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AHsTRACT. We consider again the sixt.h order Cahn-Hilliard type equation 
with a nonlinear dilfusion, aclclressecl in our previous paper in Commun. Pure 
Appl. Anal. 10 (2011), 1823-1847. Such PDE arises as a model of oil-water
surfactant mixt.ures. Applying the approach based on the Biicklund transfor
rnation and the Lern.y-Schauder fixe<l point theorem we generalize t.he exis
tc..:11cc re!i11lt of tltc..: above mentioued paper by imposing wcakcr assu1nptio11s 011 

the d"t". Herc we provc the i;lobal 1111ią11e solv;,l,ility of the prohlclll in the 
Sol>olev space H 6•1 (fl x (O, T)) under the a:;surnption thot the initial datmn 
is in H 3 (n) whereas previously H 6 (fl)-regularity was requirecl. Moreover, we 
aclmit a broarder clas:; of nonlinear term::; in the free energy potential. 

1. Introduction. In this articlc we reconsider an initial-bounclary value problem 
fur a. sixth order Callll-Hilliarcl type equation with a uonliuear dif-Iusiou which has 
been previously addressed in [18]. Our aim herc is to generalize the global cxistence 
result of [18] by aclmitting more generał data. This is achieved with the help of 
the t1.pproo.cl1 lrnsed 011 the Ba.cklund transformation and the Len1.y-Schauder fixed 
point theorem. 

The Backluncl transformation associatecl with model B of phase transitions, ac
cordiug to the I-Ioheuberg-Halperin cla:;sificatioa [12], ha:; beeu proposed by Mitlin 
[17]. A new equation clescribing the evolution of the averagecl, modula~cl structurc 
of the order paramctcr in model B has bcen dcrived thcre and clemonstratecl to 
havc a great computational aclvantage in simulations of large scalc systcms. 

The present study shows that the Backluncl transformation has also theoretical 
aclvantagcs. In the case of a sixth order Cahn-Hilliard type cquation with a nonlincar 
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diffusion it a.llows to prove the existence of a unique globa.l strong solution in the 
Sobolev space Hn, 1 (0 x (O, T)), n c lR'i bounded, T > O arbitrary, under a natura! 
assumption that the initial datum Xlt=O belongs to the corresponding space of traces 
H'i(D,), 

In the previous result in [18] the solvability in Hn• 1 (0, x (O, T)) has been proved 
under a restrictive assumption that the time derivative of the solution at the initial 
time moment, Xtlt=ll belongs to L2(0) (see Theorems A, B and R.emark at the 
end of this section). The existence proofs of both results are based on the Leray
Schauder fixed point theorem. The difference consists in another way of deriving a 
priori estimates which are crucial for the Leray-Schauder argument. More precisely, 
for the problem under consideration the basie difficulty in getting suitable a priori 
estimates comes from the treatment of a nonlinear boundary condition associated 
with the nonlinear diffusion. The Bii.cklund transformation a.llows to obtain stronger 
regularity estirnates and thereby to handle efliciently the boundary nonlinearity. 

Problem statement. We consider the following system of equations for the order 
parameter x and the chemical potentia! µ: 

Xt = M6.11, in 0,T := O x (O,T), (1.1) 

I-!= f/i(x) + 1x((x)l'vxl 2 - V · (xi(x)'vx) + x26.2x in nr, (1.2) 

with the initial and boundary conditions 

Xlt=ll = Xo in n, (1.3) 

n·v'x=O , n ·v'6.x=O, n•v'µ=O on sr:=Sx(O,T). (1.4) 

Here n C 1R'3 is a boundcd domain with a smooth boundary S, T > O is the fina.I 
time, .M and x. are positive constants, Jo = fo(x) and x 1 = x 1 (x) are given 
funct.ions specified below, n is the unit outward vector norma! to S, Xt = 8x/8t, 
f' = df(x)/dx, the dot means the scalar product, and 'v· stands for the spatial 
divergcnce. 

System (l.1)-(1.4) can be equivalently formulated in the form of the following 
initial-boundary value problem for the sixth order Cahn-Hilliard type equation 

Xt - M x26.'ix = M 6. [11\(x) -1x; (x)lv'xl 2 - x1 (x)6.x] in 0,T, 

Xlt=ll = xo in n, 
n ' v'x = o, n·v'6.x=O ST 

(1.5) 
on , 

n· 'v6. 2x = f-xl(x)n · 'v(lv'xl 2 ) on sr. 
X2 

We notice that the coefficient x 1 (-) gives rise to the fifth order nonlinear boundary 
condition on sr. 

The Backlund transformation. We introduce the new varia.ble 

t 

v = M j µdt' + Vo 

Il 
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with v0 = v0 (x) satisfying the following elliptic problem 

6vo = Xo - Xm 

n· 'vvo = O, 

f vodx = O, 
n 

in n, 
on S 

where Xm := .f xodx = .f x(t)dx is the spatial mean of X, preserved in the evolution 
n n 

(see (3.2) below). Then problem (1.1)-(1.4) is transformed to 

:1 [ ' ) 1 ' ) I 12 Vt-MK26 v=M fo(6v+xm - 2x1(6v+xm 'v6v 

- KJ (6v + Xm)6 2v] 

vlt=ll = Vo 

n-'vv=O, n·'vb.v=O, n-'v62v=O 

in n, 
on ST. 

(1.6) 

In [l 7] the ąuantity v is termed the dynamical field potentia!. It is appropriate to 
describe the evolution of the slow (averaged) variations of the order parameter. The 
ąuantities v, x and µ are linked by the following relations (see Lemma 4.1 below) 

6v=x - xm, Vt=lvlµ. 

These relations allow to deduce the regularity estimates on v from the energy es
timates on x and µ, and then on their basis the regularity estimates for X and µ. 
This is the main idea behind applying the Biicklund transformation. 

From the mathematical point of view the formulation (1.6) is better than (1.5) 
because the Laplacian of v enters as the argument of the nonlinearities on the right
hand side of eąuation (1.6)i, and because the boundary conditions for v, up to the 
fifl1t order, are zero. 

Thermodynamic background. System (1.1)- (1.4) is governed by the second 
order gradient free energy of the Landau-Ginzburg type 

1 1 
f = f(x, 'vx, 'v 2x) = fn(x) + 2x1(x)l'vxl 2 + 2x2l6xl 2, (1.7) 

where fn(x) is the multiwelt volumetric free energy, x 1 (x) is the first gradient 
coellicienl: which may be of arbitra.ry sign, a.nc! x2 is !:he second gradient coefficient 
which is assumed to be a positive constant. Equation (1.1) represents the balance 
of mass 

Xt + 'v • j = O, (1.8) 

with the mass flux j given by 

j = -M'vµ , (1.9) 

where the positive constant M denotes the mobility. Equation (1.2) is the consti
tutive relation for the chemical potentia! 

