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Abstract 

A three-dimensional thermo-visco-elastic system for Kelvin-Voigt 
type material at small strain is considered. The system involves con
stant heat conductivity and the specific heat satisfying the Einstein
Debye (03 + 0)-law. Such nonlinear law, relevant at relatively low 
temperatmes, represents the main novelty of the paper. The exis
tence of global regular solutions is proved without small data as
sumption. The crucial part of the proof is the strictly positive lower 
bound on the absolute temperature 0. In case of the Debye 03-law 
this still remains an unsolved problem. 
The existence of local in time solution is proved by the Banach suc
cessive approximations method. The global a priori estimates are 
derived with the help of the theory of anisotropic Sobolev spaces 
with a mixed norm. Such estimates allow to extend the local solu
tion step by step in time. 
AMS subject classification. Primary, 74B2O, 35K5O; Secondary, 
35Q71, 74FO5 
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1 Introduction 

The aim. In this paper we study three-dimensional (3-D) thermo-visco
elastic system at small strains with constant heat conductivity k > 0, and 
specific heat (heat capacity) c(0) satisfying the Einstein-Debye (03 + 0)
law, c(0) = c~03 + c~0, where 0 > 0 is the absolute temperature and ct, c~ 
positive constants. The system describes homogeneous, isotropic, linearly 
responding materials in the Kelvin-Voigt rheology at relatively low temper
atures 0 « 0D, below the Debye temperature 0D, According to the Debye 
theory the specific heat c depends on 0 / 0 D with 0 D as sea.ling factor for 
different materials (known for most materials, see e.g., the monograph by 
Kittel [16]). 

The present paper continues our previous studies [23], [24], where we 
addressed global regular solvability of thermo-visco-elastic systems with the 
specific heat of the forms c( 0) = c,;0, Cv = canst > 0 in [23], and c( 0) = cv0(1, 
a- E (½ , 1] in [24]. Such forms of c(0) are relevant at very low temperature 
below the range where the Debye law c(0) = cv03 is appropriate. 

The Einstein-Debye (03 + 0)-law combining the Einstein 0-law and the 
Debye 03-law is typical for metals at low temperatures at which electron 
contribution becomes significant. 

Prior to discussing mathematical motivations and pointing out the asso
cia.ted technical difficoulties for this type of problems, let us add few physical 
comments (for more details see section 2). 

Specific heat has a weak temperature dependence at high temperatures 
0 » 0D above the Debye temperature 0D, but decreases down to zero as 
0 approaches 0. The constant value of the specific heat of many solids 
is usually referred to as Dulong-Petit law. In 1819 Dulong and Petit [26] 
found experimentally that for many solids at room temperature specific heat 
is constant. 

At this point it is important to emphasize that the global solvability 
of 3-D thermo-visco-elastic system with constant heat conductivity k and 
constant specific heat c is in spite of great effort through many decades still 
open in dimensions n;;,, 2. In dimension n = 1 it was established already at 
the beginning of ninetieth of the last century by Slemrod [31], Dafermos [6], 
and Defermos and Hsiao [7]. For detailed references concerning solvability 
of thermo-visco-elastic systems we refer to Roubicek [27], [28], [29], author 's 
papers [23], [2L1], and the recent review paper by Zvyagin and Orlov [34]. 
All known results on multidimensional thermo-visco-elasticity deal with a 
modified energy equation. Modifications involve either nonconstant specific 
heat or nonconstant heat conductivity. In view of the Einstein and the De
bye theories it seems natural to consider thermo-visco-elastic systems with 
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nonlinear temperature-dependent specific hat. Our primary mathematical 
goal in this paper was to admit the Debye 03-law, c(0) = cv03 • To our best 
knowledge such problem has not been so far addressed in mathematical lit
erature. Unfortunately, in the case of the 03-law we have been faced with 
a serious mathematical obstacle to prove strictly positive lower bound for 
the absolute temperature. We have managed to prove this after adding a 
linear (possibly small) term c;0, c; = const > 0. In other words, we have 
assumed the Einstein-Debye (03 + 0)-law, c(0) = ct03 + c;0. Having proved 
the strict positivity of 0 the existence of global regular solutions to the 
thermo-visco-elastic system can be concluded by using similar arguments 
as in [24]. These arguments , based on the idea of successive improvement 
of energy estimates by the application of the theory of anisotripic Sobolev 
spaces with a mixed norm , indicate that the main role plays just the term 
c;03 . Therefore, all considerations could be repeated provided the lower 
bound for 0 is established. 

Finally, let us remark that apart from the mathematical issues the sys
tem under cosideration may be of some practical interest in the cryogenic 
engineering problems where one needs to understand and characterize the 
behaviour of various materials on the basis of the mathematical model and 
recorded materials properties. 
Thermo-visco-elastic system. The system under consideration has the 
following form 

where 

e = e(u) = ~(v'u+ (v'uf), 

and c; , c~, k are positive constants. 
Here n c JR3 is a bounded domain occupied by a body in a fixed reference 
configuration, and (0, T) is the time interval. The system is completed by 
appropriate boundary and initial conditions. We assume 

(1.3) u = o, n' v'0 = 0 011 sr := s X (0, T), 

(1.4) ult=O = uo, uilt=O = UJ, 0/t=O = 0o in n, 

where Sis the boundary of n and n is the unit outward normal to S. 

3 Zl20 27-11-2017 



The field u : nr ---+ IR3 is the displacement, 0 : nr ---+ IR+ = (0, oo) 
is the absolute temperature, the second order tensors e: = (ciiki= I,2,3 and 
e:1 = ((c1);j)i,j=l,2,3 denote , respectively, the fields of the linearized strain 
and the strain rate. 

Equation (1.1) is the linear momentum balance with the stress tensor 
given by a linear thermo-visco-elastic law of the Kelvin-Voigt type (cf. [10, 
Chapter 5.4]) 

S = A1e:1 + A2(e: - Ba). 

The fourth order tensors A1 = ((A1)ijkl)i,j,k,l=1,2,a a.nd 
A2 = ((A2)ijkl)i,J,k,l=I,2,a are, respectively, the linear viscosity and the elas
ticity tensors , defined by 

(1.5) 

where A1 , µ 1 are the viscosity constants and A2 , µ 2 are the Lame constants , 
both A1 , µ 1 and A2 , µ 2 with the values within the elasticity range 

(1.6) µm > 0, 3Am + 2µm > 0, rn = 1, 2, 

I= (6;j)i,j=I,2,3 is the identity tensor, and tre: denotes the trace of e:. 

The second order symmetric tensor a = ( a;j )i,j=l,2,3 with constant en
tries a;j represents the thermal expansion. The vector field b : 07 ---+ IR3 is 
the external body force. 

Equation (1.2) is the energy balance in which the linear Fourier law for 
the heat flux q = -k\10 with constant heat conducitity k > 0, and the 
Einstein-Debye law for the specific heat, c(B) = ctB3 + c~B, with constant 
ct, c; > 0, have been adopted. 
The first two nonlinear terms on the right-hand side of (1.2) represent heat 
sources created by the deformation of the material due to thermal expansion 
and by the viscosity. The field g : nr ---+ IR is the external heat source. The 
boundary conditions in (1.3) mean that the body is fixed at the boundary 
S and is there thermally isolated. The initial conditions (1.4) prescribe 
displacement, velocity and temperature at t = 0. 

We remark that since our main goal is to focus on the existence of global 
regular solutions we have assumed the simplest homogeneous boundary con
ditions (1.3). However, with some additional technical complications, other 
types of nonhomogeneous boundary conditions can be considered as well. 

The system (1.1)- (1.2) can be derived by various arguments of ther
modynamics, see e.g., [13], [21], [27], [3]. In section 2 we summarize its 
thermodynamic basis. As a main point we emphasise there the Debye and 
the Einstein-Debye laws of the specific heat. 
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Above and hereafter the summation convention over the repeated indices 
is used. Vectors (tensors of the first order), tensors of the second order 
(referred to simply as tensors), and tensors of higher order are denoted 
by bold letters . A dot designates the scalar product, inespective of the 
space in question, e.g., for u = (ui)i=I,2,3, v = (vi)i=I,2,3, S = (S;j);,j=I,2,3, 

R = (R;j)i,j=I,2,3, A= (Aijkl)i,j,k,l=I,2,3, e: = (c;j)i,j=I,2,3, we have 

Ae: = (Aijk/ E'kl)i,j= l ,2,3, (Ae:) · e: = Aijk/E:k/E:ij, 

where the summation convention is used. 
The term field signifies a function of a material point x E IR3 and time t. 

