Q. for the other colors ;in the
robabilist case. if a; = [color = 0.9 red. 0.1 white] we have g; (red) =0.9, q; (white) = 0.1.
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[color = red, white] we have qj (red) = q; (white) = 1 and gj = 0, for the « colors ;in the
probabilist case, if a; = [color = 0.9 red, 0.1 white) we have g; (red) = 0. 'w )=0.1
If an expert says that the fruits are red we may represent this informatic >y a symbolic b
a; = [color = qi] where g; is a "possibilist” funcdon in the sense of Duboss and Prade (1 ;
we will have for instance g; (white) = 0, q; (pink) =0.5 and q; (red) = 1. If an expert who has
to study a representative sample of fruits from the ith village, says that 60% are red, 30% arc
white and the color is unknown for 10% which were too rotten, we may represent this
information by a; = {color = g;] where g; is a belief function such that g: (red) = 0.6, q; (white)
= 0.3 and q; (O) = 1.where O is the set of possible colors. Dependi  on the lgind of the
mapping q; used, aj has been called a boolean, probabilist, possibi w1 belief object. In all
these cases a; is a mapping from Q in [0,1]. Now, the problem is to know how to compute a;
(w) ; if there is doubt about the color of a given fruit w, for instance, if the ¢ =t says that "the
color of w, is red or pink" then, w may be described by a charaterisu. function r and
represented by a symbolic object ws = [color = r] such that r (red) = r (pink) = | and r = 0 for
the other colors. Depending on the kind of knowledge that the user wishes to represent, r may
be a probability, possibility or belief function. Having a; =[color =q;] and w8 = [color =1] o
compute 3; (w) we introduce a comparison function g such thar a; (w)= g (qi,r) measures the fit
between gj and r. What is the meaning of a; (w) ? May we say that a; (w) measures a kind of
probability, possibility or belief that w belongs to the class of fruits described by a; when g; and
r are respectively charateristic, probability, possibility or belief functions ? To answer this

question we have extended aj to a "dual” mapping a; (such that aj (w) = a; (wS)) defined on the

set of symbolic objects of the aj kind denoted dx and an extension of the union, intersection

and complementary operators of classical sets denoted OPy = (U , M, ¢, } where x depends
upon the kind of knowledge used; then, we have shown that when x represents probability ,

then a; satisfies the axioms of probability measures by using OPp{x= probabi and in the

case of possibilist objects that a; satisfies the axioms of possibility functions by usi- - some
given operators denc  ~ OPpos (see Diday (1991) for more de ™ ).

In probability theory , very little is said about events which are generally identified as parts of
the sample set Q. In computer science, object oriented langu---s co " ler morc ~~neral events
called objects or "frames” defined by intention. In data an..., sis (iuultidimer....nal scaling,
clustering, exploratory data analysis etc.) more importance is given to the elementary objects
which belong to the sample €2 than in classical statistics where attention is focused on the

probability laws of £ ; however, objects of data analysis are generally identified to points of RP
and hence are unable to treat complex objects coming for insta~ce from large dara bases, and
knowledge bases. Our aim is to define complex objects called "symbolic objects" inspired by
those of oriented object languages in such a way that data analysis becomes generalized in
knowledge analysis. Objects will be defined by intention by the properties of their extension.
More precisely, we distinguish objects which "unify” rather than elementary observed objects
which characterize “individual thines" (their extension) : for instance "t customers of my
shop” instead of "a customer of m  hop", "a species of mushroom™ inswad "the mushroom
that I have in my hand".

We have not used the notion of "predicates” from classical logic, firstly, because by using only
functions, things seem more understandable, especially to statisticians ; seco. v, because they
cannot be used simply in the case of probabilist, possibilist and belief objects where uncertainty
1S present.

1. Boolean ymbolic objects
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. yiisadesc or(thecoi fori e . imap fr N
of boolean objects y; was a ma from £2 in Oy, and not Q;.

Example : if O and M* are chosen as in the previous example and the color of w is red then
yi{w) =r means that Q be defined by r (red) = 1, f(yellow) = O, r (green) = 0.

. OPx = { Uy, Ny, cy) where U 5, M x expresses a kind of union and intersection between
subsets of @ and ¢y (q;) (sometimes denoted g, the complementary of q; € Q).