1-i = 0~~x) = f(1(x) + ~x;(x)l'vxl 2 - 'v · (x1(x)'vx) + x262x 

= !'(x) - !x;(x)l'vxl2 - x1(x)t-.x + x262x, 
2 

(1.10) 
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whcre óf(x)/óx denotes the first variation of the free energy (1.7), which is defined 
by the condition that 

must hold for all test functions Ę E Cg"(D). 
Combining (1.8)-(1.10) yields equation (1.5)1 for X, or equivalently model B of 

the phase transition theory according to the Hohenberg-Halperin classification [12]: 

=Mt::,_ óf(x) 
Xt ÓX . 

In turn, equation (1.6)i for v has the structure similar to model A of the phase 
transition theory 

_ Móf(Lv + Xm) 
Vt - ó(Lv + Xm) · 

Examples. Problem (1.1)-(1.4) may desribe phase transitions in oil-water-surfa
ctant mixtures. The free energy associated with such mixtures has been proposed 
by Gompper et al. [6-11]. It is given by (1.7) with constant x2 > O and functions 
!11, x 1 approximated, respectively, by a sixth and a second order polynomial: 

!11(x) = (x + 1)2(x2 + ho)(x - 1)2, x1 (x) =go+ 92X2, (1.11) 

where ho, 911, g2 arc constants, 92 > O and h11, 911 of arbitrary sign. Here the order 
parameter X represents the loca.! clifference between the oil a.nd wa.ter concentra.tions. 

The problem (1.1)-(1.4) arises also as the so-called phase field crystal (PFC) 
model describing the crystal growth on atomie length, proposed by Elder et al. [l, 
2, 4, 5]. Originally, it is based on the fourth order gradient free energy 

2 4 

!PFc = !PFc(x, 'v2x, 'v4x) = -a~ + : + ~(1 + L)2x, (1.12) 

where x corresponcls to atomie mass density, a,= a(0 - 0c), a> O is the parameter 
of the system perioclicity, 0 - 0c is the quench depth with critical temperature 0c 
and actual temperature 0. The chernical potentia] is defined by 

= 1ifppc(X) = (l _ ) + :l + 2,;. + A 2 
µ óx °' X X '-'X u X· (1.13) 

It is of interest to notice that the second order gradient free energy 

x2 x4 l 
I= J(x. \lx, 7 2 x) = (1- a) 2 + 4 - 17xl2 + 21Lxl 2 (1.14) 

has the sa.me first va.ria.tion as /rFC, thus providcs the same equation forµ as above: 

µ = 0~~x) = (1 - a)x + x:i + 2Lx + L 2x. 

One can see that free energy (1.14) is a special case of (1. 7) with 

x2 x4 
/11(X) = (1 - a,) 2 + 4 , X! = -2, X2 = l, 

(1.15) 

(1.16) 
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Structural assumptions and main result. Let the free energy f be given by 
(1. 7) with the following polynomial forms of Jo and x 1 , comprising the oil-water
surfactant model (1.11) and the PFC model (1.16) as the particular cases: 

2k 

fo(x) = L a;xi with a; E JR, a2k > o, k 2: 1, 
i=O 

21 

xl(x) = L b;xi with b; E JR, b21 > O, / c:'. 1. 
i::::O 

(1.17) 

(1.18) 

Theorem A (Existence and uniąueness). Let us assume that n c JR:i is a bounded 
domain with a boundary S of class C7, T > O is a given number functions fo(x) 
and x 1(x) are given by (1.17), (1.18), ><2, Mare positive constants, and the initial 
datum is such that 

xo E H:i(n) with the spatia.l rnean va.lue 

f xodx = 
1
A

1 
/ xodx =: Xm (!Dl= measrl), and (1.1g) 

n n 
satisfying the compatibility condition n· 'ii'xo = O on S. 

Then for any T > O problem (1.1)-(1.4) admits a unique strong solution (X,µ) such 
that 

XE H 011 (nr), µ E L2(0, T; H 2 (l1)), 

Xlt=O = Xo, and f x(t)dx = Xm for all t 2: O, 

n 
satisJying the energy estimate 

llx11Loo(O,T;H 2 (n)) + ll'ii'µIIL,(O,T;L,(rl)) ~ Cj 

with ci= (fJ(llxollH'(D), lxml), and the regularity estimate 

llxllH0 , 1 (nrJ + llµIIL,(ll,T;H'(DJJ ::S cz 

(1.20) 

( l. 21) 

(1.22) 

with c2 = (fJ(c1 , T) + cl!XDIIH,(n), where (f)(·) is a positive, increasing Junction of its 
arguments. 

For a direct comparison we recall the previous result from [18] which was con
ccrned with the particular model (1.11) of the oil-water-surfactant mixture, and 
reąuired a restrictivc regularity assumption on the initial datum Xo-

Theorem B (see [18]; Theorem 1.1 and Corollary 1). Let us assume that n C JR'ł 
is a bov.nded domain with a boundary S of class C6 , T > O is a given number, 
Junction !D(X) is a sixth order polynomial satisfying the condition 

fo(X) 2'. cx(i - c for all X E JR, (1.23) 

with constants c > O and c 2'. O; Junction x1 (x) is given by (1 .11 h with constants 
g0 E JR and 92 > O; ><2, M are positive constants, and the initial datum is such that 

Xo E H:i(n) with f xodx = Xm· (1.24) 

n 
Moreover, Xt(O), computedJrom equation (1.5)1, sa.lisfies 

Xt(O) = Mx2ć:?xo+M6.[ffi(xo)-~x;(xo)l'ii'x1Jl 2 -x1(xo)6.xo] E L2(l1), (1.25) 
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where (1. 25) is treated as the elliptic problem for xo with the following boundary 
conditions on S: 

ll · "vxo = Q, ll · "vb.Xo = 0, X2ll · "vb.2Xn = ~x~(Xo)n · "v(f"vx1il2). (1.26) 

Then for any T > O problem (1.1)-(1.4) has a unique strong solution (X,µ) satis
fying (1.20), energy estimate (1.21} and the regularity estimate 

(1.27) 

with c = (l'( llxnllH•(n), l!Xt(O)IIL,(n), ci, T), where (I'(-) is a positive, increasing Junc
tion of its arguments. 

Remark. 1. The proofs of Theorems A and B are based on the Leray-Schauder 
fixed point theorem applied to the parabolic sixth order problem (1.5). 

2. One can sec that Theorem A improves B in two respects: (i) by imposing a 
weaker assumption on the initial datum xo; (ii) by admitting functions / 0 and x 1 
as polynomials of an arbitrary order. 

3. The assumption Xn E ff3(D.) in Theorem A is natura! for the solvability of 
the parabolic sixth order problem in the Sobolev space Hu· 1 (D.r). The assumption 
Xt(O) E L2 (D.) in Theorem B is ensured, for example, for Xn E H 0 (D). In [18] the 
analysis was based on the direct application of the parabolic theory to the sixth 
order problem (1.5). The main difficulty was concernecl with the treatment of the 
nonlinear boundary condition (1.5)4. To get an estimate on Xt the equation (1.5)i 
was differentiated with respect to time. This gave rise to restrictive assurnptions 
(1.25), (1.26). The clifficulty can be avoided by means of the Backlund transforma
tion which replaces problem (1.1)-(1.4) by (1.6). Thanks to the Backlund relations 
b.v = x - Xm, Vt = 11,1µ (see Lemma 4.1) we obtain estimates on v and Vt directly 
from the energy estimates on X and µ. Next, by the elliptic regularity, we deduce ad
ditional spatial estimates on v. Finally, having a priori estimates for "vv E Hn,l (D.T) 
we apply the µarabolic theory to olitaiu estirnates for Lv E Hfi,l (D,T) which even
tually provide the desired estimates (1.22). 

