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Abstract. In this paper we study a strain-gradient type thermoviscoelas
tic system. We focus on the stationary states and their dynam.kal stabil
ity. The adiabatic stationary state is formulated as a nonlinear eigenvalue 
problem with non-local terms associated with the total energy conser
vation. One of the purposes of this paper is to extend the results ob
tained in Suzuki-Ta.saki [34]. We reveal a unified structure, called semi
dualities, of the thermoviscoelastic system of viscosity-capillarity type 
with tempera.ture-dependent viscous and elastic moduli. We describe a 
physical background and outline the thermodynamic derivation of the sys
tem. Based on the semi-dual structure we construct a series of generał 
results concerning the stationary states and their stability. The applica
tion of these results together with the bifurcation theory allows to analyze 
the total set of the stationary solutions in mare detail. 

lNTRODUCTION 

1.1 THERMOVISCOELASTIC SYSTEM 

In this paper we address the question of the stability of stationary states to the 
fol!owing thermoviscoelastic system 

{

Utt - V· ((v1 + v20)BE,) + 1<1Q2u + 1<2V · (0Ae(Qu)) =V· H,., 

-0H,ee0, -kD.0 = 0H,e, · Et - 1<20(Ae(Qu)) · Et 

+(v1 + v20)Be, · e, in !1 x (O, T) 

AMS Subject Classifications: 74B20, 74N30. 

(1.1) 

1supported in part by Research Fellow of Japan Society for the Promotion of Science 
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with the boundary and initial conditions 

{ 
u = Qu = O, :: = O 

ui,=o = uo, u,l,=o = u1, 01,=o = 0o 

on 8!1 x (O, T), 

in n. 
(12) 

The system arises as a model of structural phase transitions in viscoelastic solids. 
Above !1 C IRd (d = 1, 2, 3) denotes a bounded domain with a smooth boundary 
8!1, occupied by a body in a fixed reference configuration, n denotes the outer 
unit norma! vector on 8!1, and T > O. The unknowns u = (u;)i=l.-·· ,d = 
(u;(x, t))i=l,-·· ,d and 0 = 0(x, t) > O are real-valued, denoting the displacement 
vector and the absolute temperature 1 respectively. The small-strain tensor E = 
e(u) is defined by e(u) = (v'u + '(v'u))/2, where 'M denotes the transposed 
matrix of M = (M;;). The tensor e, = e(u,) stands for the strain rate. The 
physical coefficients 1<; 2:: O, v; 2:: O, and k > O are constants such that 1<1 + 1<2 > O 
and v1 + v2 2'.: O, i = 1, 2, denoting the strain-grad.ient coefficients, the viscosity 
coefficients, and the beat conductivity, respectively. 

The function H = H ( e, 0) denotes the volumetric free energy density which 
in accord with thermodynamic thermal stability (the postulate that the specific 
heat is strictly positive) satisfies 

IR+ 3 0 >-> H( €, 0) E IR is strictly concave. (1.3) 

To model phase transitions the map € ....., H( e, 0) is admitted to be nonconvex 
(multiwell) in same range of temperatures 0. More precisely, like in Falk [13] and 
Falk-Konopka [14] models of shape memory alloys, we assume that H = H(€, 0) 
splits into 

H(e,0) = J.(0) + W(e,0), (1.4) 

where J. = f,(0) is the thermal energy and W= W(e,0) is the elastic energy 
of the form 

W(€,0) = W1 (€) + 0W2(e). (1.5) 

We assume J. E C 2 (1R+, IR) and W; E C 2 (Sym(d, IR), IR), where Sym(d, IR) de
notes the set of all symmetric second order tensors in IRd. The fourth order 
tensors A = (A;;ki) and B = (B;;kt) stand for the standard elasticity and 
viscosity tensors defined by 

A€= AAtrd + 2µAe, 

Be= >.Btrd + 2µBe, 

where I = (ó;;), µA, AA are the Lame constants and µB, AB the viscosity 
constants, satisfying 

µ, > O, d>.; + 2µ; > O, i=A, B. 

This assumption ensures the coercivity and boundedness of tensor A 

(1.6) 
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where a. = min(d>.A + 2µA, 2µA), a• = max(d>.A + 2µA, 2µA), and the analo
gous properties of tensor B. 

The operator Q, defined by 

Qu := QAu ='il· Ae(u) = µA6u +(>.A+ µA)'il('il · u), (1.7) 

stands for the second order operator of linearized elasticity. By the assumptions 
on µA, >.A this operator is strongly elliptic. 

Throughout the paper vectors (tensors of the first order) and tensors are 
denoted by bold letters. The summation convention over the repeated indices is 
used. A dot designates the inner product, irrespective of the space in question: 
a· b = a,b, is the inner product of vectors a = (a,) and b = (b,), M • M' = 
M;;M!; is the inner product of second order tensors M = (M,;) and M' = 
(Mfj), Am· Bm = Af: ... i.,.BiJ ... i ... is the inner product of m-th order tensors 
Am = (Ar,' ... ;m) and Bm = (B);'. .. ;m). Moreover, for tensors a = (a,), M = 
(M,;), H = (H,;k), A= (A,;kl) we denote: 

Ma= (M,;a;), aH = (a,H;;k), 

Ha= (H,;kak), MH = (M,;H,;k), HM= (H,;•M;k), 

aA = (a;A;;•i), Aa= (A,;•1a1), 

MA= (M,;A,,.,), AM= (A,;.,M.,), 

HA= (H,;kAi;ki), AH = (A,;k1H;k1). 