Example:ifq'iieQi a.ndQJ;CQi

1 2 1,2 12
g YxG; =9q; +95 -9 G

2 1 2 :
o NxaP=q] ¢ where qf G V=g ¥ &) W) icx@)=1-q

Q) +QF =b(Q}) *x HQD) where #x & (U, M) and

Q) = (U qi/aie Q) andox (@)= 1- ex be@)).

This choice of OPy is "archimedian" because it satisfies a fam'v of properties studied by
Shweizer and Sklar (1960) and recalled by Dubois and Prade (19€

.gx is a "comparison" mapping from Qj x Q; in an ordered space LX.
bl
Example : Lx = Mx = [0,1] and g (4] , q.) = <d; » > the scalar product

. fx is an "aggregation” mapping from P(L*) the power set of LX in L* . For instance,

fx ({L1,...lm}) = Max L. _
Let Y = {yi} be a set of descriptors and V = (V;} a set of subsets of Q; such that
Vi = (¢} ©Q. Now we are able to give the formal definition of an imternal object (called "im"”
object). .

Definition of an im assertion

Given OP,, gy and fy, an im assertion is a mapping ayy from §2i- an ordered space L* denoted
as=a fyi= (q/i)fj such thas we 2 is described for any i by yi(w) = {r}‘-)j then

ayW(w) = fx({gx(LJJx l"’ Yx ’i)}t)

We denote by dx the set of im objects associated to background knowledge x and ¢ the
mapping from €2 in Ax such that @ (w) =wS = Ax [yi = yi (W)] .

Notice that more complex objects may occur when instead of only one, as in the preceding
definidon, several events concemn the same variable ; if we notice a= Ne with ¢;=[yi= }] for
instance, for the ith variable, instead of only €; ={y; = {q;}], we may have the event
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Hence, if we describe w e Q2 by @(w) = ws = /l\ [yi = yi (w)} where yj (w) = {r{}j we

express a doubx in each rl' and among therji provided, for instance, by several experts.

3.4. An example of background knowiedge expressing "intensity".
Here the background knowledge x is denoted i, for intensi ~ Each individual object we Qis a
manufactered object described by two features y; which ... resses the degree of "roundness”
and “flatness" and y3 the "heaviness™ : Oy = {flat, round}, Oy = {heavy)}; M! = {very, quite, a
lintle, verv linile, nil}

Let a and wS be defined by :

a=[y) = alittle flat, quite rounded] A i {y2 = a little heavy)
wS = [y] = quite rounded] A j [y2 = very heavy, guite heavy].

(The user has a doubt for w between very and quite heavy).
The problem is to know if it is acceptable to say that w belongs to the class of manufactured

objects described by a.
Hence q) (flat) = a litle ; q (rounded) = quite ; g (heavy) = a licle , 1} (flat) = il ;

2
ri (rounded) = quire ; ré (heavy) = very , r§ (heavy) = quite .

A given taxonomy Tax which expresses the background knowledge on the values of Mi makes
it possible to say that Tax (very, guite) = somewhar ; hence if we settle that

ri (7 r% (v)= Tax (ré V), r% (v)) we have r71_ U r% (heavy) = Tax (very, quite ) = somewhat.

We define Li by Ly = not acceptable, Ly = acceptable, L3 = completely acceptable and we
suppose that the comparison mapping g; is given by a table Tg; such that

gi(q i, r{ )= Tgi ((a litrle flat, quite rounded), (il flat, quite rounded)) = acceptable and

g (q:,l_, r; Ui r% ) =Tg; (a linnle heavy, somewhas heavy) = not acceptable.

Finally if we senle f({Li}) =Min Ljand L] <L) < L3 we obtain

a(w) =fi (gj (qi, r} ). g (qé, ré Ui r% )) = fj (not acceptable, acceptable) = not acceptable.
4. Probabilist objects

4.1. The probabilist approach

First we recall the well known axioms of Kolmogorov :

If C(S2) is a 6-algebra on Q (i.e. a set of subsets stable for numerable intersection or union and
for complementary).We say that p is a measure of probability on (Q, C(Q)) if
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) p)=1

p (U A) = Ep(A,)an,e C(Q) and A NA;=0.
Lnere are several semantics which follow thcse axioms : for instance luck in games,
frequencies, some kind of uncertainty by subjective pmbablhty Let Q; be a set of measures of
probabilites defined on (Oj , C (Oy).