4. Finally, we notice that since, by energy estimates, XE L 00 (D.r), it is straight
forward to admit functions / 0 and x 1 as polynomials of an arbitrary order (see 
(1.17), (1.18)). We mention also that a viscous version of the sixth order Cahn
Hilliard type equation with / 0 , x 1 given by (1.17), (1.18) has been studied in [19] . 

Relation to other results on sixth order Cahn-Hilliard type equations. As 
mentioned abovc problem (1.1)-(1.4) has been previously studied in [18]. In a mare 
generał setting admitting the logarithmic volumetric free energy / 0 and a possible 
viscous term f3Xt , f3 2'. O in (1.2), system (1.1)-(1.4) has been addressed in [21] from 
the point of view of the existence of weak solutions. The existence of strong global 
solutions to a class of sixth order viscous Cahn-Hilliard type equations admitting 
the terms f3Xt - -yb.Xt, /3, 'Y > O, in (1.2), has been recently proved in [19] . 

A sixth order convective Cahn-Hilliard type equation arising as a model for the 
faceting of a growing crystalline surface, derived by Savina et al. [20] , has been 
recently studied in one- and two space dimensions by Korzec et al. [13-15]. 

Plan of the paper. In Section 2 notation and same auxiliary results are intro
duccd. In Section 3 the basie energy estimates for problem (1.1)-(1.4) are recalled. 
In Section 4 the Backlund transformation is introduced and the corresponding trans
formation relations are presented. In Section 5 a priori estimates for the transformed 
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problem are derived. In Section 6 the existence proof by the Leray-Schauder fixed 
point theorem is presented. It proceeds much the same way as in [18], the only 
differences being in technical rnodifications. 

2. Notation and auxiliary results. Let n C !Rn, n 2". 1, be an open bounded 
subset with a smooth boundary S, and nr= n x (O,T), TE IR+= (O,=). 
We deal with the following spaces: 
w;(n), k E N11 = N U {O}, p E [1, oo) - the Sobolev space on n endowed with the 
standard norm Jl· llw,~(n); 
W:f(O) = Hk(O), k E N11 ; H 11 (0) = L 2 (0); 
W;'1•1 (DT) = Lp(O, T; WPk 1(D))n WJ(O, T; Lp(D)), k, l E N0 , p E [1, =) - the Sobolev 
spa.ce on D7 wil;h the finite norm 

Jlullw,~'·'(rzr) = ( L j ID:'.,'8fu1Pdxdt) l/p' 
l<>l+ka$klrzr 

whcre n,= (1.i,1, ... , a..,,) is the multiindex, a.i E No, la.I= a.1 +···+a.n , a E No; 
w;L,l(nT) = Hkl,L(nT); 
w;s·'(DT) = Lp(O, T; W;' 8 (!1)) n WJ(O, T; Lp(D)), k EN, s E IR+, p E [1, oo) - the 
Sobolev-Slobodecki space on nr with the finite norm 

Jlullw,~'·'(rzT) = ( L j ID~8fu1Pdxdt 
lo!+ka$[ks]0 r 

T 

+ ~ jjj ID~u(x,t)- D~,u(x',t)IP dxdx'dt 
L., lx_ x'ln+p(ks-[ks]) 

l<>l=[ks] o n 11 

T T [s] [s] , p 1/p JJJ l8t u(x,t)-8t,u(x,t)1 dtdt'dx) 
+ lt - t'll+p(s-[x]) ' 

1l o li 

wherc [s] is the integer part of s; 
W;'s,s(nT) = Hlcs,s(n,T). 

By c we dcnote a generic positive constant which changes its value from formula 
to formula and depends at most on imbedding constants, parameters of the problem 
and the regularity of the boundary. 

By cp = cp(u1 , ... , uk), k EN, we denote a generic function which is positive, in
crcasing function of its argumcnts u1 , ... , uk, and may change its form from formula 
to formula. 
lviorcover, c: will dcnote arbitrarily small positive constant. 

Imbeddings in Sobolev-Slobodecki spaces. Following [22, 23] we introduce 
the fractional dcrivative norms. Forµ E (O, 1) and p E [1, oo) let 

T 

[u)µ,p,W,,, = (! J J lu(~;t~ :,~}::~t)IP dxdx'dx) l/p = J18fuJIL"(nT), 
o n 11 

_ , lu(x, t) - u(x', t)I = µ 
[u)µ,oo,W,x - sup sup I 'I' - IIBxuJIL=(W), 

tE(ll,T) x ,x'Efl X - X I 
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T T 1/ _ (jjj Ju(x,t) - u(x,e)IP , ) P _ µ 
[u]µ,p,f1T,t - lt _ t'll+pµ dtdt dx = IIBt 11JJL,.(flTJ, 

fl o o 

[u]µ, 00 ,nr,t = sup sup 
:z:Efl t,t'E(tl,T) 

lu(x, t) - u(x, t') I = IIB'' li 
Jt - t'Iµ - tu L~(f1T)· 

For simplicity we denote the fractional derivatives by a-:;:u and Bf u. 
vVc shall use the following known results. 

Theorem 2.1 (see [3]; Chap. 3, Sect. 10). Let u E w,::s,s(S1T), S1 c lRn, n EN, 
s E IR+, p E [1,oo]. Let 

x = -- - -- + Ja,J + ka - '.','. 1, ( n+ k n+ k ) 1 
p q ks 

where q E [1,oo], o,= (a1 , ... ,an) is the multiindex, Cl!; E Nn, i= 1, ... ,n, 

°'1 + · · · + ll'.n, a E No. then 

niafu E L"(D7), ni= ai,1 ... 8':;:, 
and the interpolation holds 

IID~8fullL,(flT) '.S'. €ł-x (11atullL.(flT) + t 11a;:ullL.(fJT)) 

where € E IR+ and q ~ p. 
In the case q = oo, (2.1) holds provided x < 1. 

Theorem 2.2 (Direct boundary trace theorem [22]). Let us assume that: 

Jal = 

(2.1) 

(1) D C JR" be a domain and S be either a boundary of S1 or a subdomain of D with 
dimS = n - 1. 
(2) u E Wj'"·"(S1T), k EN, s E IR+, p E [1,oo), SE Cks_ 

Then there exists a Junction u= ulsr such that u E w;s-ł/p,s-ł/kp(ST), and 

llullw,~•-11 •. ,-11•.(sr):,; cllullw;•·•(n)' 
where constant c does not depend on u. 