To simplify the notation we write: 

ćif 
/,i= Bxi' i= l,· ·· ,d, 

8/ 
!, = 8t' 

where space and time derivatives are materia!; 'v and 'v • denote the materiał 
gradient and the divergence operators. For the divergence we use the contraction 

over the last index, e.g., 'il· S = (~) for S = (S,;). Moreover, we write 

f,A = Mt for the partia] derivative of a function f with respect to the variable 
A (scalar or tensor). For f sca!ar valued and Am= (Ar,'. .. ,m) a tensor of order 
m, f,A"' is a tensor of order m with components f,A?;, ... ;"'. In particular, 

H,, = (!!), He= BH_ 
' 80 

The spaces notation is standard and follows [26, 33]. 

1.2 THERMODYNAMIC BASIS 

Equations (1.1) represent the !ocal forms of the linear momentum and interna! 
energy balances with constant mass density p = I and absent external body 
forces and heat sources: 

Utt-'il ·S= o, 
e, + 'il · q - S · <t = O, 

(1.8) 
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where S is the stress tensor, eis the specific interna} energy1 and ą is the energy 
flux. This system is associated with the following two potentials: the free energy 
of the Landau-Ginzburg type 

1 2 
l(e(u), v'e(u), 0) = H(e(u), 0) + 2(11:1 + 1<20) !Qui , (1.9) 

and the dissipation potentia! 

In accord with the thermodynamic relations 

I= e - 0,.,, 1'/ = -1,e, 

(1.10) 

(1.11) 

where 1) denotes the specific entropy, the corresponding forms of e and 1) are 

1 2 
e = (H(e,0) -0H,e(e,0)) + 211:1 !Qui 

1 2 = (f.(0) - 01;(0)) + W1(e) + 21<1 JQul , 

1 2 
1) = -H,e(e, 0) - 211:2 IQul 

(1.12) 

= -1;(0) - W2(e) - ~1<21Qul 2. 

The second law of thermodynamics implies the following constitutive rela
tions for S and ą (see (2.21) and (2.22)): 

S=~-0~+Sd, 
óe óe (1.13) 

q = qd - f.te,DE, 

where 
óe 6€ = e,E - 'v · e,DE 

denotes the first variation of e, and Sd, ąd are the dissipative parts of the stress 
tensor and the energy flux, given by 

sd = 0V,,., ąd = v,D(l/6)· (1.14) 

For particular potentials (1.9), (1.10) relations (1.13)-(1.14) take the form 

S = H,,(e,0) + (111 + 1120)Be(u,) - (11:1 + 1<20)Ae(Qu), 

q = -kv'0 - K 1e,(AQu). 
(1.15) 

Combining balance equations (1.8) with relations (1.12), and (1.15) gives 
system (1.1). 
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It should be pointed out that system (1.1) is a special example of a ther
modynamically consistent scheme for the so-called elastic materials of higher 
gracie in which the constitutive quantities are permitted to depend not only on 
the first gradient of the deformation, the strain, but also on its higher gradi
ents (see [9]). In our case the quantities f, e and T/ depend on the first strain 
gradient and S depends on the second strain gradient, expressed by the term 
'il· e,n, - 0'il · T/,D, in (1.13)i (and correspondingly the third term in (1.15).). 

Another property to be pointed out is that the energy flux ą contains in 
addition to the usual dissipative flux ąd, the extra nonstationary flux, -E,e D, 

in (1.13), (and correspondingly the second term in (1.15),). ' 
System ofbalance laws {1.8) with constitutive equations (1.13) (in particular 

(1.15)) complies with the following entropy inequality in the !ocal form (see 
(2.24)): 

T/t + 'il · ( f -€t T/,D,) = <T 2': 0, 

where 

Sd 1 
<T=o·e,+qd·'i/0 

= V,,, · e, + v,D(l/9) · 'il~ 

is the entropy production. 

(1.16) 

There are various thermodynamic approaches to higher grade materials. We 
mention thermomechanical theories by Dunn-Serrin [9] and Aifantis [2], and 
various frameworks with interna! variables or additional degrees of freedom (see 
e.g. reviews in [21] and [40]). 

Relations (1.13) have been derived in [22] by exploiting the Miiller-Liu en
tropy inequality. The derivation is outlined in Section 2. 

1.3 RELATIONS TO OTHER MODELS 

For appropriate volumetric free energy H = H( e, 0) and 1<1 > O, 1<2 = 112 = 
111 = O, d = l, system (1.1)-(1.2) may represent the one-dimensional Falk model 
for martensitic transformations in shape memory alloys [11, 12], and in the 
case K. 1 > O, v1 > O, K.2 = v2 = O, d = 3, the thermoviscoelastic system of 
viscosity-capillarity type, studied in [23, 25, 26, 27, 28, 41, 43, 44]. 