Definition
A probabilist assertion is an im assertion which takes its values in Lr = [0,]]
1 1 2 o2 12 1
OPpy : ¥ q; -5 €Qi q; Uprq; =4q; +4; -9;4;:9; MNopr ql = q‘ ql which is the
. , . 1 2 ~
mapping which associate to v € O;, q; v) q; ), cpr(q)=g=1-4q.

1 2 1 2 1 2 !l 2

8r:Vd;.q; € Qi 8prlq;,q;)=<4;.4; > =E{q,- vig; (v)Ive Oy
Jor for {Li}) = mean of the L;.
Notice that it may happen thar if there are some characteristic dependancy between variables,
[yi = - " may repres " :m;for instance,if the expert wishes to describe the dependencies
betwe... ¥1,¥3 ,¥7,wou,uis infor  tion may be represented by the event denoted {y137 =
pr(y1,y3 .y7)] where pr(y; ,y3,y7; icpresents the conjoint probability of y; ,y3 ,y7;this event
is of the form {y; = q;] where y; = y137and q; =pr(y] ,y3 .y7).In the case where the same
dependencies do not appear in the probabilist assertion a and in w* (because they are not given

" :expert), to compute a(w) it is needed to use propagation technics in a belief network may

:d (see J. Pearl (1988) or D.J.Speegelhalter & al (1989)) for finding the missing one.
1v gave an intuitive idea of the notion of union of measures of pr  abilities it is easy to see that

if qil and qiz are the mea = of probabilities associated to two dice, qil Upr qiz (V) is the
probability that the event V occurs, for one dice or (not exclusive) for the other ,when the two
dices are thrown independently. Notice t* - qil Upr qiz is not a measure of probability because

even if.;li1 o ,,qiz (v) & (0,1) the sum of the qil Upr qiz (v) on O; is larger then 1. Also,

qi1 Npr qi2 is not necessarily a measure of probability becau:  1e sum of the qil N opr q? )
on O; may be lower than 1.

4.2. Example

An object w is described by its color y1 (w) which may be red or blue and its roundness y2(w)
which may be round or flat.

Leta=[y; =ql, 2] Apr [y2 = 2] and w8 = [y1 = 1] Apr [y2 =1 where g} (red) = 0.9;

q% (blue) =0.1; q% (red) =0.5; q% (blue) = 0.5; q2 (round) = 0.2; g2 (flar) = 0.8. It results that

a is described by two kind of objects : either often red and rarely blue, or red or blue with equal
pr--tility.

3 1 2 1. .2 12 .
B ngqy =q; Ypr q7 =4q; + ¢y-q; q; We obtain
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q) (red) =0.9 +0.5- 09 x 0.5 =095

qj (blue) = 0.1 +0.5 - 0.1 x 0.5 = 0.55
[f ry and r3 are defined as follows :

11 (red) = 1, rq (blue) = 0: rp (round) = 1, rp (flat) =0, it results that

a(W) = gpr (@3 T1) Apr gpr (@27

=(095x1 +0.55x0) Apr (02 x 1 +0.8x0)

=0.95Ap0.20 = %(0.95 + 0.20) = 0.57, which represents a membership degree for w 1o the
im object defined by a.

5. The particular case of boolean objects

A boolean object a = % [yi = Vi is an im object ap = 4 [yi = qi] where ; is the characteristic
map|  ; of Vjin O, OPp = { U p, Mp, ¢p)is such that q1 U'p q2 = Max(q1, 42), q1 M q2 =
min{q, q2) and cp (q) = | - q ;if w= 4 [y; = r;] where r; is the characteristic mapping of yj(w)
in Gy, gb (Gi, 1) = <qj, 1> and fp = min; it results that if there exists only a single v € O; such
that r; (v} # 0 then ap(w) = | (thus 1 £q;) & a(w) = true and then ap(w) = 0 <> a(w) = false.
If we denote lalg the set of elements of £ such that a(w) = true, we have lalg = Ext (ap / Q, @)
v ae ]0,1].

6. Some qualities and properties of symbolic objects

6.1. Order, union and intersection between im objects

It is possible to define a partial-preorder < on the im objects by setting that : ay <; ay iff
Vwe Q osa(w) Say(w).

We deduce from this preorder an equivalence relaton R by a3 R aj iff Ext (a; / Q, ) =
Ext (a2/ €, ) and a partial order denoted <y and called “symbolic order” on the equivalence
classes induced from R.