Theorem 2.3 (Direct initial trace theorem [22]). Let u E WPks,s(nT), k E N, 
s E IR+, s > 1/p, p E (1,oo). Then u= uJt=to, where t0 E [O,T], belongs to 
w1~,s-k/p(S1), and 

llullw;'-"t"(n) '.S'. cJlullw;"•'(ori, 
where c does not depend on u. 

Auxiliary linear problems. Let n CIR", n~ 1, be an open, bounded subset of 
IR", with a smooth boundary S. Let us consider the problem 

6X = f in !1, 

n · 'vx = O on S, 

fx.dx = Xm 

(2.2) 

n 
wherc the spatial mean Xm of x is a given constant. We recall 
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Lemma 2.4 (sec e.g., [18]). Let us assume that f E Hr (D), S E cr+2 , r E N0 , and 
the compatibility condition Inf dx = O holds. Then there exists a unique solution 
XE Hr+2 (D) to (2.2) such that 

llxllw+ 2 (n) ~ c(llf llw(n) + lxml), 

where c depends at most on r and S. 

Next, let us consider the sixth order elliptic problem 

6:sv = f 
n·v'v=O, n-v'Llv=O, n•v'6 2v=0 

f vdx = Vm, 

n 
where the spatial mean Vm of v is given. We have 

in n, 
on S, 

(2.3) 

(2.4) 

Lemma 2.5. Let us assume that f E Hr(n), SE cr+n, r E N0 , and the compati
bility condition Inf dx = O holds. Then there exists a unique solution v E H 1'+6(D,) 
to (2.4) such that 

llvllw+o(n) ~ c(llfllw(!l) + lvml), 

where c depends at most on r and S. 

Proof. By the elliptic estimate [16, Vol. I, Chap. 2, Sec. 5] we have 

llvllHG+r(n) ~ c(llfllw(n) + llvllL2(n)), 

(2.5) 

(2.6) 

To conclude (2.5) we have to estimate the norm llvllL,(n)• To this end we multiply 
(2.4)i by v, integrate over n, use boundary conclitions (2.4)2, and the fact that 
.f!ł f dx = O. This leads to 

J IV Llvl 2dx = - j (v - Vm)fdx ~ c[lv'vllt,(n) + c(l/c)llfllt,(n)· (2.7) 
n n 

Furt.her, by t.he Poincare ineqnalit.y, the fact. t.hat. In Llvdx = O, and (2. 7) it holds 

IILlv[ll,(n) ~ cll\7 Llvlli,(n) ~ cll\7vllt,(n) + c(l/c)llflli,(n)· (2.8) 

Let us consider now the auxiliary artificial problem (with Llx = g E L2 (D) on the 
right-hand side of (2.9)i treated as given) 

Llv = Llv = g 

n· \7v = O 

f vdx = Vm· 
n 

in n, 
on S, 

(2.9) 

Multiplying (2.9)i by v, integrating over n, and using that f gdx = O, we obtain 
ll 

ll\7vlli,(!!) ~ cllglll,(!l) = cllllvlll,(!l)· (2.10) 

Using (2.10) in (2.8) and assuming that cis sufficiently small, we deduce 

llv'vlli,(n) ~ c[IJ111,(n)· (2.11) 
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Now, thanks to (2.11), it follows that 

llvllLcn) = j (v - Vm + vm) 2dx::; ciifllLco) + cv~, 
!1 

Hence, using (2.12) in (2 .6) yields the desired estimate (2.5). 

(2.12) 

o 
Finally, we recall the solvability result for the sixth order linear parabolic problem 

which is used in the proof of Theorem A . 

Lemma 2.6 (sce [16; Vol. 
bou.ndary ualue problem 

II, Chap. 4, 23]). Let us consider the linear initial-

Xt - L'l.:ix = F 

x(O) = Xo 

n· "vx = O, n· "vli.x = O, n· "vli.2x = G 

in .oT = n X (O, T), 

in n, 
on sT = s X (O,T), 

(2.13) 

where .O C JR", n 2: 1, is a domain with a boundary of class en_ Assume that 

FE L2(.0r), GE Hl/2,1/12(sr), Xo E H:l(.O). (2.14) 

M oreouer, Zet the f ollowing compatibility condition hol ds on S 

n· "vxo = O. (2.15) 

Then for any T > O problem (2 .13) has a unique solution x E H 6•1(flT) satisfying 
the estimate 

llxllH 0 ,1(W)::; c(IIFIIL,(f1T) + IIGIIH1/2,l/12(ST) + llxol/H3 (!1)) 

with a constant c independent of T. 

(2 .16) 

3. Energy estimates. We recor<l first the basie properties of problem (1.1)-(1.4), 
referring for details to [18, 19]. From (1.1) and the third condition in (1.4) it follows 
that 

~ j xdx = O, (3.1) 

n 
which shows that the spatial mean of X is preserved, 

f x(t)dx = f xodx =: Xm for all t > O. (3.2) 

o n 

Next, we notice that problem (1.1)-(1.4) has a variational structure. For suffi
ciently regular solutions (X,µ) the following energy equalit.y is satisfied 

~ j (fo(x) + ½x1(x)l9xl 2 + ½x2/L'i.x/2)dx + M j /9µ/ 2dx = O. (3.3) 
n o 

Formally, (3.3) rnsults by multiplying (1.1) byµ, (1.2) by Xt, t.aking the difference of 
the obta.ine<l rela.tions, integrating with respect to space va.riables, using the no-flux 
conditions (1.4), and performing suitable integrations by parts. 

To deduce estimates from (3.3) !et us notice that on account of assumption (1.17) 
and (1.18) there exist positive constants CJ0 and c,,,1 such that 

1 2k l 2ł 
fo(x) 2: 2a2kX - CJo, x1(x) 2: 2b21X - c,,,. (3.4) 
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Lemma 3.1 (Energy estimate) [19; Lemma 4.1]). Let us assume that / 11 , x 1 are 
given by (1.17), (1.18), and Xo E H 2 (D.), f xodx = Xm· Then for a svfficiently 

n 
regular solution (X,µ) to system (1. 1)-(1 .4) the following estimate holds: 

a2k llxlltk(n) + b21 llx''vxllLcn) + x2 llxllt2 cnJ 
+ JJ'vµJJLcn') :S:: c1 for all t > O, 

with C1 = cp([lxollH2(fl), lxml, Xz, Cx11 Cfo, a2k), 

(3.5) 

Corollary 1. In the sequel we shall use (3.5) in the following simplified form 

llxlli~(n,t;H 2 (n)) + [['v µJJi 2 cn') :S:: cp(ci) for t > O. (3.6) 

Corollary 2. On account of boundary coditions (1.4)i,2, integmting of {1.2) gives 

j µdx = j (t(i(x) + ½x~ (x)['vxl 2) dx . (3.7) 
n n 

Hence, by (1.17), (1.18) and (3.6), itfollows that 

esssupt'e[o,t] I j µdxl $ cp(ci). 
n 

Mor-eover, by the Po·incare -iriequality, {3.6) and {3.8) 'irnply that 

[lµIIL 2 (o,t;H1 (0)) :S cp(c1)(t112 + 1) for t > O. 