System (1.1)-(1.2) extends that considered in the above mentioned references 
by admitting temperature-dependent viscosity and capillarity effects, reflected 
by the terms with coefficients 112 and 1<2, respectively. Such effects become of 
importance in viscoelastic rnaterials with ternperature-dependent viscous and 
elastic moduli, for example materials of Korteweg type (see e.g. [9]) or polymeric 
materials (see e.g. [4, 8, 29] and the references therein). 

Concerning mathematical results on thermoviscoelastic systems with temperature
dependent moduli we mention [29] where 1-D Kelvin-Voigt type system (in
cluded in (1.1) for s:1 = 1<2 = O, d = l) with nonlinear viscosity has been 
studied. 
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To the authors best knowledge system (1.1)-(1.2) has not been so far ad
dressed in the literature. In particular, its gł obal solvabi!ity in the case 1<2 # O 
and v2 # O stili remains an open question. 

1.4 STAT!ONARY STATES, VARIATIONAL STRUCTURES, AND STABILITY 

CONCEPTS 

The main results of the present paper concern observing a variational stru
ture, calied semi-dualities, of system (1.1)-(1.2), and consequently concluding 
dynamical stability of stationary solutions. To prove this we use the techniques 
elaborated previously in [33, 35, 34, 36, 37, 38]. 

On account of the conservative structure (1.8) with no external forces and 
beat sources, homogeneous boundary conditions (1.2)i, and the !ocal entropy 
inequality (1.16), system (!.1)-(1.2) satisfies the total energy conservation 

with the tata! energy 

and the entropy inequality in the integral form 

ft 1 1Jdx = 1 r;dx ?_ O 

The latter inequality implies that the functional 

F=F(u.,0)= 1(-1J)dx 

= ;2-lfQu.ffi,, + 1 H,e(e(u),0)dx 

serves as a Lyapunov function for system (1.1)-(1.2), that is, 

~F<O 
dt -

for all sufficiently regular solutions. 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

The stationary state of (1.1)-(1.2) is detected by putting u., = O and 0, = O. 
Then it follows that the stationary temperature is a constant, denoted by 0, 
satisfying 

b = -f llQu.ffi,, + 1 H(e(u.) , ii) - H,e(e(u.), B)Bdx, (1.22) 
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where u= u(x) stands for the stationary displacement, and 

b = E(uo, u1,0o) (1.23) 

is the total energy determined by the initial data. The stationary displacement 
u is a solution to the problem 

{ 
(1<1 + 1<20) Q2u ='il· H,.(e(u), 0) 
u= Qu= O 

in n, 
on an. (1.24) 

The stationary state for system (1.1)-(1.2) is thus determined by (1.22) and 
(1.24) along with the positivity of temperature ii, namely 

1(1<1 + 1<20) Q2 u ='il· H.,(,(u),0) 
u= Qu= O 

b = TIIQull1,, + 1 H(,(u),0) - H,o(e(u),0)0dx, 

(1.25) 
where (u, 0) E HJnH2 (fl.) xlR+ is the stationary solution and b = E(u0 , u 1 , 00 ) 

the total energy conserved in system (1.1)-(1.2). 
We show that there are two variational structures characterized by ii and 

b, respectively. The first one follows by noting (1.25), is the Euler-Lagrange 
equation to the functional 

1<1 + 1<20 2 / -
J8(u) = --2-IIQullL' + Jn H(,(u),0)dx (1.26) 

defined for u E HJ n H 2 (fl.). Thus we obtain the 0-formulation 

{
oJ-.(u) = o, o> o, 

~ r ~-~ b= 2 11Qull1,, + ;
11

H(,(u),O)-H,o(e(u),O)Odx 

of the stationary problem (1.25), where the first variation oJ8(u) of J8(u) is 
defined by 

On the basis of this variational structure, severa! stabilities of critical points 
of J8 can be defined as follows. 

Definition 1 (0-stabilities) (i) A critical point u E HJ nH2 (fl.) of J-. is said 
to be 0-linearized stable if the quadratic form 

d2 I Q8,..,(w,w) = d2J8(u+sw) 
S s=O 

is positive definite, i.e., Q/i,..,(w, w)> O for any w E HJ n H 2 (fl.) \ {O}. 
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(ii) A critica] point;:;; E HJ n H 2(fl) of J9 is said to be 0-infinitesimally stable 
if there is Eo > O such that any EJ E (O, Eo/4] admits Jo > O such that 
IIV(u - u)lln> < Eo and J9(u) - J9(u) < 60 imply IIV(u - u)lln> < E1. 

(iii) A critical point;:;; E HJ n H 2(fl) of J9 is said to be 0-locally minimal if it 
is a !ocal minimizer of J9 on HJ n H 2 (fl), i.e., there is Eo > O such that 
IIV(u - u)lln> :;; Eo implies J9(u) - J9(u) 2'. O. 