For convenience we use the notation Ut (instead of u) for the material time 
derivative of the field u (with respect tot holding x fixed). The operators V 
and "v· denote the material gradient and the divergence (with respect to x 

holding t fixed). For the divergence we use the convention of the contraction 
over the last index, e.g., 

v • (Ae:) = (BB•. (AijktE:k1)) . 
X; i=l,2 ,3 

We write 

Bf df 
f,; = Bx;' i = 1,2,3, ft= dt' e = ( E';j )i,j= l,2,3, 

F ( 0) = (8F(e:, 0)) 
,e e, 8 , 

Cij i,j=l, ... ,3 

F ( 0) = 8F(e:, 0) 
•0 e:, 80 ' 

where space and time derivatives are material. 
For simplicity, whenever there is no danger of confusion, we omit arguments 
(e:, 0) of function f(e:, 0). The specification of tensor indices is omitted as 
well. For vector b = (bi)i=I,2,3 and tensor B = (B;j)i,j=I,2,3 we denote 

Linear elasticity and viscosity operators. For further analysis it is 
convenient to formulate problem (1.1)-(1.4) in terms of the linear viscosity 
and elasticity operators, Q1 and Q2 , defined by 

(1.7) u H Qmu = "v · (Ame:(u)) = µm6u+ (Am+ µm)"v("v · u), m = 1, 2, 

with domains D(Qm) = H 2 (D) n H6{D). 
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For notational simplicity we introduce also the second order symmetric ten
sor B = ( B;j) defined by 

(1.8) 

Then system (1.1)-(1.2) takes the form 

Utt - Q1ut = Q2u + 'V · (0B) + b in 07, 
(1.9) 

( 13 2 ) T cv0 + cv0)0t - kb.0 = 0B ·ct+ (A1et ·et+ g in D , 

with boundary and initial conditions (1.3), (1.4). 
Assumptions and their implications. Throughout we shall assume that 

(Al) n c R3 is a bounded domain with the boundary S of class at least 
C2 ; T > 0 is an arbitrary finite number; 

(A2) a = ( a:;i )i,j=l,2,3 is a second order symmetric tensor with constant 
entries O:ij; 

(A3) The fourth order tensors A1 and A2 are defined by (1.5) with the 
coefficients µm, Am, rn = 1, 2, satisfying (1.6). 

We list the implications of assumption (A3) which are used in further 
analysis. The conditions (1.5), (1.6) ensure the symmetry of tensors Am 

(1.10) 

and their coercivity and boundedness 

(1.11) 

where 

Moreover, (1.6) ensures the following properties of operators Qm, rn = 1, 2: 

• Qm are strongly elliptic (property holding true under weaker assump
tion µm > 0, Am + 2µm > 0, (see [25, section 7])) and satisfy the 
estimate (see [20, Lemma 3.2]): 

(1.12) Cml!ul!H2(!1):::; jjQmullL2(!1) for u E D(Qm), rn = 1, 2, 

with positive constants Cm depending on n. Since clearly, 

/IQmullL2(!1) :::; CmllullH2(!1), Cm > 0, 

it follows that the norms l!Qmul!L2(!1) and /lullH•(n) are equivalent on 
D(Qm). 

6 Zl20 27- 11- 2017 



• The operators Qm are self-adjoint on D(Qm): 
(1.13) 

(Qmu,v)L2 (n) = -µm('vu, 'vv)L2 (n) - (Am+ µm)('v · u, 'v · v)£2 (n) 

= (u,Qmv)r,2 (0) for u,v E D(Qm). 

• The operators -Qm are positive on D(Qm): 

(1.14) 
(-Qmu, u}£2(n) = µm//'vu//L(n) +(Am+ µm)l/'v · ul/L(n) 

~O for uED(Qm). 

Hence, there exist fractional powers Q~(2 with the domains D( Q;J2 ) = 
H6{i1), satisfying 

(1.15) 

Let us also notice that by ( 1.11) and the Korn inequality 

it follows that 
(1.17) 

I/Q;,(2ul/~2(n) = µml/'vul/L(n) + (>-m + µm)l/'v · ul/L(n) 
= (Ame(u), e(u))L2 (0) ~ am,l/e(u)l/~2 (n) ~ am,dl/ul/~1(n)· 

Thus, the norms I/Q;,{2u//L 2 (n) and 1/ul/H'(O) are equivalent on D(Q;i2 ). 

Main result. This result is analogous to that proved in [24). 

Theorem 1.1 (existence). Let the assumptions ( Al)-( A3) formulated above 
be satisfied, and 

where fl.. is a constant. Then there exists a global solution to prnblem ( 1.1 ) 
(1.4) such that 
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where 5+ ia any number larger than 5 but close to 5. The spaces used above 
are defined in section 3. Moreover, 

0(t) 2'. ftexp(-at) = 0.(t) for t :s; T, 

where a is a positive constant given by a = 2 1.8 [ 1 •J. 
a1+ mLn Cv,Cv 

Plan of the paper. In section 2 we present the thermodynamic basis 
of system (1.1)-(1.2). In section 3 we define spaces used in this paper, in 
particular the anisotropic Sobolev spaces with a mixed norm. We recall the 
corresponding imbeddings and interpolations as well as the trace and the 
inverse trace theorems for the Sobolev-Slobodetskii spaces with a mixed 
norm. l\iloreover, we present auxiliary results on the solvability of linear 
parabolic initial-boundary value problems in such spaces. Section 4 is de
voted to the proof of a global positive infimum of temperature. In section 
5, applying the Banach method of successive approximations, we state the 
local existence of solutions such that ut E T1V5

2~_1(nt) and 0 E l,V5~1(nt), where 
t > 0 is sufficiently small. In the proof we can use exactly the same argu
ments as in [24, section 5]. In section 6 we derive a priori global estimates 
such that ut E w;/(Dt) and 0 E w;+\D1) where t > 0 is arbitrary finite. 
In this case the derivation is much shorter than in [24]. 
Combining the results of sections 5 and 6 in section 7 we conclude the global 
existence of solutions. 

2 Thermodynamic basis 

We recall ( see [23], [24]) the thermodynamic basis of the thermo-visco-elastic 
system (1.1)-(1.2) with the special emphasis on the Debye 03-law and the 
Einstein-Debye (03 + 0)-law of the specific heat. 

The system ( 1.1 )-( 1. 2) represents the local forms of the balance laws for 
the linear momentum and the internal energy in a referential description, 
with the referential mass density assumed constant, normalized to unity, 
{20 = 1: 

Utt - 'v. s = b, 

e1 + 'v · q - S · .:1 = g. 
(2.1) 

Here S is the stress tensor, q is the referential heat flux, and e is the specific 
internal energy. 

The system is governed by two thermodynamic potentials. The first one 
is the specific free energy f = ](.:, 0) which by a thermodynamic require
ment is strictly concave with respect to 0 > 0 for all e:. The second one 
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is the dissipation potential V = V(et, 'v0; e, 0), which by a thermodynamic 
requirement is nonnegative, convex in (et, '70) - variables and such that 
V(O, O; e, 0) = 0 for all (e, 0) . In [14], [3] Vis referred to as pseudopotentia.l 
of dissipation. 
The only difference of the present paper in comparison with [23] , [24] is the 
form of the thermal part J. ( 0) of the free energy 

(2.2) 

where 

(2.3) 

J(e, 0) = J.(0) + W(e, 0), 

I 2 

f (0) = - CV 04 - CV 02 I I t Q • 12 2 , cv, cv = cons > . 

The second term in (2.2) represents the elastic energy 

(2.4) 

In [23] it has been assumed that 

(2.5) 

whereas in [24] 

(2.6) 

f.(0) - - C2v 02, t Q - - Cv = cons > , 

J.(0) = - Cv 00'-i-1 
cr(O" + 1) 

with Cv = canst > 0 and 1/2 < O" ~ I. 
The paper [24] provides an essential imporvement of the theoretical results 
from [23]. 

The thermal energy 2.3 is associated with the Einstein-Debye law of the 
specific heat. The case c~ = 0 corresponds to the Deby law. Both cases are 
relevant at low temperature range; see comments below. 