We say that a) inhents from aj or that a3 is more general than a; , at the level a, iff

ay <q a7 (which implies Extq (21/ Q, ) G Extg (a2/ Q, ).

We call intention at the level o of a subset Q) X € the symbolic object b defined by the
conjunction of events whose extension at the level a contains ;.

The symbolic union.aj Uy, o a2 (resp. intersection aj My,g a2) at the level a is the intention of
Ext (a1 /Q, ) U Ext(az/Q, o) (resp. Ext (az / Q, ) n Ext (b / Q, o).

6.2. Some qualities of symbolic objects

As in the boolean case, see Brito, Diday (1989), it is-possible 1o define different kinds of
qualides of symbolic objects (refinement, simplicity, completeness erc.).

For instance, we say that a symbolic object s is complete iff the properties which characterize

its extension are exactly those whose conjunction defines the object; in other words s is a
complete symbolic object if it is the intention of its extension. More intuitively, '~ T can see
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1/217 L 2
w1
Graphical representation of table T

. Principal component analysis of Table T : From the covariance matrix V = (8;) %97 ) we
deduce the eigen values A1 = 1.6 and A2 = 0.2 and the eigen vectors u-{ =:115(1 1),

u; = \’1—2 (1 - 1). Finally we get the principal component representation given in figure 1,
where the projection of w; on the axis i is given by F; (wj)= u;r x; where x;r= (yi(wi)- Yy,

. 1 -
y2 (w2)-Y?7) where Yj=1, is the mean of y; ;far instance, Fi(wy) =——(11) (_gg .

N2
‘axis 2
a2 W4
w 1 W2 w 5
% L) e —’
-a/2 ws

Figure 1.Principal component analysis of table T whith a= V2.

The correlation between (w1, ..., ws) with the first axis of the principal component analysis is
respectively (-1, -0.707, 0.707, 0.707, 1); if we associate to each side of the first axis the
objects whose correlation is higher than 0.707 or lower than -0.707, we obtain two classes of
objects; the first class, C) = {wy, w2}, explains the left side of the axis and the second one C;
= {w3, w4, ws} explains the right side. By using these classes, we get two kinds of symbolic
interpretation of the first axis, by using assertion we may say that the left side is explained by :
a = [y1 =-1/2, 1/2] A [y2 = -1/2, 1/2]; the right side is explained by a2 = {y; = 1,2} A [y2 =
1,2]. If at the input we have a taxonomy saying that the rate of employment and the profit are

low when they are lower than 5 and high when they are higher than 1, we may »<e the

assertions a1 and a3 to get the following explanation of the first axis ; itis ex] neu vy two
opposite assertions which characterize two classes of companies :
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aj=[Rate of employment = low] A [Profit = low]
ap=[Rate of employment = high] A [Profit = high]

Of course, in real examples things become much more complicated; for instance, to get more
accuracy when the two classes contain numerous objects, each side of the axis may be
explained by a disjunction of assertions obtained by a symbolic interpretation of a clustering
done on each class. We may also enrich the interpretation by adding certain propertes; for
instance, we may add to a) the following rules : [if y; =%then y2=- %] Alifyr = % then y2 =

%]andtoazthcrule [if y1 =1theny2=2].

We may also give an interprewtion of the first axis by a horde object h: h=aj (u;) A a3 (up) =

[Rate of employment (u1) = low] A [Profit (u;) = low] A [T’ "2 of employment (u3) = high] A
[Profit {uz) = high] whose extension is composed of couy.... of companies (wj, wj) the first
element of the couple wj ,being of low rate of employment and profit and the second one w;, of
high rate of employment and profit. If an external variable gives the age of the companies the

horde object  iay become : h = aj{u1) A az(uz) A [age(u;) <age(up)].

Lets consider Frangoise Benzecri's example ( Benzéeri F. 1980 ) which was proposed for
Tenon Hospital conference on factorial and clustering methods by P. and M. Curie University
statistical laboratory ~ Tune 1980.

Rows are diseases auu volumns treatments.

Each data represents the number of cases in which a treatment has been applied to a disease.