We note that the linearized stability is the strongest stability while the !ocal 
minimality is the weakest stability. 

The second variational structure, characterized by b, follows from the fact 
that the stationary temperature 0 > O can be uniquely determined by b and 
u in a nonempty open set V,, in HJ n H 2 (fl) through the energy conservation 
b = E(u, O, 0). To see this we recall the assumption (1.3) and the form (1.4) of 
H = H(e, 0). Then the third equation in (1.25), which is the balance of energy, 
can be expressed equivalently as 

e.(0) := J.(0) -BJ;(B) = l~I (b - TIIQull},, -1 W1(<(u))dx). (128) 

where •• is the thermal part of the interna! energy. By assumption (1.3) J. is 
strictly concave on IR+, and since 

e: =(!.-OJ;)'= -OJ;'> O for O> O, 

e. is a strictly monotone increasing function on IR+· Thus a unique inverse 
function e;1 E C1 ((s-,s+),IR+J can be defined, where (s-,s+) = e.(IR+), and 
equation (1.28) is rewritten as 

- _ 1 (b-I1(u)) 
0 = e. -,-fl-l - =: 0(b, u), (1.29) 

I1(u) = TIIQull},, + 1 W1(<(u))dx. 

Theo the stationary problem (1.25) is reformulated as the nonlinear eigenvalue 
problem with non-loca! terms 

Let 

{ (1<1 + 1<20(b, u)) Q2u = 'i7 · H,,(<(u), 0(b, u)) 
u=Qu=O 

I2(u) = ~IIQull},, + 1 W2(<(u))dx. 

Then it follows from the first equation of (1.25) that 

in n, 
on an. (1.30) 

(1.31) 
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Further, !et 

1, dr 
<I!(s) = --=,-( ) 

s e. r 
(1.32) 

for a constant s E (s-,s+). Then, by (1.29), we see that <I/ E C2((s-,s+) , IR) 
is strictly monotone increasing. Moreover, we note that (1.31) is the Euler
Lagrange equation to the C 2-functional 

( b-T1 (u)) 1 
Jb(u) = -<I! _[_!1_[ - + rnrT2(u) . (1.33) 

This functional is defi.ned for u EV., where 

V.= {UE HJ n H 2(!1) I b -r~t) E (s- , s+)} (1.34) 

is a non-empty open set in HJ n H 2 (!1). Thus we obtain the b-formulation 

ó.Jb(u) = O (1.35) 

of the stationary problem (1.25), where b = E(u0 , u 1 , 00 ) and 00 > O. 
Similarly to 0-stabilities, b-stabilities of critical points of Jb can be defi.ned. 

Definition 2 (b-stabilities) (i) A critical point u E Vb of Jb is said to be 
b-linearized stable if the quadratic form 

d2 I Qb,u(w, w)= ds2 Ji,(u + sw) •=O 

is positive defi.nite, i.e., Qb,u(w, w)> O for any w E HJ n H 2 (!1) \ {O}. 

(ii) A critical point u E Vb of Jb is said to be b-infinitesimally stable if there 
is Eo > Osuch that any E1 E (O, Eo/4] admits Óo > Osuch that l['i7(u -
u) [IH• < Eo and Jb(u) - Jb(u) < óo imply l['i7(u- u)[IH• < E1. 

(iii) A critical point u E Vb of Jb is said to be b-locally minimal if it is a !ocal 
minimizer of Jb on V., i.e., there is Eo> Osuch that l['i7(u - u)IIH• :5 Eo 
implies Jb(u) - Jb(u) 2'. O. 

1.5 SEMI-DUALITY 

Assumption (1.3) implies the inequa!ity 

H(e,0)-H(e,0) 2: H,e(e,0)(0-0). 
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Therefore, for any nonstationary state {u, 0) we have 

b = ~ IJu,IJ}., + -;1-IJQulli, + 1n H(,(u), 0) - 0H,u(,(u), 0)dx 

2'. -;1-IIQulli, + 1 H(,(u),0) -0H,u(,(u),0)dx 

2'. TIJQulJ}_, + 1 H(,(u),ii) - iiH,u(,(u),0)dx 

"'1 + "'20 2 r - 1<20 2 r -= --2-IJQulJL' + fn H(,(u), 0)dx - 2 1JQulJL' - fn 0H,u(,(u),0)dx 

= J9(u) - iiF(u, 0). 

This shows the relation 
iiF(u,0) +b 2'. l;;(u) (1.36) 

between the Lyapunov functional F and the variational functional 19, called 
the semi-unfolding-minimality. A system is said to have the property of semi
dual variation (or simply, semi-duality) if its Lyapunov functional satisfies the 
semi-unfolding-minimality relation [33]. 

In a similar manner one can show the semi-duality property for the varia
tional functional Jb-

The semi-duality properties play the key role in the proof of the results on 
dynamical stability of stationary solutions to system (1.1)-(1.2). The results are 
precisely formulated in Section 3. Here we describe them in short. 