In view of thermodynamic relations 

(2.7) 

T/ = - J,0 = T/.(0) + e · (A2a), 
1 

e = f + 0rt = e.(0) + 2e · (A2E), 

c = e,8 = c., 

in case of (2.3) we have 

I 

T/.(0) = ~ 03 + ce0, 

(2.8) 1 2 

e.(0) = J.(0) + 0r1.(0) = ~04 + ;02 , 

c.(0) = e.,o = c~03 + ce0. 
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According to (2.1)2 and (2.7) 3 this gived rise to the term (c~03 + c~0)0t in 
temperature equation (1.2). 
Remarks on the theories of specific heat. There exists extensive liter
ature in solid state physics on the theories of specific heat ( see, e.g., [2], [5], 
[16], [19], [30], (12)). It seems to be of interest to compile some basic facts 
on the four well-known models of the specific heat: 

• - the classical Dulong-Petit model (1819) [26]; 

• - the quantum mechanical Einstein model (1907) (11]; 

• - the Debye model (1912) [8] expanding the Einstein model; 

• - the Einstein-Debye model for metals at low temperatures. 

In the Dulong-Petit model the specific heat is constant. It is known to 
show poor agreement with experiment except at high temperatures. The 
Einstein model yields good agreement with experiment at very high and 
very low temperatures, but not inbetween. The Debye theory provides more 
accourate model. The thermal energy expression from the Debye theory of 
specific heat is of the form (in our notation) 

(2.9) 

OD/0 

04 j x3 
e.(0) = c-03 1 dx, 

D expx -
0 

where BD is the Debye temperature and ca positive physical constant. Thus, 
the De bye specific heat is the function of the ratio ( = 0 / 0 D, given by 

(2.10) c.(0) = e.,0 = cD(~), 
where 

1/{ 

(2.11) D( ) = 4e J l dx - l 
( exp x - l ( ( exp 1 / ( - 1) 

0 

is known as the Debye specific heat function. Even though the integral 
in (2.9) and (2.11) cannot be evaluated in closed form, the low and high 
temperature limits can be assessed. 

For the high temperature case where 0 » 0D, the value of xis very small 
throughout the range of integral. This justifies using the apprximation to 
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the exponential by the exponential series exp ~ 1 + x. This reduces the 
energy expression (2.9) to (see, e.g., [30, Chapter 7]) 

Ov/0 . 

(2.12) _04 j 2 c04 (0v) 3 c e.(0) = c0b x dx = 30b 0 = 30. 

Hence, in this case 

(2.13) 

0 

c 
c.(0) = e.,o = 3, 

which yields the constant Dulong-Petit specific heat. 
For low temperatures where 0 « 0v, the exponential in the denominator 

becomes very large before reaching the limit, implying that the integrand 
in (2.9) is very small near the upper limit. This makes it plausible to 
approximate the integral by increasing the limit to infinity to make use of 
the standard integral 

00 

----dx=-. J x3 1r4 

exp x - l 15 
0 

Then the energy becomes 

(2.14) 

so that the corresponding specific heat is 

(2.15) c.(0) = e.,o = c1 ( 0:) 
3

, where 
41r'j 

C1 = -C. 
15 

This yields the Debye 03 -law for the specific heat (see e.g., (2, section 4.3]). 
This 03-form of the specific heat at low temperatures is known to agree with 
experiment for nonmetals. For metals the electronic specific heat becomes 
significant at low temperatures and results in the additional linear term in 
0 

(2.16) c.(0) = c1 ( 0:) 
3 + c20, c2 = const > 0. 

Such form of the specific heat is referred to as the Einstein-Debye specific 
heat. The 03 term arises from lattice vibrations, and the linear term from 
electrons conduction. The Einstein contribution c20 becomes dominating 
at very low temperatures. 
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The dissipation potential. For system (1.1)-(1.2) it has exactly the same 
form as in [23], [24] 

(2.17) 

where A 1 is the fourth order viscosity tensor given by (1.5), and k > 0 is 
the constant heat conductivity. 
In particular, the free energy (2.2) and dissipation potentia.l (2.17) lead to 
the same formulas for the stress tensor S and the heat flux q. Moreover, 
the Clausius-Duhem inequality is satisfied 

(2.18) 

where 

q g g 
Tlt-/-'v•-=O"-/-->
•i 0 0 - 0' 

(2.19) av 1 av 2 1 11 2 1 o- := --. · 'v- + - ·et= k0 'v- + -(A1et) · et 2 0 av½ 0 aet e e 
is the specific entropy production. This inequality together with the positive 
lower bound for temperature constitute the basis of energy estimates in the 
existence proof, see sections 4-6. 

3 Notation and auxiliary results 

For readers convenience this section recalls basic facts from [24, section 3] 
and adds new ones. 
Notation. Let D C !Rn, n 2 1, be a domain in !Rn with boundary S. 
Let nr = D x (0, T), ST = S x (0, T) with T > 0 finite. By W;(n), 
k EN U {O} = N0 , p E [1, oo), we denote the Sobolev space with the finite 
norm 

llullw;(n) = ( L j ID:ulPdx) l/p, 

lal.$k n 

where a: = ( 0:1, · · · , an) is a multi-index, a; E No, lal = a1 + a2 + · · · an, 
D°' = 8"'1 • • • aa". Let Hk(D) = 11\lk(D). 

X Xt Xn 2 

Next, we introduce anisotropic Lebesgue spaces 
LP,Po(Dr) = Lp0 (0,T;Lp(D)), P,Po E [l,oo], with the finite norm 
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Moreover, w;,,;/2(D7), k, k/2 E N0 , p,p0 E [1, oo] are Sobolev spaces with 
a mixed norm, which are the completion of C 00 (DT)-functions under the 
finite norm 

By w;,;t2(nr), s E lR+, p,p0 E [1,oo], we denote the Sobolev-Slobodetskii 
space with the finite norm 

llull,,,s,s/2(,,1') = ~ 11n;a;u11Lpp (W) 
Yi P,Po ~,, L.....t , o 

ia-l+2a~[s] 
T 

+ [f (ff ~ ID:afu(x, t) - n:,afu(x', t)IP dxdx')Poh>dt] l/po 
L Ix - x' ln+p(s-[s]) 

0 n n la-l+2a=l•l 
T T 

[f f (f ~ ID~Bfu(x, t) - niavu(x, t')IP dx)Po/p dtdt'] I/po 
+ L It_ t'll+p(s/2-[s/2)} , 

0 0 n ial+2a=l•l 

where a E No and [s] is the integer part of s. 
For s odd the one before last term in the above norm vanishes whereas for 
s even the two last terms vanish. 

We use also the notation Lp(DT) = Lp,p(D7), w;·•l2(nr) = w;,:12(nr), 
and so on. 

By B~,P0 (D), l E IR+, p,p0 E [l,oo) we denote the Besov space of func
tions making the following norm finite 

( 
n loo ll6m(h D)cJk ullpo ) 1/po 

i > x; Lp(O) 
llullBt,vo(n) = llull L.(O) + ~. hl+(l-k)po dh , 

i=l O 

where k E N0 , m EN, m > l - k > 0, 6{(h,D)u, j EN, h E lR+, is the 
finite difference of the order j of the function u( x) with respect to x;, with 
6f(h,D)u = 6;(h,D)u = u(x1, ... ,X;-1,x;+h,X;+1, ... ,xn)-u(x1, ... ,xn), 
6{ (h, D)u = 6;(h, D)6{~ 1 (h, D)u and 6{ (h, D)u = 0 for x; + jh (/_ n. 

From Golovkin [15] it is known that the norms of the Besov space 
B~,P0 (D) are equivalent for different m and k satisfying the condition m > 
l - k > 0. 

By c 0 ,0 12 (Dr), ex E (0, 1), we denote the anisottopic Holder space of 
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functions making the following norm finite 

II II I ( )I iu(x', t) - u(x", t)I 
U ca,a/2(f!T) = SUp U ::r;, t + SUp Ix, - x"la f2T x',x",t 

iu(x, t') - u(x, t")I 
+ sup ' " / x,l',t" it - t la 2 

By r5 we denote a sma.11 positive number, and by c a generic positive 
constant which changes its value from formula to formula and depends at 
most on the imbedding constants, constants of the considered problem, and 
the regularity of the boundary. 

By tp = tp(o-1, ... ,o-k), k EN, we denote a generic function which is a 
positive increasing function of its arguments o-1 , ... , o-k, and may change its 
form from formula to formula. 