In the case of a correspondence analysis, coordinates, absolute and relative contributions, and
related representation on the two first axis B and B2 are the following :

PENE 0.3438
TIFD 0.118
TETR 0.188
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Amone disease data. "typhoide” and “salmonetlc~=" ma+ he «  sen, as representative of
nega :partof Byand wi . conmibution thresh  of o
Those diseases can be resumned in terms of original variables as those who are never 1 :d
with "penicilline” :

[ "penicilline " weamment = never |
and this description perfectly discriminates them from the other diseases. In fact they are the
only diseases which have zero in correspondance with "penicilline *

We shall now focuse on multiple correspondence analysis axis interpretation,

3. Characteristic assertion generator for a factorial axis in
correspondence analysis

Let a table of a classicul nominal data set T on two finite sets [ and J; let { mg )} be the r
different levels of the g J-variables and { wj } the N units of I

3.1. Factorial axis interpretational aid summary
a) Barycentric interpretaton

In two-way cormrespondence analysis, relations between elements of 1 and J can be made
explicit by Transition Formulas . Let Fa ( wi)and Ga (yj) be the coordinates on A axis
associated to the eigen value Aa (not equal to zero) of a unit wj and a variable y, . Let kjj,
k@), k(). fij, fiand fj the wij and yj associated values, weights and profiles in classical
Benzecri's notation. The following relations hold :

Fa(wi)= Zifij Galyj)/(ha)i2§,
Gatyj)=s Zi fi Fatwi)/ (Aa)2

The coordinate of an element wj of I is the centoid of the coordinates of the elements yj of J
with masses having for values the coordinates of the profile fji ( close to the multiplicative
factor ).

This point of view iy (o take in accouni when interpreting the factorial planes it gives an
indication on unit and variable associarions which may be allowed from the mapping
ehservation .

In the case of muluple correspondence. analysis 1$ generally carried on the Burt table B,
which is built from the complete disjunctive form D of the original data set T. D lays ac a
supplementary table, by B. Let GBa ( my) be the coordinates on Burt table axis of 3
modality my from vanable y;.

The transition relation shows that each modality is the centroid of the individuals which have
that modaliry :

GBa( m)= X {FA(Wi),WieI.yj(w1)=m.} /k( my )
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On a similar way, one can demonstrate that wj coordinate on D is the mean value of the
associated modality coordinates on A normalized eigen vector.

Finally, by analogy with active modalities, similar resuits can be established for a
supplementary attribute mg from variable yj .

LT =
P E]l @ ——— individuay
- ' —————— caracter %

o 8 o8
..... © —— . mdividuais aracters

e

We may say that a supplementary response in a survey is on each factorial plane a quasi
barycenter of the respondants who have chosen that modality of response.

For exampie :

Ga(ms)= L {Facwi),wiel,yie (wi)=ms} [ (2a)2 k(ms)

b) Coordinates, absolute and relative contributions
Units and modality projections can be placed all along every factorial axis (which is not

associated to an eigen value equal to zero ) by their coordin:  ; they are computed from the
original data set on the new basis vectors which are the correspondence analysis normalized

eigen vectors.

More extreme is the place of an element on a factorial axis, more imporant is that element
generally considered for the axis interpretation.

The percentage of abselute contribution of a point to the moment of inertia A4 is computed
as follows :

CTR (my) = fj GaZ(mx) / AA
CTR(yj) =2 { CTR (my), mye yj}
CTR(wi) = fi FAZ(wij) / hA

9%



The relative contribution of the factor A 1o the point wj is computedasf  ws:
cos2(wi) = FAZ(wi) [ i (fi-fi)) 1 ]'1

The above numbers are the principal interpretational aids for a factor :

. a factor is dependant on the elements which contribute the most to its
dispersion. The CTR will be therefore examined in priority in order to
identify or name the factor

. the cos2 numbers are similar to correlation coefficients; when they are
summarized on the | first axis, they give a percentage of the quality of the
explanation of the element wj in the factorial space of dimension 1. In
order to study factorial axes with high rank, which generally express
localized effects, cos2 are more useful than CTR

REMARK

All these coefficients may be computed on I elements as on J active elements; but the
absolute contribution of a supplementary element has no meaning as it does not take part in
the construction of the factorial axis.

c) Test- value notions for supplementary modalites

It is often interesting for enquiry results to characterize the respondants by descriptions such
as sex, age, etc. But generally, they are only supplementary elements for a factorial
analysis which is much more concemed by the problem concepts as active variables.

So, it is consequendy difficult to appreciate supplentary element importance as they have no
CTR on factorial axis as previous remark ( 8.2 ) mentioned.