1.6 SUMMARY OF RESULTS 

By virtue of the semi-duality structure we prove that the dynamical stabi!ity of 
stationary solutions may be derived both from the ii-infinitesimal stability and 
from the b-infinitesimal stability. Next, we show that any ii-stable critical point 
is b-stable. This fact can be regarded as the stabilization of all stationary solu
tions by the non-local terms. Concerning the existence of stationary solutions, 
we obtain a global minimizer of the functional :lb by a standard variational 
method. Then our interest turns to its stability. The infinitesimal stability does 
not hold in generał, but we are able to show the infinitesimal stability of any 
!ocal minimizer provided that His real analytic with respect to ,. Table 1 shows 
the established interrelations between the stabilities. They extend the results of 
[34] to the system (1.1). Concluding, we can claim that there is a dynamically 
stable stationary solution if H is real analytic with respect to ,. In particular, 
when the total energy b is so small that the trivia! solution u = O is unstable, 
there exists a dynamically stable nontrivial stationary solution. 

The application of the established results together with the bifurcation the
ory is also presented in Section 5, where the total set of the stationary solutions 
is analyzed in more detail. These results are stated in seven theorems which 
in an early version have been firstly established in [38]. We regard the total 
energy b (resp. the absolute temperature ii) as the bifurcation parameter, and 
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8-linearized stable ==} 8-infinitesimally stable 

b-linearized stable ===> b-infinitesimally stable 
JJ. 

dynamically stable 

real analyticity -
real analyticity -

Table 1 Relations of stabilities 

0-iocally minimal 

b-locally miniffial 

consider the total set of the stationary solutions (b, u) (resp. (ii, u)). We prove 
the upper bound 0• < +oo of the temperature 0 for the existence of the non
trivial solution and the a priori estimate [[ullH• :::; C(0,) for the solution (0, u) 
satisfying 0 c". 0,. Moreover, in the one-dimensional case, d = l and !1 = (O, ł) 
with l > O, we show the bifurcation points from the trivia! branch, the super
and sub-critical conditions, and the nonexistence of secondary bifurcation. We 
also prove that any !ocal minimizer of the functional Jb has a definite sign. 
Then we can describe the bifurcation diagram and conclude that the total set 
of the stationary solutions is composed of the trivia] branch and the nontrivial 
branches which may intersect only the trivia! branch. In the sub-critical case, 
the bifurcated branch has a turning point in the (0, u)-space. Using the estab
lished interrelations between the stabilities, we can observe that the bifurcated 
branch has a turning point also in the (b, u)-space. Consequently, the existence 
of the hetero-clinic orbits and the hysteretic cycle may be suggested by the 
bifurcation diagram. 

1. 7 PLAN OF THE PAPER 

In Section 2 we outline the thermodynamic derivation of constitutive relations 
(1.13) and their specialized forms (1.15). In Section 3 we formulate live theorems 
on the stabilities which are the main results of the paper. The proofs of these 
theorems are presented in Section 4. In Section 5 the total set of the stationary 
solutions is analyzed in more detail by using the main results together with the 
bifurcation theory. 

2 OUTLJNE OF THE CONSTITUTIVE THEORY 

2.1 DERIVAT!ON 

We recall from [22] the main steps of the derivation of constitutive relations for 
strain-gra.dient thermoviscoelastic systems. These relations include (1.13) and 
(1.15) as the particular cases. The derivation is based on exploiting the second 
law of thermodynamics in the form of the entropy inequality with multipliers, 
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known as the Miiller-Liu entropy inequality [20, 19]. 
Assume that fl E JR3 is a bounded domain with a smooth boundary, occupied 

by a solid body in a fixed reference configuration, with constant mass density 
normalized to unity, po = 1. The procedure consists of three main steps. 

In the first step we consider the usual loca! forms of balance laws of linear 
momentum and interna! energy, with body forces b and heat sources g: 

Utt -V·S= b, 

e, + v . ą - s. E, = 9 , 
(2.1) 

and the constitutive equations for the stress tensor S, the internal energy e, and 
the energy flux ą: 

S = S(Y), e = i(Y), ą = ą(Y), (2.2) 

where 

Y = (E, DE,··· , DM0E, T/, Dr,, •·· , DK•T/, Et), Mo 2: 2, Ko 2: 1, 

denotes the set of constitutive variables. This set accounts for long range inter
actions in the materiał by the presence of higher strain gradients, and for the 
materia! viscosity by the strain rate. Thermal variables are expressed in Y by 
the entropy T/ and its gradients. Such choice of thermal variables is convenient 
for the exploitation of the entropy inequality. The notation e instead of e is used 
to indicate that the internal energy is considered as a function of the entropy. 

In the second step of the procedure we postulate the Miiller-Liu entropy 
inequality. Applied to system (2.1) with constitutive equations (2.2) it asserts 
the existence of the entropy flux 'V = '1<(Y) and the multiplier >- = .X(Y) such 
that the inequality 

r,, +V· '1' - >- (e, +V• ą - S • e,) 2: o (2.3) 

is satisfied for all fields u and T/- The following has been proved in [22). 