Boldface L, W, B are used for the corresponding spaces of vector and 
tensor valued functions. 
Auxiliary results. We use the following interpolation lemma 

Lemma 3.1. (see [1, Chapter 4, section 18]) Let u E w;,,,;t2(nr), s E lR+, 
P,Po E [1, oo], r2 C IR3 . Leto- E lR+ U {0}, and 

3 2 3 2 
x = - + - - - - - + lo:i + 2a + o- < s. 

PPo q qo 
aa~ T · Then niofu E J,,Vq,q0 (D ), q 2: p, q0 2: p0 , and there exists c: E (0, 1) such 

that 

/ID~8ful/w"•"12(nT) :=:; c:"-xllull 1,v•·•/2(nT) + cC"//ulliP,P (nT)· 
q,qo P,VQ 0 

As a special case of Lemma 3.1 we need 

Lemma 3.2. (see [1, Chapter 4, section 18]) Let u E l1V;(n), s E lR+, 
p E [1, oo], D C JR3 • Leto- E lR+ U {0}, and 

3 3 
X = - - - + lo:1 + 0- < S. 

p q 

Then D~u E w;(n), q 2: p, and there exists c: E (0, 1) such that 

IID~ullw:(n) S:: c:•-"/lul/w;(n) + cc:-"/lu/lLp(O)· 

Lemma 3.3 (imbedding between Besov spaces [1, Chapter 3, section 18]). 

Let u E B':.,-,?t2 (D). Then u E Br~'-;M(n), DC JR3 , if 
' 1,r2 

3 2 3 2 , - + - - , - , + o- S:: o-, 
r1 T2 Tl T2 

where 
r~ 2: r;, i = 1, 2, and o- 2: o-'. 
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Let us consider the problem 

Ut - Qu = f 111 flT, 

(3.1) u=O on sr, 
ult=O = uo in n, 

where D c lR3 a.nd 
Qu = µt::.u + v"v("v · u) 

withµ> 0, v > 0. Let us notice tha.t Q replaces Q1 , soµ= µ1 , v = .>- 1 +µ 1 . 

Hence assumption (1.6) implies tha.t /t > 0 and v > 0. 

Lemma 3.4 (parabolic system in w~;~0 (DT) [17], [22], [32], [33]). 

{i) Assume that f E Lp,po(Dr) , u0 E n~:;;~/Po(D), P,Po E (1, oo), and SE C2 . 

If 2 - 2/p0 -1/p > 0 the compatibility condition uols = 0 is assumed. Then 
there exists a unique solution to problem {3.1} such that u E w~;~0 (DT) and 

(3.2) llullw~:io (OT) ::; c(!lfllLP,Po(OT) + lluollB~:;,~IPo(S1)) 

with constant c depending on D, S, p, p0 . 

(ii) Assume that f = "v • g + b, g = (%), b = (b;), g, b E Lp,po(Dr), and 
u 0 E n~:;;;/Po(n). Assume the compatibility condition 

uols = 0 if 1 - 2/po - 1/p > 0. 

Then there exists a unique solution to {3.1} such that u E w~:~t2(nr) and 

(3.3) llullw!:!~2(S1T)::; c(llglJLp,p0 (0T) + llbllLp,1,0 (0T) + lluolln!:;,~!Po(n)) 

with a constant c depending on D, S, p, p0 . 

Let us consider the problem 

a(x, t)0t - t::.0 = f in nr, 
(3.4) n • '70 = 0 

0lt=O = 0o 

on sr, 
in n. 

Lemma 3.5 (see [18, Chapter 4], [24], [33]). Assume that f E LP,Po(Dr), 
0o E B;,;;!Po(D), P,Po E (1, 00) 1 D E !Rn, S E C2 . Assume that O < 
a:o ::; a: ::; a:. < 00 1 where a:o and a. are constants, a: E c 0,0!2(nr), O:t E 

L3; 2µ,l/(l - µ)(DT), µ E (0, 1). Then there exists a solution to problem (3.4) 
such that 0 E W;,;0 (D1') and the following estimate holds 

(3.5) 
ll0llw;:Jo(OT )::; cp(l/ao, a., llallo6,&/2(ff"), lla:ti1L312,, ,11(1-,,J(W))· 

· (IIJIILP,Po(W) + ll0olls~;~!Po(n)· 
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Remark 3.6. The above result is a special case of the more general theorem 
due to Denk, Hieber, and Pruss /9, Theorem 2.3}. 

Remark 3.7. The constant c in (3.2), (3.3) and the fucntion <pin (3.5) do 
not depend on T. For T small the proof of these facts is evident. 
For T large it can be deduced by applying the aryuments of the proof of 
Theorem 3.1.1 in /35, Chapter 3/. 

4 Lower bound for temperature 

The existence of the lower positive bound on temperature ensures not only 
the thermodynamic correctness of the model but is also of basic importance 
for the proof of global estimates of the solutions. To show such property we 
use the ideas of the proof of Lemma 4.1 [23]. 

Lemma 4.1. Ass1tme that equation (1.2), boundary condition (1.3)2 and 
initial condition (1.4)3 hold, g 2'. 0, 00 2: fl.. > 0, where fl_ is a constant, 
as well as k, ct, c~ are positive constants. Assume that the coercivity and 
boundedness condition ( 1.11) hold for viscosity tensor A 1 . Then there exists 
a positive constant 

where B = - A2 a, and ai. is defined in ( 1.11), such that 

(4.1) 0(t) 2: fl..exp(-at) = 0.(t) for t E [0 , T]. 

Proof. Form E lR+ we define the trunacation 0m = max { 0, ¾} and Dm( t) = 
{ x E D : O(x, t) > ~}. lVIultiplying (1.2) by -0;;/ with g > 4 (admissible 
test function) and integrating over Dm(t) gives 

-[c! j 03810;/dx+c~ j 0018;,edx] +k j 0:;/6.Bdx 

( 4.2) 
!1m(l) !1m(l) !1m(t) 

+ J (A1Et) . Ete;,edx + J ge;,edx = J e0;,e(A2a) . EtdX. 
!1m(t) !1m(l) !1m(t) 

Now we examine the terms on the left-hand side of (4.2). The first term is 
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equal to 

(4.3) 

because OtB;,,- 12 = 810~;(1 = 0 for x ED\ Dm(t) = {x ED: Bm(x, t) = 1/m}. 
The second term equals 

since 'vBm = 'v0 for x E Dm(t) and 'v0m = 0 for x E D\Dm(t). On account 
of (1.11) the third term is bounded from below by 

(iJ.5) 

The fourth term is nonnegative because g ~ 0. 
In view of the boundedness of tensors A2 and a the integral on the 

right-hand side of ( 4.2) is estimated by the Cauchy inequality 

J 0~ (A2a) · e1dx = J ;;2 (A2a) · /J 2 dx 
nm(t) nm(t) 

< ~ J /et/ 2 dx -f- ~ J 02-(ldx B = -A2a. 
- 2 0/h 26 m ' 

(4.6) 

nm(t) nm(t) 

Setting b = a1• and incorpording ( 4.3)-( 4. 7) into ( 4.2) we arrive at 

(4.7) 
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where in the last inequality we taken into account that Bm > 0 in n. 
Let us introduce the positive quantities 

(4.8) (! dx) v-=-·1 

X1(t) = e;;,-4 , 

n 

By ( 4. 8) we infer from ( 4. 7) the inequality 

(4.9) _s_ixr4(t) + __5_ixr2(t) :::; ~xr2 (t). 
g - 4 dt g - 2 dt 2ai. 

Let us set now 

(4.10) 

Then (4.9) yields 

(4.11) 
d 
dt Y(g, t) :::; a(g - 2)Y(g, t), 

where a= JBl/(2ai.min{c;,c~}). Integrating (4.11) with respect to time 
from O to t leads to 

(4.12) Y(g, t) :::; exp[a(g - 2)t]Y(g, 0). 

Hence, using the form of Y(g, t), we get 

or equivalently, 
(4.14) 

JIB;;1 ( t) II L,-2{n) 

[(Cl),.:.2((2-2)•.:.2 =! ] 
:::; exp(at) c; (2 _ 4 ll0;;1(O)llf~~-i(n) + Jl0~1(O)JIL.- 2 (n) . 