To have nevertheless a quantitative information on such an element position, A. Morineau
{Morineau ( Mars 1986) } proposed a test on the hypothesis Hy of an hypergeometric law as
a theoretical model for the coerdinate distribudon. Expected means and standard deviation
can so be computed on each factorial axis. One can demonstrate that the variance then should

be :

. N- 1
VHol GA(m )] = lﬁglm o

2
N-n
—m

. 1
Because of central limit theorem, N-1 'n_r; Ga (m) will follow a

centered reduced normal law. The following quantity 1s calied test value for the modality m

/2
| Neam 107
lm,A —[ N . J GA(m)

These computations are also meaningful for active modalities where they usually take high
values, but they are essentially used for supplementary variabies.

d) Principal interpretanon difficulties

36



In spite of the numerous numerical coefficients which are listed as analysis results, and in
spite of the classical factorial mappings which are usually displayed, correspondence
interpretation is a delicate phase for different reasons ( see Escoffier -Pages [1990] ) :

. thresholds are necessary 1o select "good" contributions, comrelations and so on

. an abuse of graphical proximity leads the standard user to state conjunctions or
cven rules between elements on the mapping when the method gives no
justification for them ; in the following example [ Greenacre 1991 ], Greenacre
demonstrates that the statment, from dimensional interpretation, of an
association between "male " and " does not play " , or between " Bach " and
" female " would be erroneous :

3 e
: )
3 g '
) ons 2t glor 1 '
. s .
‘amares 3 b """“"f
] 3 ll fromals
e 1
e’ gy
sl pond 1
] N
1 1
» bl 1
J s R
soale !

. afactorial axis isa vectorial element the componants of which are not explicitin
the terms of inidal data

to appreciate unit subset densities all ¢ g factorial axis, cluster center
projections are often represented on factorial planes. But they lack of a direct
explanation as monothetc classes have : in fact, their descriptors are quantified
by stanstical tests which represent tendencies in the group so that they are not so
easily understandable and cannot be easily managed by the user

An experienced analyst and an expert of the data domain are both important to extract correct
knowledge from the analysis proceeding.
The following descripdons of factorial axis as true conjunctions of inital variables, and finally
as disjunctions of modal assertions on initial data, will be a real aid to understand the factorial
analysis results.

3.2 Assertion generator for axis extremities

The main idea consists in producing the best adapted symbolic objects (see Diday, 1989)
for a parttion of monothetic classes, created at an axis extremity ( that is classes cf
respective individuals such as all of them have the same common modalides ).

Let ca! a threshold of " good contribution " on one of the two A extremities.
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Let E the set of I units of the concerned extremity { see coordinate signs ) which CTR ( see
8.1 b)) are equal at least to cal.

Let CE be the I-complement of E.
E will be called the set of examples and CE, set of counter examples for the concept of

“good contribution *  on A extremity.

We shall now use a supervised rule generator on E and CE to characterize by atwibute
conjunctions subsets of E.

We propose for example an adaptation of the leamning algorithm CABRO to the context of
multiple correspondence analysis.

The principle steps of the proceeding will be the followings :

Let @ bea threshold of discrimination for E from CE

Let B be a threshold of generalization for assertion on E
Let CTR ( my ) or Test-value ( my ) be the elements of an ordered list L
associated to the modalities of the data table ( active and supplementary)

Remark : for every I-unit the conjunction of all its modalites represent an assertion
which is true on that unit

In search of a more general assertion than the criginal one for each w; of

. one starts from an empty conjunction, which is obviously very general
and non discriminant

. then one ties the best axis extremity related modality, m;j, thanks to the L.
list information . The generality of the conjunction diminishes bur it
may still remain non discriminant.
The ratio

ext(m; /E)
Ri

ext(my/E) + ot (m/CE)

is a measurement of m; discriminating power.
. This phase is repeated with the remaining modalities of w; until one
finds a conjunction such as the associated ratio R is at least equal to

o , and which exiension contains a percentage of examples greater
than {3

Find a set of assertions characterizing the classes of a partition on A exiremity

.one determines with the previous approach an assertion from each
example

. one keeps from the previous research the assertion of maximal
extension in E, amax , as an element of the finat resuit.

. one repeats these phases on E \ ext ( agmpy / E ) until there are no

more example
Find assertions quickly for a large data set

. one determines an ordered set of fictitious objects in the form of 2
tree the root and nodes of which are defined as in CABRO's
algorithm, but replacing the frequencies by the L scores

. one finds for each fictitious object its nearest neighbour in the real
dara set ( for example with Hamming puncal distance )
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[ age=[18,25]] A [ practice = with the family ] A ...
[ member of an as---iation = yes ] A ..