Theorem A (Consequences of the entropy inequality) Assume the struc
ture conditions {A1)-{A3): 

(Al) 
e,"(Y) > O for all Y, 

(A2) 

where 

ą0 := ą (Y0) with yo := Yl,,=o, 

denotes the stationary energy flux, and >-0 , ,i,0 are defined similarly; 



(A3) 
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ą=ą0 -e,H (ąk=ą2-(e,),;H,;k), 

where H = (H,;k) = H(Y) is a third order tensor. 

Then the following relations hold: 

(i) interna/ energy 
e = i(e,De,11); 

(ii) energy multiplier 

>. = A(e,De,11) =~>O; 
e,, 

(iii) entropy flux 

-I<= >.ą0 + >.e, (e,D, - H) 

(wk = >.ą2 +>.(et),;(,,.,., -H,;k)); 

( iv) stress tensor 

Óe l _ d 
S = & - :i: (e,v, - H) V>.+ S 

( S,; = e,,,, - ake,,.,,, - ½ (e,;,k - H,;k) A,k +st)' 

where óe _ _ 
6€ = e,E: - 'v · e,DE:i 

( v) residua/ dissipation inequality 

13 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

for all fields u and 1). 

We complement the above theorem by the following remarks: 

• Assumption (Al) is a nondegeneracy condition for the potentia! e. Under 
thermal stability postulate the Legendre ( duali ty) transformations show 
that (Al) means the positivity of temperature. 

• The energy and entropy fluxes include extra (unconventional) terms in
volving an arbitrary third order tensor H. Fluxes -I< and q are related by 
the equation 

'1< - Aq = >.e,e,D<· (2.8) 

• Entropy inequality does not impose any restrictions on the tensor H. 
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In the third step of the procedure we presuppose that the energy multiplier 
A is an aclditional independent variable and treat the equation in assertion (ii) 
of Theorem A as an aclditional constraint. Theo, setting 

we have 

1 
0 = >,°' 

0 = e,0 (e, De, 11) > O. 

(2.9) 

(2.10) 

With A as independent variable the residua] inequality (2. 7) takes on the stan
dard form of the dissipation inequality. Then the application of Edelen's de
composition theorem [10] implies the following thermodynamic relations 

Sd o= V,,., qo = ąd = v,D(l/0), (2.11) 

where 'D is a dissipation potential which is convex, nonnegative, and homoge
neous of certain degree in e, and D(l/0). 

Under thermal stability postulate that the specific heat is strictly positive 

Co= e,o = -0!,oo > O, (2.12) 

the Legendre transformation is applicable. Then e is defined as the conjugate 
convex function of free energy f with entropy 11 as a dual variable: 

J (e, De,11) := s2'p (011 + j (e, De,0)) ~ +oo. 
O<lł<oo 

At 0 = 0 = 0 ( e, De, 11) where the supremum is attained, 

J(e,De,11)-i(e,De,0) = 011, 
e,0 (e, De, 11) = 0. 

Hence, in particular, 
e,E = /,E, e,vE = f,DE· 

(2.13) 

(2.14) 

(2.15) 

Due to the convexity, e,00 > O, the relation between 11 and 0 defines a trans
formation. Therefore, one can use alternatively (u, 11) or (u, 0) as independent 
variables. 

Summing up, for ( u, 11)-variables the governing potentia! is the internat en
ergy e = e ( e, De, 11) which is strictly convex in 11 and such that e,0 > O. The 
equations are the balance laws (2.1), where q is given by (2.4), S by (2.6), Sd 
and ą0 = ąd by (2.11), as well as 0 is determined by (2.10). 

For (u,0)-variables the potentia! is the free energy f(e,De,0) which is 
strictly concave with respect to 8 > O, related to e(e,De,11) by (2.13). Due 
to (2.15), equation (2.6) transforms to 

(2.16) 
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Thus, in terms of ( u, 0)-variables the model equations are the balance laws 
(2.1) with ą given by (2.4), S by (2.16), Sd and ą0 = ąd by (2.11). In accord 
with the duality relations, interna! energy e, entropy TJ, and free energy f are 
related by 

f = e - BTJ, T/ = - J,9 • (2.17) 

2.2 PHYSICALLY REALISTIC EQUATIONS 

The presented above constitutive equations involve an extra, unspecified tensor 
field H. From (2.8) and (2.4), using (2.9) and (2.15), it fol!ows that 

ąd l ąd 
,;i;= e + 7ie' U.n. - H)"' e + e,H'. (2.18) 

Thus, the extra energy flux, -ftH, and the extra entropy flux, EtH.,.,, are linked 
by the equality 

e, (H +BH')= etf.n,. (2.19) 

In view of the thermodynamic relations (2.17), the equa!ity (2.19) suggests a 
physically realistic choice of the extra tensors H and H': 

and 

H = e,n, ( E, De, 0) = f,n, (e, De, 0) - 0 f,BD, (e, De, 0), 

H' = -TJ,D, (e, De, 0) = f,aD, ( E, De, 0) . 
(2.20) 

For H defined by (2 .2O)i the equation (2.16) for S and (2.4) for ą become: 

S = ~~ - 0(1,n, - e,n,)V G) + Sd 

= J .• - v • J,n, - TJ.n. ve + sd 
= J,. - v · J,n, + J,BD,ve+ sd 
= e,, - BTJ,, - V. •,DE+ V. (BTJ,D,) -TJ,D, ve + sd 

= ~-e~+sd 
ÓE ÓE 

(2.21) 

q = qd - Ete,D, (2.22) 

where Sd, ąd are defined by (2.11). 
In result, inserting (2.21)5 and (2.22) into (2.1) we arrive at the system 

(Óe ÓTJ d) 
Utt - V · - - 0- + S = b, 

ÓE ÓE 

( d ) (Óe ÓTJ d) e, + V · ą - e,e D, - - - 0- + S 
' ÓE ÓE 

·Et= g. 