Letting e---+ oo, (4.14) implies the bound 

( 4.15) 0m(t) 2:: 0m(O) exp(-at) for t E [O, T]. 

Further, letting m ---+ oo and noting that for sufficiently large m, Bm(O) = 
max {00 , ~} 2:: fl.> 0, we conclude the bound (4.1). D 
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5 Local existence 

To prove local existence of solutions we use the following Banach successive 
approximation method: 

(5 .2) 

(5.3) U(n+l) = 0, n' 'V0(n+1) = Q On ST, 

(5.4) U(n+l} lt=D = uo, U(n+l),t = U], 0(n+l} lt=D = 0o in n, 

where U(n), 0(n), n EN U {O} are treated as given. 
Moreover, the zero approximations ( U(o), 0(o)) are constructed by on exten
sion of the initial data in such a way that 

(5.5) U(O)lt=O = uo, U(O\.tlt=D = U] , 0(o)lt=O = Bo in n, 

and 

(5.6) r{J' 
u(o) = 0, n · 'V0(o) = 0 on 0 . 

We note that problem (5.1)-(5.6) and that analysed in [24, section 5] dif
fer only by the presence of the additional term c~0(n) in (5.2) which has 
the same properties as c~0(n)· For this reason in order to prove the uni
form boundedness of the sequence { u(n), 0(ni} we can use exactly the same 
arguments as in Lemma 5.1 [24]. 
We have 

Lemma 5.1 (Boundedness of the approximation). 
Let X 0 (t) = Jlu(o),tllw2,1 (fV} + ll0(o}llw2,1 (fl'}' where U(o), 0(o) are introduced 

P,Po q1qo 

by (5.5), be finite. Let 00 ;:::: fl.> 0. Further, let 

D(t) = lluollw~(fl) + lluill 8 ~;;,~/Po(n) + ll0oll 8 :.~~/qo(fl) 

+ llbJILp,p0 (!1') + llgJJi:,q,q0 {!1') 

be finite, and 

3/p + 2/Po < 1, 3/q + 2/qo < 1 + 3/p + 2/po, 
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Assume that there exists a constant A and time t sufficiently small such that 

X0 (t) ~ A, cp(t"'A,D(t)) ~ A, 

where a > 0 and the nonlinear function <p appear in the proof of Lemma 5.1 
[24, equation {5.22)/, and ct0! 2 A ~ f}_, o > 0. Then 

(5.7) 

To show convergence of the sequence {u(n),0(n)} we introduce the dif
ferences 

(5.8) Un(t) = U(n)(t) - U(n- l)(t), '!9 11 (t) = 0(n)(t) - 0(n-l)(t), 

n E N, which are solutions to the problem 

(5.9) Un+!= 0 

Un+llt=O = 0, Un+1,tlt=O = 0 

on sr, 
in n, 

and 

(c~0fn) + c~0(n))'!9n+l,t - k6.'!9n+l = - c~(0(n) - 0(n-1))0(n),t 

- c~'l9n0(n),t + '!9nB · e(u(n),t) + 0(n-l)B · e(U(n),t) 

(5.10) + Aie(Un,t) · e(u(n),t) + Aie(u(n-1 ),t) · e(Un,t) in 07, 

Let 

(5.11) 

n · 'v'l9n+l = 0 

'!9n+l lt=O = 0 

on sr, 
in n. 

Like for the uniform boundedenss we can repeat the arguments of the cor
responding proof of the convergence of approximation of [24, Lemma 5.3]. 
This lemma required (see, [24, equation (5.30)]) several technical restric
tions on the indices p, p0 , q, q0 , p', p~, q', q~ of the involved Sobolev spaces 
with a mixed norm W 2•1 (nt) vV2•1 (Dt) w2•1 (nt) W 2•1 (nt) As noted 

P,Po ' q,qo ' p' ,p~ 1 q' ,qb · 
in [24, Corollary 5.5] these restrictions and the restrictions of Lemma 5.1 
can be satisfied for the following special choice: 

P - p - 5+ q - n - 5+ p' - p' - 5 q' - q' - 5 wl1e1·e 5+ (5.12) - 0 - ' - '10 - ' - 0 - ' - 0 - ' 

· is any number larger than 5 possibly close to 5. 

Then we have 
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Lemma 5.2 (Convergence of the approximation). Let the assumptions of 
Lemma 5.1 be satisfied and ( 5.12) holds. Then there exists a positive con
stant d = d(A) and a> 0 such that 

(5.13) 

From Lemmas 5.1 and 5.2 it follows 

Theorem 5.3 (Local existence). Let the assumptions of Lemmas 5.1 and 
(5.2) hold. Then there exists a local sol1dion to problem (1.1} - (1.4) such 

21 - 21 - ~ that u1 E W 5+ (Dr), 0 E TiV5_;. (Dr), where Tis sufficiently small. 

6 Global estimates 

In this section we prove global estimates on an arbitrary finite time interval 
(0, T) for a regular local solution. All estimates use the regularity of local 
solutions. By Lemma 4.1 we know that there exists the lower positive bound 
on temperature 

(6.1) 0(t) ~ 0. := 0.(T) > 0 for t::; T. 

Throughout we assume that assumptions (Al)- (A3) of Theorem A hold. 

Lemma 6.1 (Energy estimates). Assume that 

u0 E H 1 (D), u 1 E L 2(D), Bo E L4(.0), 
b E L2(.1n, g E L1(Dt), g ~ 0, t::; T. 

Then solutions to problem (1.1)-(1.4) satisfy the estimate 

(6.2) 
llu(t)/11,,{!1) + llut(t)1122{!1) + ll0(t)11L(!1)::; c(t)(lluollt,(!1) 

+ llu1/1~2(11) + IIBo//L(n) + /lb/122(111) + l/gllii(!1t)) = c1(t), 

where c(t) is an increasing positive function. 

Proof. Multiplying (1.1) by ut and integrating over D yields 

~ ! llutll22(!1) + J (A1et). etdX - /rv' (A2e)]. uidx + J 0B. cidx 

(6.3) n n n 

= j b · u1dx, 

!1 
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where we remind (see (1.8)) that B := -A2a. Integrating (1.2) over n 
implies 

(6.4) 7 ! / 04dx +? ! / 02dx = J 0B · e:tdx + J (A 1e:t) · e:tdx + J gdx. 
a n a a a 

From the properties of the operator A 2 (see (1.5)) we have 

(6.5) 
- j[v' (A2e:)] 'UtdX = -f [11,26.u · Ut + (>-2 + µ2)"v("v · u) · ut]dx 

n a 

= ~ ! [µ2//Vu//i2(a) + (>-2 + µ2)1l"v · u/lL(n)J, 

where the boundary condition (1.3) 1 was used. Applying (6.5) in (6,3) gives 

(6.6) 
~ !rnutlli2(D) + µ2/IVulli2(D) + (>-2 + µ2)IIV' u/lL(n)l 

+ J (A1e:1) · etdX + J 0B · etdX = J b · u1dx. 

n a a 

By adding (6.4) and (6.6) we have 

(6.7) 
! [ 71/BIIL(a) +? l!BIII.(n) + illutlli,(n) + µ2IIVullL(n) 

+ (>-2 + µ2)//"v · u/lI,(n)] = J b · utdx + J gdx. 

a n 

Integrating (6.7) with respect to time, using the lower bound (1.17) for 
the sum of the last two terms in the squared parenthesis, and eventually 
applying the Gronwall inequality we get (6.2) which concludes the proof. • 

To derive "stronger" estimates for u and 0 we apply the regularity theory 
of parabolic systems in Sobolev spaces with a mixed norm, stated in Lemmas 
3.4 and 3.5. Let us first consider viscoelasticity system (1.1), (l.3)i, (1.4)i,2 , 

expressed in the form 

Utt - Q1Ut = "iJ' (A2e + 0B) + b in n7', 
(6.8) 14 = 0 on sr, 

Utlt=O = u1, ult=O = uo in n. 

We have 
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Lemma 6.2. Assume that 

0 E Lp,r(Dt), b E Lp,r(D1) , 

uo E w;(O), u1 E B~;;:2/r(n), p, r E (1, oo), t::; T. 