(3.8) 

(3.9) 

4. The Biicklund transformation. As a preparatory step beforc applying the 
transformation we introducc the translation of the unknown function 

X= X - Xm with Xm = f xodx. (4.1) 

n 
Thcn problem (1.1)-(1.4) is reduced to 

Xt = M6µ 

whcre 

- !'(- ) 1 '(- )['v-12 µ = o X+ Xm + 2x1 X+ Xm X 

- 'v · (x1 (X+ Xm)'vx) + x26 25( 

óf (x + Xm) óf(x) = =--=µ 
- ó(x + X·rr.J ÓX 

X:[t=O = X:o := Xo - Xm 

n · 'vx = O, n · 'v 6x = O, n · 'v µ = O 

fxodx = O. 

n 

in nr, 

in n, 
on sr, 

( 4.2) 

We remark that the artificial notation µ = µ is introduced just to remain in an 
agreement with the notation X· 

Now, following [17], we introducc the new scalar variable, termcd thcre the dy
narnical field pote11tial, 

t 

v = M j µdt' + Vo (µ = µ) ( 4.3) 

o 
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where v0 = v11 (x) is a solution to the elliptic problem 

L:.vn = Xo 
n· 'vvn = O 

f vodx = O, 
!l 

in n, 
on S, 

with Xo = Xo - Xm satisfying the compatibility condition In xodx = o. 

(4.4) 

Lemma 4.1 (Transformation relations). {i) Let (x_J,) satisfy problem (4.2) and v 
be defined by {4,.1), (4.4). Th.en 

L:.v = X, Vt = Mµ in nT, 

equivalently, 

L:.v = X - Xm, Vt = Nf/.i in DT, 

and 
n• 'vv = O on 5T 

I 

n·'v6v=0 011 5T 
I 

n· 'vL:. 2v = O on ST, 

vlt=O = Vo in n, 
where Vn is defined by (4-4). 
{ii) Conversely, let us assume that relations (4- 5), (4. 6) hold. Th.en 

equivalently, 

and 

Xt =ML:.µ in nT, 

Xt = M 6µ in DT, 

t 

V = M J µdt' + Vo in nT 
o 

with vn = vo(x) satisfying (4-4), and 

n· Vx = O 

n-'vL:.x=O 

n·v'µ.=0 

Proof. (i) By (4.2)i, (4.4)i and (4.3) we have 

t t 

on sr, 
on ST, 

on sr. 

x(t) = J Xt•dt' + Xo = M J L:.µdt' + L:.vo = L:.v 
o o 

( 4.5) 

( 4.6) 

( 4.7) 

(4.8) 

( 4.9) 

( 4.10) 

which gives the first eąuality in (4.5). The second one results immediately from 
(4.3). F'urther, by (4.5)i the boundary conditions (4.2) 4 imply that 

n· 'v L:.v =n· Vx = O 

n· v'L:. 2v =Il· v'L:.x = Q 
( 4.11) 

• 

.. 
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and, recalling (4.3), (4.4)2, 

t 

n· "vv = M j n· "vµdt' +n· "vv0 = O on sr. 
o 

Hencc, ( 4.6) 1-( 4.6):i hold . The eąuality ( 4.6)4 is immediate. 
(ii) By relations ( 4.5) it follows that 

Xt = 6.vt = Mliµ 

which yields (4.7). F\1rther , by (4 .5)1 and (4.6)2,:i we have 

n '"vx =n ' "v 6.v = o 
n· v'Lix =n· "v6. 2v = 0 

Moreover, by (4.5)2 and (4.6)i, 

on sr, 
on sr. 

Mn-v'µ=n·"vVt=D on sr. 
This proves (4.9). Finally, from (4.5)2 and (4.6)4 we have 

t t 

v(t) = j Vt•dt' + vo = M j µdt' + vo 

o o 

which yiclds (4 .8) and completes the proof. 

( 4.12) 

(4.13) 

• 
Conseąuently, in view of Lemma 4.1 we conclude that if (x, µ) satisfy problem 

(1.1)-(1.4) then v , defined by 4.3), satisfies 

Vt = M11, in nr, 

i5f(6.·u+xm) '( ) 1 '(A )I Al2 
J.l = o(Liv + Xm) = fo 6.v + Xm - 2x1 L..l,v + Xm "il L..l,v 

- X1 (6.v + Xm)Li 2v + x26.:3v 

vlt=O = vo , f vodx = O 

n 
n·"vv=O , n•v'Liv=O, n-"v6. 2v=O 

in n, 

on sr. 

Thus, aftcr inscrting (4.14)2 into (4.14)i, system (4.14) reduces to 

Vt - M x26.:l v = M [f,',(6.v + Xm) - ~x; (6.v + Xm)l"v 6.vJ 2 

-x1(6.v+xrn)6. 2v] =K 

vlt=o = Vo 

n · v'v = O, n · "v 6.v = O, n · "v 6. 2v = O 

with vo definecl by ( 4.4). 

in n, 
on sr, 

( 4.14) 

( 4.15) 

Conversly, if v satisfies (4.15), then (x,µ) defined by (4.5) satisfy (1.1)-(1.4). In 
this sense problems (1.1)-(1.4) and (4.15) arc eąuivalent. 
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5. A priori estimates for the transformed problem. We study here the im
plications of energy estimates presented in Section 3 on the transformed problem 
( 4.15). 

Lemma 5.1 (First regularity estimatc). Let the assumptions of Lemma 3.1 be 
satisfied. M oreover, let the boundary S of the domain n c Jlfl be of class C1;. Then 
a solution v to (4 .15) satisfies the estimate 

llvllL=(O,t;H4 (11) + 1łvllL2 (0,t;H"(rl)) + 1/vt' IIL,(o,t;H1 (11)) 

:s;rp(c1,t), t>O, 

with c1 = rp(llxoi1H2(n), lxml, x2, ex„ Cfu, a2k) introduced in Lemma 3.1. 

Proof. Lct us notc that by the second relation in (4.5) 

~ J vdx = M J 1-idx = M J j.tdx. 
n n n 

Hcnce, since by (4.4) :i, 

J v(O)dx = J vodx = O, 

! ł !ł 

we havc 

(5.1) 

f v(t)dx =I~/ µdxdt' =: vm(t) . (5.2) 
n n• 

Now, !et Ut:i c;ousider the following elliptic; problem which results from the first 
relation in (4.5), the first boundary condition in (4.15):1, and (5.2): 

6v = x in n, 
n • Vv = O on S , 

f vdx = Vm(t), t > O. 
(5.3) 

n 

Due to the elliptic regularity estimate (2.3), 

llvllH•(n) :::; c(llxllH 2 (n) + lvm(t)I), (5.4) 

whcre, by (3.6), 

and, by (3.8), 

(5 .5) 

Thus, we conclude that 
llvl!L=(o,t;H'(rl)):::; <p(c1, t) . (5.6) 

Furthcr, on account of the relation M µ = Vt, it fellows from (3.9) that 

llvt•IIL,(o,t;H1 (11)):::; <p(c1, t). (5 .7) 

Thanks to (5.6) and (5.7) we can treat (4.15) as a sixth order elliptic problem 

Mx26:1v = Vt - K 

n-Vv=O, n -V6v=O, n · V62v=O 

f vdx = vm(t), t > O, 

n 

in n 
on S, 

(5.8) 
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wherc we recall that 

By virtue of (5.6), using assumptions (1.17), (1.18) we have 

IIKIIL2(0,t;L2(11)) :<; <,o(c1, t). (5.9) 

Hencc, by the elliptic estimate (2.5), we conclude from (5.9), (5.7) and (5.5) that 

llvllL,(11,t;H"(O)) :<; c(IIKIIL2(n,t;L,(n)) 

+ llvdL2(0,t;L2(fl)) + llvm(t')IIL2(0,t)) :<; <,o(c1, t). 
(5.10) 

The estimatcs (5.6), (5.7) and (5.10) yield (5.1). o 

With the help of (5.1) one can easily deduce mare spatial regularity of v. 