(2.23) 

We check now directly that system (2.23) complies with the entropy inequal
ity 

(
qd ) g 

T/t +V· O - e,T/,D, =er+ O' (2.24) 
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where 

Sd 1 
<1 = 0 ·<,+ąd. \70 

= 'D,,, · ., + 'D,D(l/9) · 'v' ~ 2: Q 

is the entropy production, nonnegative by the convexity of 1J. 
This follows by noting that since 

e, = (f+0T/), 

= f,, ·Et+ f,D, · 'v'<t + f,o0t + 0,17 + 0T/t 

= 0T/t + f,,. Et+ f,D,. 'v'Et, 

the left-hand side of equation (2.23), can be rearranged as 

eT/, +V· (ąd - e,e,n,) - (e,, - V· e,D, - 0T/,, + ev · T/,D, + Sd) · ., 

+ f,, · e, + f,D, · Ve, 

= eT/, +V. (ąd - e,e,n,) +(V. e,n, - ev. T/,D,) . • , + f,D,. Ve, - sd . • , 
=ef/,+ V· ąd - e,D, · Ve, - BV · (•tT/,D,) + 01},D, · Ve, + f,D, · Ve, - sd · ,, 
= 01}, +V· ąd - BV · (e,T/,D,) - sd · .,. 

Thus, (2.23), turns into 

01}, +V· ąd - ev · (•tT/,D,) - sd · ,, = g, 

which is equivalent to (2.24). 
Finally, we derive the temperature form of (2.23)2. Taking into account that 

e, = (f - 0/,,),, • ,, + (f - 0/,,),D, •V,,+ eo0,, 

where Co= -0/, 99 is the specific beat, and using (2.17), (2.21)3, the left-hand 
side of (2.23), can be rearranged as follows: 

e, + V · ( ąd - •d,n, + 0,tf,,n,) - (f,, - V · f,n, + J,,n, ve + sd) · ,, 
= e, +V· ąd - f,, · e, - f,n, ·V,,+ 0(\7 · f,,n,) · e, + 0/,,n, · Ve, - Sd · ,, 

= eo0, + V • ąd - e J,,, • ,, + 0(V. J,,n,) . ,, - sd . ,,. 

Hence system (2.23), expressed in terms of (u, 0)-variables and free energy f, 
considered in space-time domain l1 x (O, T), takes the form: 

{u" - v • (!,, - v • f,n, + J,,n, ve + sd) = b, 

-01, .. 0, +V· ąd = 0/,,, · ,, - 0('v' ·!,,n,)·,,+ sd · ,, + g in n x (O, T), 
(2.25) 

with Sd and ąd defined by (2.11). 
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2.3 "ENERGETIC11 AND uENTROPIC11 CASES 

We point on two extreme cases of strain-gradient free energy f = f(E,DE,0), 
referred to as "energetic„ and 11entropic11 ones. In accord with (2.17) such cases 
are characterized by the fol!owing relations: 

(i) Energetic case 

f,v, = e,v, ę; T/,D, = - f,ov, = O. (2.26) 

This means that the strain gradient, DE, contained in f fully contributes 
to the interna! energy e. Such situation is typical for shape memory models 
(see e.g. [11, 12, 22, 27)). Then system (2.25) reduces to the form 

{
utt - 'il · (!,, - 'il · J,v, + Sd) = b, 
-0 J,ooB, + 'il · ąd = 0 f,o, · Et + Sd · Et + g in n x (O, T). 

(2.27) 

(ii) Entropie case 

e,v, = O ę; f,v, = -011,v, = Bf,ov, 

(i),9D, = o 
(2.28) 

This means that the strain gradient, DE, contained in J fully contributes 
to the entropy T/· This case is characteristic for polymeric materials (see 
e.g. (8), and the references in (4)). Then system (2.25) turns into the form 
(see [22, eq. (61))): 

l'-'tt - 'il · ( f,, - B'il · f,;• + Sd) = b, 

-0!,ooB, +'il· ąd = Bf,o, · Et - 0 ('il· f,;•) ·Et+ Sd ·Et+ g 

in n X (O,T). 

2.4 SPECIALIZED EQUATIONS 

(2.29) 

Let us consider system (2.25) with the free energy f and the dissipation potentia! 
'D, defined by (1.9) and (1.10), respectively. Then, in accord with (2.11), 

d 2 1 
ą = v,D(l/9) = kB "'e = -k'i10, 

sd = B'D,,, = (v1 + v2B)BE,. 