Then for solutions to problem (1.1)-(1.4) the following inequality holds 
(6,9) 

lh1 IILp,r(rl')::;: c(t)(ll011Lp,r(rl') + llbllLp,r(rl') + lluollwMn) + llu1IIB~;;.2/r(n) 

= c2(t,p, r) + c(t)ll0IIL",,.(n•)· 

Proof. Applying Lemma 3.4(ii) to problem (6.8), using the boundedness of 
tensors A2 , B we have 

llet' IILp,r(rl') ::;: ciiut' llwW\n•J ::;: c(llellLp,r(rV) 

+ ll0I1£p,r(rl') + llbi!Lp,r(rl') + llu1 IIB~;;.2/r(n/ 

Using the Gronwall lemma to the latter inequality we conclude (6.9). • 
Now, using (6.2) in (6.9) implies the estimate 

We have also the following 

Lemma 6.3. Let v'0 E Lp,r(0,t), b E Lp,,.(0,1), u1 E B;;;:2/r(D), u0 E w;(D) , 
p, r E (1, oo), t::; T. Then for solutions to problem (1.1)-(1.4) the following 
inequality holds 

lle11 llww2 (n')::;: cilu11 llw~:},(n')::;: c(t)(IIV0IILpr(rl1) 

(6.11) + llbllLp,r(rl') + lluollwi(n) + lluilJ8 ~;;.2/•·(n)) 

= c(t)llv'0jjLp,r(rl') + C4(t,p, r). 

Proof. Applying Lemma 3.4 (i) to problem (6.8) and the boundednes of A 2 , 

B yields 
llet' II w~:~/ 2 (n') ::;: c( IIV cllL,,,r(rl1) 

+ IIv011Lp,r(rl1 ) + llbllL,,, .. (rl') + llu111B~;;.2/r'(n/ 

Hence, by the Gronwall lemma, (6.11) follows. 

On account of (6.10) we obtain "better" estimates on 0. 
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Lemma 6.4. Let (6.10) forr = 2 holds true and the assumptions of Lemma 
6.1 be satisfied. Let 0o E Ls(lt) and g E Ls;,1,1 (01). Then the following 
inequality holds · 
(6.12) 

IIB(t)llis{n) + IIB(t)IIL{n) + IIVBlli2 (fl') ::::'. [ci12(t)c3(t, 2) + ci14 (t)c~(t, 2) 

+ llgll%\,1(!1') + IIBollis(n)l = c5(t). 

Proof. lVIultiplying (1.2) by 0, integrating with respect to time and using 
(1.3)z, (1.4)3 gives 

j 05dx + j 03dx + j /V0/ 2dxdt' ::::'. c j 02/e1,ldxdt1 

(6.13) 
n n n1 n1 

+CJ 0lct' l2clxclt' +CJ g0clxdt1 + CJ egd:r +CJ 0gr1:r. 
n1 nt n n 

The first term on the right-hand side of (6.13) is bounded by 

t t t 

j dt1 j 02/e11ldx ::::'. / ll0IIL(n)//et'/IL2(n)clt' ::::'. ci1\t) j l/e11 1/L2 (n)dt' 
o n o o 

:::; ci1\t)t112c3 (t, 2), 

and the second one by 

t t 

j clt1 j 0le11 l2dx ::::'. / ll01/L4 (n)lh1 llis;a{l1)dt1 
::::'. c( 14 (t)c5(t, 2). 

0 l1 0 

The third term is bounded by 

t 

j 1101/Ls(fl) llgllL514 (n)dt' ::::'. s~p 1101/Ls(fl) llg/lL5; 4,i(01) 
0 

::::'. osup 1/Bllis(n) + ~llgllt (O')' o > 0. 
l U 6/4,l 

Applying the above inequalities in (6.13) we conclude (6.12). This completes 
the proof. D 

Let us note that from (6.9) and (6.12) it follows that 

(6.14) !le-11 1/Ls,r(D') ::::'. c2(t,5,r)+c(t)c;15(t) =C5(t,r), r E (1,oo). 

We continue with further estimates for 0. 
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Lemma 6.5. Let the assumptions of Lemma 6.4 be satisfied, and estimate 
(6.14) holds. Moreover, assume that 0o E L1s(D), g E L35;25,12(Dt), t :S: T. 
Then 

t 

(6.15) 
ll0(t)111~5(n) + j ll0/ll~6 (n)dt' + j /v'06 l2dt' 

O flt 

:S: c(c~(t, 12) + c~4 (t, 12) + ll9lll~0126,!2(n') + l/0oJll~5 (n)) = c7(t). 

Proof. lVlultiplying (1.2) by 0C1<-l, where a > 1 is a finite number, integrating 
the result over D, taking into account the boundedness of tensor B, A 1 and 
the boundary condition (1.3)2, we obtain 

_s___i J ea-l-3dx + _s_i f oa+ldx + 4k(a - l) I 1v0f 12 dx 
a + 3 dt a + l dt a 2 , 

(6.16) n n n 

'.S: Cf e"'letldx +CJ ea-l hl2dx + J g0°-1dx. 
n n n 

Integration of (6.16) with respect to time gives 

- 1-/ 0°+3dx + - 1-f 0°+1dx + 4(a - l) J IV Bf l2dxdt' a+ 3 a+ 1 a 2 

n n n' 

(6.17) :s; CJ B°'let'ldxdt' +CJ 0°-11et'l 2dxdt1 + J g0°-1dxdt1 

n, n• n' 
+ _c_,,0 11a+3 + _c_,,0 11cr+l a+ 3 O La+3(fl) a+ 1 0 L0 +1{0)" 

Prior to deal with the terms on the right-hand side of ( 6.17) we first estimate 
from below the third term on the left-hand side by applying a Sobolev 
imbedding. Setting u = 00:/2 this term takes the form 

t 

4(aa~ 1) J J jv'uj2dxdt'. 

o n 

Now we add to the both sides of (6.17) the term 

t 

2(a - l) jju2dxdt1• 

az 
o n 
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Then we have 

t t 

2(0: - l) j j(/Vu/ 2 + u2)dxdt' > 2c(a: - l) j //u // 2 dt' a:2 . - a:2 La(fl) 

(6.18) 0 fl 0 

t 

= 2c(a: - l) j //0// 0 dt'. a:2 L3,,(fl) 
0 

The additional term on the right-hand side of (6.17) equals 

so by applying the Holder and the Young inequalities is bounded by 

81 s~p j e0 +3dx + c(l/81, a, t), 01 > 0. 

fl 

Consequently, employing (6.18) in (6.17) gives 
(6.19) 

t 

1 /I // 0 +:i 1 11011°+1 2c(a ~ l) / !/0//" d' a+ 3 e L,,+3(0) + a+ l L,,+t(fl) + a:2 . L3.,(fl) t 
0 

+ 2(a: - l) J /Ve% /2dxdt' 
a:2 

fl' 
t t 

:s; c j //0//1,,>-1 (fl) I/et' //L>- 2 (0)dt' + c j //0//1~~1),,1 (O) llc:t1 /ll2,,2 (fl)dt' 
0 0 

t 

+CJ ll911Lv1 (0) 11e111~1-l)v2(0)dt' + a: 3 ll0ollt13(fl) + a: 1 ll0ollt~1(fl)> 
0 

where 1/)q + 1/,\2 = 1, 1/µ.1 + 1/µ 2 = 1, 1/v1 + 1/v2 = 1. 
On account of (6.14) we can assume that >.2 = 5, so >. 1 = 5/4. Setting 
5a:/4 = a+ 3, we get a:= 12. Then the first term on the right-hand side of 
(6.19) is bounded by 
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In the second term on the right-hand side of (6.19) we assume that µ 2 = 5/2, 
µ 1 = 5/3 and (a - 1)µ 1 :S: 3a, so (a - lH :S: 3a. We note that the latter 
inequality is satisfied for any o: > 1. Hence, the second term is bounded by 

t t t 

63 J ll0IIL3a(n)dt' + c/63 J IJet'lli:(rl)dt' :S: c53 J ll0IIL3a(rl )dt' + c/c53cf'(t, 12), 
0 0 0 

where (6.14) is used. 
In the third term on the right-hand side of (6.19) we assume that v2 = ;J~1 

so v1 = 2~~1 . Then this term is bounded by 

/. I 

c5,i J 11011L3a(n)dt' + c/c5,1 / llgllL,d'/=,-(rl)dt', c5,1 > 0. 