Lemma 5.2 (Second regularity estimate). Let the assumptions of 
Lemmo. 3. 2 be satisfied. M oreo11er, /et the boundo.ry S be of class C 1 . Then a 
solution v to problem (4- 15) sat·isfies 'irt addit-ion to (5.1) the est-irnate 

llvl!L2 (0,t;H7 (!l)) :<; <,o(c1, t), t > O. (5.11) 

Proof. Let us consider again the elliptic problem (5.8). Taking into account that 
by (5.1), v E H 1i,I(f21) and 6.v E L 00 (Dt), it follows that 

IIKIIL2(0,t;H' (il)) :<; c(IIV 6.vllL2(!1') + li IV 6.vl IV 6.vl 2 IIL2(fl') 

+ li IV6.vl IV2 6.vl IIL2(!!') + li IV6.vl 6. 2vl1L2(!1') 

5 

+ IIV6. 2vllL2(!1')) = ~ h, 
k=I 

(5.12) 

where, by the imbeddings IIV:lvl!L.(n') + IIV 4vl1La(!l') :<; cllvllHa,,(n'), we have 

Ii +h :<; <,o(c1,t), 12 :<; IIV6.vllł.(n') :<; <,o(c1,t), 

l:i + !4 :<; IIV6.vllLu(!l')IIV26.vllL3 (l!') 

:<; <,o(c1, t)IIV 26.vllL,(n') :<; <,o(c1, t). 

Hcnce, 

IIKIIL,(o,t;H'(n)) :<; <,o(c1, t). (5.13) 

Consequently, by the elliptic regularity (2.5), estimates (5.13), (5.7) and (5.5) imply 
(5.11). O 

Our goal naw is to obtain an estimatc fort> E L2 (0, T; H 8 (D)). For this purpose 
we consider the following problem (formally resulting by acting the 6.-operator on 
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(4.15)): 

LlVt - M x26.:i 6.v = M 6. [1,\(6.v + Xm) 

- ~x;(,0,.v + Xm)l'i76.vl 2 - x1(6.v + Xm)6. 2 v] = 6.K = F 

6.vlt=O = 6.vo = Xo - Xm 

n·'i76.v=0, n-'i76.2v=O 

'l 1 ' ? n· 'i7 ,0,.· v = -x1 (6v + Xm)n · (l'i7 6.vl-) = G 
2x2 

in D7 I 
in n, 
on sr, 

on sr. 
(5.14) 

The third nonlinear boundary condition on sr arises in compatibility with equation 
(5.14) 1 and the three homogeneo~s boundary conditions (4.15):i. In fact, we have 

M x2n · 'i7 6.:lv =n· 'ilvt - Mn· 'il [!(i(6.v + Xm) 

- ~x;(6.v + Xm)l'i76.vl 2 - x1(6.v + Xm)6. 2v] (5.15) 

= Mx; (6.v + Xm)n · 'i7(l'i7 6.vl 2). 
2 

Since by (4.5), 6v = X - Xm = X, Vt = µ, we see that (5.14), treated as a 
pa.ra.bolic problem for 6.v, and the original problem (1.5) are equivalent. Moreover, 
by (5.15) , the boundary conditions (5.14):i, 4 imply that 

n · 'ilvt =n· 'i7 µ = O 

By virtue of the parabolic theory (see Lemma 2.6), if F E L 2(f2T), 
G E H 112 , 111~(ST), 6.v0 E H:i(n) and satisfies the compa.tibility condition 
n· 'i76.v0 = O on S, then the solution 6.v = X to problem (5.14) satisfies 
6v E H 0 •1 (nr), and 

ll6.vllH•· 1 (nr) :<:=: c(/IFIIL,(f1Tl + IIGIIH 1 12. 1112csr) + ll6.vnl/H3 (!l)), 

Now, using (5.16) we prove the following. 

(5.16) 

Lemma 5.3 (Third regularity estimate). Let the assumptions of Lemma 3.1 hold, 
s E c7, and LlVo = xo-xm E H 3 (n) satisfies the compatibility condition n· 'i7 LlVo = 
n• 'ilxo = O on S. Then a solution 6.v to {5.14) satisfies the estimate 

1/6.vllH••'(W) :<:=: cp(c1, T) + cll6vnllH3(f1) = c2, (5.17) 

with C1 = cp(llxollH'(rl), lxml, X2, Cx, I C/01 a2k) as in Lemma 3.1, and LlVo = xo-Xm · 

Proof. We estimate the first two terms on the right-hand side of (5.16). 
From Lemmas 5.1 and 5.2 we have 

Hencc, u= 'ilv E HG,! (nr), and 

A= llu!IH•• 1 (f1T) :S: cp(c1, T). 
The following imbeddings will be used 

ll'i7ul/L={nr) + l/'i72ulli,s(flT) + l/'i7:1u/1L.cnr) + /l'i74u//L,s(nr) :<:=: cA. 
l, 

(5 .18) 

(5.19) 
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We have 

IIFl!L,(W) Ś cllt:.f(,(6:.v + Xm)IIL2 (!lT) 
+ cllł:.(x; (6:.v + Xm)l'v 6:.vl 2 IIL2 (flT) (5 .20) 

+ cll6(x(ł:.v + Xm)ł:. 2 v)IIL2 (flT) = F1 + F2 + F:1. 

The terms F1c arc estimated as follows 

whcre 

F\.1rther, 

where 

Finally, 

F1 Ś llft(t:.v + Xm)l'vt:.vl 2 IIL,(flT) + llf(,'(t:.v + Xm)v'2 t:.vł1L2 (flT) 
S c(llt:. 2vllL,(flT) + li l'v6:.vl 2 IIL2(nr) = c(Ff + F{), 

Ff ś llv' t:.uł1L2 (flT) ś cA, 

F{ Ś li lł:.ul 2 IIL 2 (W) = llt:.ullL(nT) S cA2 . 