A background knowledge simply consists in the following taxonomy :
13-14_15_16_17_18 _19_120,25)____ __ _  young
with friends _ with the family not alone

union operator
[ age=(13,19] . [18,25] 1 A [ practice = with friends, with the family ] ~ ...
{ member of an association = yes ] A ...

rewriting
{ [age = young] A [ practice = notalone }  ...] V[ member of an association = yes .

( r;:quircd condition : discrimination level verification)

4 . 3 Imperfect discrimination

The most frequent situation one has to front is that of an imperfect discriminadon : for
example, one may find that left sideof A¢  isrepresented by " joung and athletic people,
who use mountain bikes for competition ~ , but some exceptional " young, athletic and
competiting person " may have a projection near the gravity center or even on the other side
of the axis, as he is also a very good swimmer. In that case, the strategy consists in
decreasing the discrimination level in order to find a sufficient generalization level for the
assertions ( because of course each original example considered as an assertion is 100%
discriminating but really too specific ! } .One can anyway save the information on
misclassified elements and "misdescripdons” by inroducing previous ratio R as an external
mode on the assertion.

Exampie :
09 [ age={13,19]]
means that %% of the wenagers of the dat are at that
axis extrermnity
the remaining 10% are on the remaining part of the
axis

4 ., 4 Modal symbolic object for factorial axis inferpretation

Assertion extensions may be considered in two different ways :

. on subsets that constitutes one axis exemity
- on subsets that all well represented on one axis exwemity

Exampie .

. teenagers represent 20% of the axis extremity
. 90 % of the teenagers are at that axis extremity
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External modes may preserve these informations

More, when merging assertions by union or intersection, internal modes may be necessary
to express those types of information :

[ age= 08[13,19] , 02[18,25]]

One can also prefer the contribution semantic and save the global contribution of the obtained
subsets ( this global contribution is the individual contribution sum ), to the axis :

Finally, a factorial axis interpretation can be written as a disjunction of modal assertions,
which semantics are to be precised , but which are essentially of probabilistic rype as modes
often come from relarive frequencies.

§ . CONCLUSION

Symbolic descriptions for factorial axis fulfill much more than any other interpretation aid
the 3rd Yule's condition : a statistical index should have a concrete meaning; it is better to
choose a real value than a characteristic which is none of the possibie values.

3ut, on the other hand, iheir welcome flexibility to the user's requires put them very far
from any optimality, validation or robustness preoccupation. These are some of the main
lirections to improve that approach.

dther developments will be an extension of symbolic interpretation to factorial planes and also
© any kind of factorial analysis; one can for example use a segmentation algorithm on continue
rariables to characterize by conjunctons of interval disjunctions the classes of the required
»artition on "well contributing” elements.

Answers to threshold management will be obtained by applying the method to the greatest
wmber of possible different domains.

“hanks to the comparison operators on modal symbolic objects { Diday, 1991], symbolic
1xis description can also be used for example to study the evolution of the principal axis of a
riven situation on different periods by comparing them directly with their symbolic
ormulations. In that type of development, one could think the whole proceeding appears to be
eferred to probabilistic induction, that is numeric one. In fact, the symbolic definition AS of a
actorial axis A is true on a cerain subset of the original data, which is precisely the extent of
he related symbolic object; that subset can be considered as stadstically meaningful for this
xis in terms, for example, of summarized contributions ( see 3 - 4) .

sut generally, on real data, ~AS has a non empty extension (examples 2 are too simple ! ) so
nat AS and —AS are to some extent simultaneously true; we may so consider that AS gives an
acertain information on principal direction A for the original data, and that we have to handle
vith contradiction. These last considerations and the large use of background knowledge both
rgue for symbolic rather for mere numeric approach.

fore generally, one should think on the following two aspects :
. numerically, a " principal axis " has no incertainty : it is one of the eigen vector
of a given matrix computed from the original data
. semantically, " principal " is not a perfectly defined concept, and it brings
incertainty 1n the user's interpretation
he symbolic expression of a factorial axis transforms it from a vectorial nature to a nature
milar to other symbolic objects that statistics will be able to compute, data bases to manag=
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and data znalysis w provide with numerous treamments ( see for example De Caravaiho FAT,
1991).
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