0 0 

From the above considerations it follows that we can take a,= 12. Employ
ing the obtained estimates in (6.19), choosing c5k , k = l,··· , 4, appropri
ately, in particular assuming that 82 - 83 is sufficiently small, we arrive at 
(6 .15). This concludes the proof. D 

Let us note that using (6.15) in (6.9) yields 

(6.20) IJet,IILis,r(rl') :S: c2(t, 15, r) + c(t)ct5(t) = cs(t, r·), r E (1, oo). 

We proceed now to prove that 0 E L00 (0 , t ; La(D)) for any finite o:. For 
this purpose we repeat and improve appropriately the arguments of the 
proof of Lemma 6.5. 

Lemma 6.6. Let (6.15) and (6.20) with r = a E (1, oo) hold. Moreover, 
assume that 

Then 

(6.21) 

0a E La+3(D) and g E L_k_ a(Dt), t :S: T. 
2a+t 1 

a! 3 11 8(t)llt:3(rl) +a! 1 11 8(t)llt:1tr2J 

+ 4k(a - 1) / 1v0a/2l2dxdt' 
a,2 

rl' 

:S: c(c1(t), cs(t, a))+ cllgllL~,a(rl') +a,: 3 ll0oll~~:3(rl) 

= Cg(t, a), Q < 00. 
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Proof. Let us turn to the inequality (6.17) from the proof of Lemma 6.5. 
We proceed now as follows. The first term on the right-hand side of (6.17) 
we express in the form 

t 

J J 0"'- 10/i::t,/dxdt'. 
0 l1 

On account of (6.15) and (6.20) it is estimated by 

t 

j /j0jj~:~J)tfr (!'l) Jl0/l£1s(!'l) /Je:t, I/L1u(!'l)dt' 
0 

t 

::::; ct5(t) j /j0/J~:1 .. ,,M(l1Jlli::1,JIL1s(fl)dt' 
0 

t t 

~ 81 J 1101123a(!1)dt' + c(l/81, c~115 (t)) J jji::t'll~15(!1)dt' 
0 0 

t 

::::; 61 j J/011£3,,(n)dt' + c(l/<51, cV15(t), ci(t, a)), <51 > 0, 
0 

where we used the relation (a - l)H ~ 3a, holding true for any finite a. 
Similarly, the second term on the right-hand side of (6.17) is bounded by 

t t t 

J 11011~:~1)# (fl) lle:t' 11r,s(!1)dt' ::::; 62 J 11011L3a(l1)dt' + c(l/ 62) J llet' 11r:s(l1)dt' 
0 0 0 

t 

~ 62 j Jj0j/£30(fl)dt' + c(l/b2)c~"'(t, a), 62 > 0. 

0 

Finally, the third term on the right-hand side of (6.17) is bounded by 

t 

j /10/l~;,,\n)IJg//L~(n)dt' 
0 

t t 

~ 63 J //0j/L30(l1)dt' + ~ j Jjg/jL~(fl)dt', ()3 > 0. 
0 0 

Employing the above estimates in ( 6.17), and setting bk sufficiently small, 
we arrive at (6.21). This proves the lemma. D 
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Let us note that from (6.21) it follows in particular that 

(6.22) jJ0IILoo (O,t:La(!1)):::::; [(a+ 3)cg(t, a)] 0 i 3 = c10(t, a) for any a< oo. 

We obtain now a.n estimate on 0t, 

Lemma 6. 7. Let the assumptions of the previous lemmas be satisfied, in 
particular the lower bound (6.1) holds, 00 E H 1 (D,) and g E L2 (D,t g 2: 0, 
t:::::; T. Then 

(6.23) 
ll0t1 IIL(n') + IIBIIL(o,t;Hl(fl)):::::; c(l/0.,cio(t,4),c~(t,4)) 

+ c(l/0.) ll9IIL(n') + cll0olli1 (!1) = Ci1 (t). 
Proof. Multiplying (1.2) by 0t, integrating over 0,t, t:::::; T, using boundary 
condition (1.3)2, the boundedness of tensors A 1 , B = -A2a, and the global 
lower bound (6.1) for 0, we get 

l!Bt1 IIL(n') + ~llv'0(t)IJL(n):::::; ~ [! 0lc:t1 I IBt1 ldxdt1 

(6.24) 
fl! 

+ j lc:t,l 2 l0t1 ldxdt' + j jgl l0t 1 ldxdt1
] + ~ll0oll11(n)· 

n• n• 

Therefore, by the Young inequality, we have 

ll0t1 IIL(n') + ~llv'0(t)11L(n):::::; ~ [J 02 lc:t1 l2dxdt' 

(6.25) 
fl' 

+ j lc:1,j4dxdt' + j lgJ 2 dxdt'] + ~ll0ollJ11(n)· 
n• n• 

Hence, on account of estimates (6.20) and (6.22) we conclude (6.23). This 
completes the proof. • 

We shall apply now the elliptic regularity result. In view of estimate 
(6.23) we express (1.2), (1.3)2 in the form of the following elliptic problem 

(6.26) 

We have 

k60 = (c~03 + c~0)0t - 0B · c:1 - (Aic:t) · ct - g 

n · 'v0 = 0 

29 

in D,, t:::::; T, 

on S, t:::::; T. 
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Lemma 6 .8. Assume that estimates (6.20), (6.22), (6.23), and the lower 
bound (6.1) for 0 hold. Then for problem (6.26) the following estimate is 
satisfied 

(6.27) 
/IBIIL2(o,t;WJ(!1)) .'.S: cl0 ( t, 2 ~ 1J c11 ( t) + c10(t, 4)ca( t, 2) 

+ cW, 4) + cll9IIL2(ntJ = C12(t, f2) 

for (2 < 2-, where 2- stands for a number less than 2 but very close to 2. 

Proof. We estimate the terms on the right-hand side of (6.26)i. First, by 
the Holder inequality, using (6.22) and (6.23) we have 

t 1/2 t 1/2 
( / j(J030t'ledx) 2ledt') .'.S: ( / IIBIJf ~(nJIIBt1 IIL(n)dt') 

o n o 

.'.S:supl/0Jlia (nJIIBt1 IIL2(ntJ.'.S:cfo(t, 2
6

{2 )cu(t), 
t 'A - (2 

where (2 < 2 but very close to 2. Similarly, 

Finally, using the boundedness of tensors B, A1 , and applying (6.20), (6.22) 
yield 

t 1/2 l 1/2 
(! j IBB · t:11 l 2dxdt') .'.S: cst;P IIBIJL.1(!1) (/ l/t:11 IIL(n)dt') 

o n o 
~ c10 (t, 4)c8 (t, 2) , 

and 
t 1/2 l 1/2 

(! J J(A1t:t1) · et1J 2dxdt') ~ c(/ llet1IJt(n)dt') 
o n o 

= cllei,IIL(nt) ~ c~(t, 4). 

On account of the above estimates we conclude (6.27) and thereby complete 
the proof. D 

30 Zl20 27- 11 - 2017 



From (6.23) and (6.27) it follows that 

(6.28) ll0llw2,1(fV):::; c11(t) + c12(t, Q) = c13(t, (2) for (2 < r. 
g,2 

Hence, by the imbedding (see Lemma 3.1) it follows that VB E L5~;3(D/), 
(2 < 2-. Consequently, due to ( 6.11), 
(6.29) 

!let' llw1,,12(nt) :::; c(t)( clJ( t, (2) + c4 (t, 5(2/3, 5(2/3)) = C14(t, (2), (2 < 2- . 
5o/3 

Further, by the imbedding, we have the estimates 

(6.30) l!e11 lli.rn•):::; c(cH(t, (2)) for q < 10, (2 < r, 
and 

(6.31) 

which holds for 3/2 < (2 < 2-. The latter estimate plays the key role in 
getting L00 (DT)-norm bound for 0. 

Lemma 6.9 (L00 (f.!T)-norm bound on 0). Assume that 00 E L00 (D) 1 g E 

L1(O, t; L00 (D)) 1 g ~ 0, t:::; T, and estimate (6.31) holds. Then 

(6.32) 11011£00(!1'):::; c(c14(t, 2-), llgl!Li(O,t;Loo(.n))) = C15(t). 