F2 Ś cllx;"lv' 6:.vl 4 IIL2(W) + cllx;'l'v 6:.vl 2 'v2 6:.vllL,<W) 

+ cllx; lv'2 t:.vl 2 + x;lv't:.vl lv':it:.vl IIL2{nr) 
S c(ll lv':3v/ 4 1/L2 (flT) + li /v' 4vl lv':1vl 2 IIL,{ll) + li /v'4 vl 2 IIL 2 (nr) 

+ li l'v:1vl lv'5vl IIL,(flT)) 
S c(ll l'v2ul~liL2 (flT) + llv':iiilv'2ul 2 IIL,(flT) + llv':1ullL,(flT) 

4 

+ li l'v2ul l'v41il IIL,{flT)) = c I: FJ, 
l=I 

Fi = llv' 2ulli,.(flT) Ś cA4, 

Fz2 ś llv':\illL ,a(nr) 1łv' 2 iillL.(nr) ś cA\ 
T 

F}::; cAz , Fi::; llv'2uł1L,a(nr)llv'4ullL~(flT) ś cA2. 
4 

F:1 ś c(llx;'lv' t:.vl 2 t,. 2vllL,(flT) + 11x;1v2 t:.vllL2(flT) 

+ llx;l'vt:.vl lv't:.2vl IIL2(flT) + 1łx1 'v 2 t:. 2 vł1L2 (flT)) 
S c(II lv'2ul 2 v':1ullL,(flT) + 11 lv' t:.ul lv':1ul IIL,{flT) 

4 

+ 1116:.ul lv'4ul IIL2(flT) + ll'v 5ullL,(flT)) = c I:F:L 
ł=l 

where 

F;; ś Fz2::; cA3, F}::; F;1 ::; cA2 , F;/::; Fi::; cA2 , F;;::; cA. 

Summarizing, we conclude that 

(5.21) 

To estimate the boundary term on the right-hand side of (5 .16) we introduce a 
smooth extension of the outward unit norma! n to S onto a neighbourhood of S . 
Then, by the direct boundary trace theorem (see Theorem 2.2), 

(5.22) 
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whcrc H 1/ 2 ,1! 12 (ST) is the space of traccs of functions from H 1•116 (07). We have 

IIGIIH'·''"(flT) = 2: 2 llx;(6v + Xm)n · v'(lv'6vl 2)IIL,(11,T:H'(l1)) 

+ 2: 2 llx; (6v + Xm)n · v'(jv' 6vj2 )IIH1/o(o,T;L,(O)) 

= 11 +h. 
Using the imbcddings (5.19) we get 

h '."'.'. cllx;'lv' 6vj 2 v' 2 6vllL,(flT) + cjjx; jv'2 6vl 2 IIL,(flT) 

(5.23) 

4 

+ cjjx;jv' 6vl iv''l6vj liL,(flT) + cllx;jv' 6vj lv'2 6vj IIL,(flT) =~Ii, 

whcre 
ł=l 

If '."'.'. cli j6ul 2 lv'6ul IIL,(flT) '."::'. ciiv''iuilL.l./1(nr)llv' 2ulll,.(nr) '."::'. cA\ 

If '."'.'. cli lv'6ul 2 IIL,(flT) '."::'. cliv'6uliL(nr) '."::'. cA2 , 

n'."::'. cli j6uj jv'4uj IIL,(f!T) '."::'. cli ll6ul!Lo(fl)ilv'4 IIL3(!1)IIL,(ll,T) 

'."::'. cjj6uliL=(t1,T;H'(1i))llv' 4ul!L,(o,T;L3(11)) '."::'. cp(c1, T)A, 

li'."'.'. cli l6ujv':iullL,(llr) '."::'. cll ll6uł1Lo(n)llv':iuilL3 (n)IIL,(O,T) 
'."::'. cjj6uliL=(O,T;H'(fl)) llv':iullL,(o,T;L3(n)) '."::'. cp(c1, T)A. 

In ft and rt we used the bound llvllL=(O,T;H•(n)) '."::'. cp(c1, T) and the imbedding 

jjv'4ui1L,(o,T;L3(H)) '."::'. ciluilH0,1(flT) · 

Consequently, 
(5.24) 

For the term / 2 in (5.23) we have 

h '."'.'. cllx;'lo; 11;6vl jv'6vl lv'2 6vl IIL,(flT) 

+ cl1x;1a: 1r.'v6vl lv'~6vl liL,(flT) + cilx;lv'6vl 1a;1Gv'~6vl IIL,(flT) 
:! 

=~/~. 
ł=l 

Again, applying the imbeddings (5.19), and 

1/1' 1/6 2 
118c 'v'ullL18(flT) + ll8t 'v ul!Lo(flT) 

+ 11a;/Gv';1uliL,(O,T;L3(l1)) '."::'. ciiullH••1(flT), 
(5.25) 

wherc the fractional derivative notation is used (see Section 2), we obtain 

IJ '."'.'. cli 1a: 10 'vul l6ul iv' 6ul IIL,(nT) 
1/G ? 'l 'ł 

'."::'. cll8t v'uliL,s(flT) llv'-ul!L18 (lJT) liv'' ullL 18 (flT) '."::'. cA' , 
T 

ff '.::'. cli 18{10 6uj lv' 6ul IIL,(nr) '."::'. cllBt110 v' 2uiiL,(nr) llv':iuiiL,(flT) '."::'. cA 2 , 

li '.::'. cli j6ul 1a: 1G'v 6ul IIL,(flT) '.::'. cli ll6til!Lo(fl) 11a: 10 'v=1 uł1L,(fl) IIL,(ll,T) 

'."::'. cil 6ullL= (ll,T;H1 (ll)) 11a:1r.v':lull L2(ll,T;L3 (11)) '."::'. cp( C1' T)A. 



THE GLOI3AL SOLVABILITY OF A SIXTH OR.DER CAHN-HILLIAR.D TYPE . 19 

Thus, 

12 ~ cp(c1, T) . 

By cornbining (5.22)-(5.24) and (5.26) it follows that 

IIGIIH1/2,1112(sr) ~ cp(c1, T). 

Now, using (5.21) and (5.27) in (5.16) yields the desired estimate (5.17). 

(5 .26) 

(5.27) 

D 

Corollary 3. In view of the relations 6v = X - Xm, Vt = µ, 6vo = xo - Xm (see 
(4.5), (4-4) 1) the estimates (5.1) and (5.11) imply 

llxllH0 , 1 (0T) + ll,illL,(O,T;H2(0)) ~ c2, 

llµIIL2(0,T;H 1{n)) ~ cp(c1, T), 

where c2 = cp(c1, T) + cllxollH'(O)· 

(5.28) 

6. Existence proof. We rernind that due to the relations 6v = X - Xm = X, 
Vt = µ, problem (5.14) is equivalent to the original one (1.5), which we recall here 
for convenience 

Xt - Mx26:1X = M6[f1\(x) - ~x;(x)lv'xl 2 - x1(x)6x] 

Xlt;O = Xo 

n· v'x = o, n· v'6x = O 

1 
n· v'6 2x = -x;(x)n · v'(lv'xl 2) 

2x2 

in n, 
on sr, 

(6.1) 

The existencc of a strong solution to (6.1) is proved with the help of the Leray
Schauder fixed point theorem by the same reasoning as in (18). There are some 
tcchnical changes due to amore generał form of functions Jo, x 1 compared to that 
in [18). The rrn:1.in differe11ce concerns a priori estirna.te for a. fixed point. We a.pply 
the Leray-Schauder fixeci point theorem in the following formulation 

Theorem 6.1 (Leray-Schauder). Let X be a Banach space. Assume that <l.> : 
[O, 1) x X , X is a map with the following properties: 
(i) for any fixed TE [O, 1) the map is completely contiuous; 
(ii) For every bounded subset B of X, the family of maps <l.>(·, O (O, 1] , X, 
Ę E B, is uniformly equicontinuous; 
(iii) <l.>(O, ·) has precisely one fixed point in X; 
(iv) There is a bounded subsed B of X such that any fixed point in X of 4.>(r, ·) is 
contained in B for every r E (O, 1). 
The <l.> (1, ·) has at least one fixed point. 