Proof. Multiplying (1.2) by 01, r > 1, integrating over D, and using (6.31), 
we get 

c;l!0ll~;.!.,(!1) :t 1!0l!Lr+•l (!1) + c~l!01!~;.: 2(n) :t ll0l!Lr+2(!1) 

4kr ;· , ,-+2 2 jj jj jjr+I (6.33) + (r + l)2 'v0-Yj dx:::; c[ et!!Loo(!1) 0 L,-+i(!t) 

r2 

+ 1/etl!L(.n) j/011£,(!1) + llgl!L00 (!1) 11011£,(!1)]' 

Taking into account that 0 ~ 0. > 0 we deduce from (6.33) that 

ct !1011~;.!.(n) ! ll0IIL,.+•(!1) + c~ l!0ll~;.:2(n) ! ll0IIL,. • -2(!1) 

(5.34) :::; c(l/0.)[l!et!IL00 (!1) + l!et!!L(o) + l!gl!Loo(O)Jll0!1~;.1.(n) 

= a(t)!1011~;.:.(n)· 

Expressing (6.34) in the form 

d [ c; jj0r+4 c; jj0jjr+2 ] 
dt T + 4 Lr+4(0) + T + 2 Lr+2(!1) 

< a t (r 4) cv jj0jjr+4 + cv jj0jjr+2 () 
[ 

I 2 ] 

- ct + . r + 4 Lr+4(!1) T + 2 L,+2(!1) ' 
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and introducing the notation 

1 2 
Y(t) - ___s,_ll0(t)llr+4 + ___s,_ll0(t)/lr+Z - r + 4 Lr+4(!1) r + 2 Lr+2(!1)> 

we have 

(6.35) 

Integrating (6.35) with respect to time yields 

( r+4 ;
1
• ) Y(t) :::_:: Y(0) exp T a(t')dt' , t::; T. 

0 

From the above inequality we get 

t 

_5_IIO(t)11~+4 (n) :::_:: Y(0)exp (r~ 4 fa(t')dt')· 
r + 4 r -H CV 

0 

Hence, 

( r + 4 ) r!-, ( 1 ft ) 
/IO(t)/IL,.+4 (n) :::_:: TY(0) exp c~ a(t')dt' 

(6.36) 0 

Now, letting r ~ oo in (6.36) we conclude (6.32). The proof is complete. • 
To prove the Holder continuity of 0 we follow exactly the considerations 

in [24, Lemma 6.14 and Corollary 6.15] related to thermo-visco-elasticity 
with the specific heat c = cvOu, CJ E (1/2, 1]. Consequently, we have 

Lemma 6.10 (Holder continuity of 0). Assume that 0(t) 2 0. > 0 for 
t :.:; T. Let M = IIOll£00 (!1') :::_:: C1s(T) (see (6.32)), ll0oli£00 (n) < k, and 
M - k < 5 for some sufficiently small 5 > 0. Let g E L;,.,(fi), Et' E L2;,.,(rl1), 

h \ - 1 a+ z - a ·t· b d O Th w ere/\ - l - ~(l+x)' r q - 2, q, rare posi ive num ers, an x > . en 

(6.37) 0 E cfJ,fJl2 (nt), /3 E (0, 1), t:.:; T, 

where f3 depends on o., /ii[, 5, x, r. 
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To prove global existence of solutions to problem (1.1)- (1.4) we need the 
existence of local solutions and a global estimate in the norms in which the 
local existence is proved. More precisely, we are going to obtain a global 
estimate for Ut E w~-;(D1) and 0 E wt/(D1) . 

Lemma 6.11 (global a priori estimates compatible with estimates for lo
cal solution). Assume that b E L 10+(Dt) n L 5,12 (Dt), u0 E W~+(D), u 1 E 

B;:;:~{t (D), g E L5+(0,t;Loo(S1)), g ~ 0, 0o E H 1 (D)nB::;:,Vt(n)nLoo(n). 
Then solutions to problem (1.1}-(1.4} satisfy the estimate 

(6.38) 

and 

(6.39) ll01/w••1(n'):::; 'P(t, 1/0.,d(t)), 
5+ 

where 

d(t) = llbllL10+(l1')nLs,12(l1') + lluolliv2+(l1) + llu1 IIB2-2/s+(n) + llgllL6+(0,t;Lco(l1)) 
5 s+ ,s+ 

+ 11 80 II H 1(l1)nB:+~ft (!1)nLco(!1)' t :::; T. 

Proof. Firstly, let us note that by (6.32), 0 E L00 (nt), and so 0 E Lp,r(Dt) 
for any p,r E (1,=) . Hence, applying the bound (6.32) in (6.9) we obtain 

(6.40) 
lle11 IILp,,(!1'):::; c(t)(llbllLp,,(O') + lluollwb(O) + llu1 lln!~2/r(n)) 

+.c(t)c15(t) for p, r E (1, =), 

where, by the definitions of the bounds ck(·), k = l,, .. , 15 (see (6.1), (6.9)
(6.12), (6.14)- (6.15), (6.20)-(6.23), (6.27)- (6.29), (6.32)), 

c(t)c1s(t):::; ((J(t, 1/0., llblJLs, 12 (!1'), lluollwt(n), llu1 lln~~~/12(!1)' 

llgllL2(0,t;L00 (!1)) , IIBollH 1 (l1)nL00 (!1)) = CJ6(t). 
( 6.41) 

The assumptions of Lemma 6.10 are satisfied due to (6.32) and (6.31). In
deed, by (6.31), setting q = 2, r = 6 and x = (ft we get A= 5+ , and so 
g E L5+(D1), e1, E L 10+(0 1). Moreover, by (6.23), 0t' E L2(01). Therefore, 
we can apply Lemma 3.5 to problem (1.2), (1.3)z, (1.4)3. 

Let us set in (6.40) p = r = 10+. Then, applying (6.41), yields 

lle11 lli10+(!1'):::; ((J(t, 1/0., llblli101 (!1')nLs,12(!1'), 

(6.42) lluo I/ w(o+ (!1), ll·u1 II Bi -21 10+ (!l)nn'-2/12(!1), 
10+,10+ 5,12 

llgllL2(0,t;Loo(!1)), ll0ollH1 (!1)nL00 (l1)) = c17(t). 
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To apply Lemma 3.5 we compare (3.4) with (1.2). Then a = ct03 + c;,0 
and f = 0A2 ·ct+ (A2c1) ·ct+ g. Therefore, Lemma 3.5 is applied with ct 
estimated by (6.42). 
Hence, by Lemma 3.5, 0 E w;~1(Dt) and satisfies the estimate 

II011w;+1(n') ~ 1.fJ(l/0., ll0IILoo{O') , ll0llc/l,/l/2(nt), ll011 IIL2(!V)) 

(6.43) · c(ll01/Loo(rl')llct1 /IL5+(0') + lh1 llt+(O') + /lgl/£5+(0') 

+ l/0olls2-2;st·(n)). 
s+,s+ 

Consequently, on account of the bounds (6.32), (6.23) and (6.42), we have 

ll0llw;.;.1(n•) ~ 'P(t, 1/0., c15(t), c11(t)) 

(6.44) 
~ l.f)(t, 1/0., llbllL10+(0')nLs,,2(0'), I/uol/wio+<n), 

llu1 IIBl-2/10+ (rlnBl -2/12(0)), Ilg II Ls+ {O,t;Loo(rl)), 
10+.10+ 6,12 

/l 6oll111(n)nL00 (n)nB:t{t(n)) = cIB(t). 

By the imbedding the above estimate gives 

(6.45) 

Then Lemma 6.3 applied to problem (1.1), (1.3) 1, (lA)i,2 yields 

/luillw~'.J'.(rl') ~ c(c1s(t) + /lb//L5+(0') + /luollw~+(rl) + /lu1lls::;:~:r(n/ 

Summarizing the estimates on the data and using the imbeddings between 
the Besov spaces (see Lemma 3.3) 

B2-2;5+ (D) C 3 1-2;10+ (D) 3 2-2/s+(D) c 3 1- 2;12(D) s+ ,5+ 10+ ,10+ , 5+ ,s+ 5,12 , 

a.nd the imbedding Ws2+(D) C W110+(D), we conclude the assertion. • 

7 Global existence 

Proof of Theorem 1.1. Theorem 5.3 provides the local existence of solutions 
to problem (1.1)-(1.4) such that ut E w~-;(ii) and 0 E w;/(Dt), where tis 
sufficiently small. By virtue of Lemma 6.11 we have global a priori estimates 
for problem (1.1)- (1.4) such that Ut E w~-;(Dt) and 0 E w~-;(D1) for any t 
finite. These estimates are compatible with the estimates for local solutions 
on the time interval of the local existence. This implies a possibility of 
extension of the local solution for any finite time. • 
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