We choose as the solution space the Sobolev-Slobodecki space 

(6.2) 

The parameter s E (O, 1) will be specified below in Lemma 6.2. 
The solution map 
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is defined by means of the following initial-boundary va.lue problem 

xt - M x26?x = TM L [1(,(x) - ~><~ (x)l'vxl 2 - ><1 (x)Lx] 

= TF(Jc) in D7, 

Xlt=O = TXo 

n · 'vx = O, n · 'v Lx = O 

n. 'v 6 2x = T-1-x; (x)n. 'v(l'vxl 2 ) = TG(x) 
2:><2 

in n, 
on ST, 

on sr. 

Clearly, x defined as a fixed point of <D(l, •) is a solution to problem (6.1). 
We prove first that the map W(T, ·) is well-defined . 

(6.4) 

Lemma 6.2. Let the solution map 4>(T, ·) be defined by (6 . .'1) - (6.4) and lhe so/11.lion 
space be HGs, ,,(nT) with s E [i, 1). Then for any XE H 0s,s(nT) and Xo E H:3(n) 
satisfying the compatibility condition 

n· 'vxo = O on S, (6 .5) 

there exists a unique solution x E HG,! (DT) to problem (6.4) such that 

llxllHO,l(W) ::; rp(llxllH••·•(OT), llxollH3(0)), (6.6) 

Proof, Let x E H6'•'(D7) where s E rn, 1), and let 

A= llxllH••·•<nr)-

By the parabolic thcory (see Lemma 2.6) problem (6.4) has the unique solution 
XE H 0 •1 (DT) provided that F(x) E L2(DT), G(x) E H 1!2,1112 (ST), Xo E H:l(D), 
and the compatibility condition (6.5) holds. Then 

llxllHO,l(SJT)::; CT(IIF(x)IIL2(0T) + IIG(x)IIH1/23,l/12(ST) + llxollH'(l1))- (6.7) 

The terms on the right-hand side of (6.7) can be estimated as in Lemma 5.3. More 
precisely, sinr.c 6v = X - Xm and u = 'vv, we can repeat the estimates in (5.20) 
and (5.23) using the imbeddings 

llxllL~(W) + ll'vxllL,a(W) + ll'v2xllLo(W) 

+ 11v:ixllL.l/(l1TJ + ll'v\~IIL2(D,T;L,(l1))::; cA, 

and 
11a: 11;XIIL,a(flT) + 11ai 1"'vx11Lo(W) + 11a:1r;v 2xllL2(0,T;L3(l1)) :; c.A, 

which hold true for s E [ f;, 1) . Then we conclude that 

IIF(x)IIL2(nr) + 11c(x)IIH,12.,1,2<sTJ ::; rp(A). 

Gonsequently, by (6.7), 

llxllHG,l(flT) ::; rp(A) + cllxollH3(ll) 

::; rp(llxllH0 ,•,•(W), llxollH3(n)) 

for any TE [O, l]. This provcs the assertion. 

From (6.3) it follows immediately 

(6.8) 

(6.9) 

(6.10) 

D 

Corollary 4. Fors E rn, 1) the map <I!(T, ·): HGs,•(nT) • H 6•1(DT) is compact 
because the imbedding Hli,l (DT) C H"'·' (DT) is compact. 
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Thus, to show the complete continuity of the map ct>(r, •) it remains to prove its 
continuity. 

For a fixed r E [O, 1), let X1 = ct>(r, X1) and X2 = ct>(r, X2) be two solutions of 
problem (6.4) corresponding to x1 and x2 from a bounded subset of HG 5 ,5 (fl.T), 
such that 

Introd ucing the differences 

K = X1 - x2, k - X1 - X2, 

we see that K satisfies the following problem 

K, - Mx2b.:3K = r[F(x1) - F(x2)] = rF(x1,X2,K) 

Klt=O = o 
n• 'v K = O, n• 'v b.K = O 

n· 'vf:.2K = r[G(xi) - G(x2)) = r6(x1,X2,K) 

in 

in 

on 

on 

(6.11) 

OT , 
n, 
ST , 

(6.12) 

sr. 

In the same manner as in the proof of Lemma 4.3 from [18] we conclude after 
straightforward calculations the following 

Lemma 6.3 (Continuity of et>). For any X, X2 E Hfi•,•(nr), s E [iL 1), satisfying 
{6.11}, and for any r E [O, 1], the unique solution KE Hr;· 1 (OT) to problem {6.12} 
sat-isfies the est'i'rnate 

(6.13) 

Corollary 5. The continuity of the map et> with respect to T is evident (see Lemma 
4-4 from (18}}. 

Corollary 6. By virtue of the linear parabolic theory (see Lemma 2.6} problem 
{6.4} with T = O has the unique solution X = O. 

Corollary 7. ft follows from Lemma 5.3 that there exists a bounded subset B of 
Hns,s(nT), given by 

B = {x E Hn· 1(nr): llxllH••'(siri + llµIIL,(o,r:H'(nJJ 

:S: c2 = <p(c1, T) + cllxollH3(n)}, 
(6.14) 

where M f:.µ = Xt .rnch. I.hal any fixed point of <I>(l, ·) is contained in B. It is elear 
that the same property holds for any T E [O, l]. Moreover, by energy estimate in 
Lemma 3.1, 

llxllL=(o,r,H'(nJJ + ll'vµflL,(o,r,L2(nJ::::: ci, 

where Ci = 'P(llxollH'(O), lxml, ><2, c,,,, Cfo, a2k)-

(6.15) 

From Lemmas 6.2, 6.3 aml Corolla.ries 4-7 we infer t.hat. t.he map 4' satisfies 
the assumptions of the Lerny-Schau<ler fixe<l point theorern. Hence, there exists at 
least one fixed point of the map <t>(l, •) in the space Hc;s,s(nr), s E [¾, 1). By the 
regula.rit.y propert.ies (6.6) of t.his map it follows that the fixed point belongs t.o t.he 
space Hri,l (nT). Clearly, in view of the definition of the map <D (1, •) this means that 
problem (6.1) has a solution x E H 1'· 1(nT) satisfying estimates (6.14) and (6.15). 
This proves the existence part of Theorem A. 

The uniqueness, holding true for any solution satisfying x E L00 (0, T; H 2 (O)), 
can be proved by standard arguments in the same way as in [18]. 
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