Moreover 1 in such a case, 

!,eo = H,oo, !,o, = H,o., !,, = H,,, 
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and, due to symmetry of tensor A, 

Qu ='il• A,(u) = 'ilf(u)A, 

f,D, = (1<1 + 1<20)A('il,A) = (1<1 + 1<20)AQu, 

'il· f,v, = (1<1 + K20)'il · (AQu) + 1<2 (AQu) 'i10, 

= (1<1 + 1<20)A,(Qu) + 1<2 (AQu) 'il0, 

f,oD, = 1<2AQu, 

'il· f,oD, = K2Af(Qu). 

This follows from the following componentwise relations: 

(Qu), =('il. A,(u)), = (8;Aijklfk1(u)), 

= (A,;•1'•1,;(u)), = (,k1,;(u)A,;k1), 
= ('il,(u)A),, 

U,v,)pąr = (( ~ IQul2) D ) 
' E pqr 

(2.30) 

= ((-2" l'ilf(u)Al2) ) = ((~ 1,.,,;Ak1;,i2) ) 
,DE pgr ,Epq,,. pqr 

= K ((fkl,jAklji) Apąri)pąr = I< (Apąri (Qu).)pqr 

= K (AQu)pąr, 

(V. f,v,),; = ca. (KAijkl (Qu),)),; 

= I< (8k (Aijkl (Qu),));; + (Aijkl (Qu), K,k);; 

= K ( Aijkl (Qu), .• ),; + 1<2 (Aijkl (Qu), 0,.J,; 

= K(Aijklflk (Qu)),; + K2 (Aijkl (Qu), 0,k);; 

= K (A, (Qu)),; + 1<2 ((AQu) 'i10),;, 

where 1< = K 1 + 1<20, Then system (2.25) turns into 

{

Utt - 'il· {H,, - (1<1 + 1<20) A,(Qu) + (v1 + v20) B,(u,)} = b, 
-0H,oo0, - k60 = 0H,0, • ,, - 1<20 (Af(Qu)) · ft 

+(v1 + V20)Bft. ft+ g in n X (O,T), 

(2.31) 

which for b = O, g = O provides equations (1.1). In the energetic case 1<1 > O, 
"'2 = O whereas in the entropie one, 1<1 = O, 1<2 > O. 

2.5 MASTER STRUCTURE 

We point out a master structure of system (2.25) (equivalently (2.23)) , compris
ing (1.1) as a special case. This structure is a direct consequence of the presented 
derivation procedure. In particular, it provides the tata! energy conservation, 
natura! boundary conditions and the Lyapunov functional. 
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Formally, assuming that the functions u and 0 > O are suf!iciently regular 
and multiplying scalarly equation (2.l)t by u,, we obtain the balance equation 
for the kinetic energy 

Glu,12), - '1 ·('Su,)+ S ·Et= u,• b (2.32) 

with S given by (2.21). Summing up (2.32) and the interna! energy balance 
(2.23), gives the total energy balance in the !ocal form 

( e + ~ ju,12), + '1 · (-' Su, + ąd - e,e,v,) = u, · b + g. (2.33) 

Integrating (2.33) over n leads to 

fi 1, (e + ~iu<12) dx + fan {-(Sn)· ut+ n· (ąd - e,e,v,)} dS 

= 1, u, · b + gdx, 

where n denotes the outer unit norma! vector on an. Hence it fellows that if 
b = O, g = O, and the boundary conditions on an imply that 

(Sn)• u,= O, n• (ąd - e,e,v,) = O, (2.34) 

then solutions of system (2.23) satisfy the total energy conservation 

with 

dE =O 
dt 

E= 1,e+~lu,l2 dx. 

(2.35) 

Further, multiplying the entropy equation (2.24) by a constant a > O and 
subtracting from (2.33), we get the so-called availability identity and the corre
sponding inequality 

(e + ~lu,12 -a77) t + '7 ·{-'Su,+ (ąd - e,e,v,) - a ( ~ - e,7/,D,)} 
= -mr+u, -b+ (1- ~)g.,: u,-b+ (1-~)g. 

(2.36) 

Integrating (2.36) over n gives 

fi 1, (e + ~iu,1 2 - a77) dx 

+ Ian {-(Sn)· u,+ n· (ąd - E,e,v,) - an· ( ~ - e,77,v,)} dS 

.,: 1, u,· b + ( 1 - ~) gdx. 
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Hence, it follows that if b = o, g = O, and the boundary conditions on 80. imply 
in addition to (2.34) that 

n · ( ~ - €t7/,D,) = 0, (2.37) 

then solutions of system (2.23) satisfy the Lyapunov inequality 

cl { 1 12 dt)ne+ 21u, -a77dx$0. (2.38) 

Setting a = 1 we can see with the aid of the total energy conservation (2.35) 
that 

F= Io (-77)dx= fo!,,dx 
serves as a particular Lyapunov function satisfying 

dF < O. 
dt -

3 MAIN RESULTS 

3.1 THEOREMS ON STABILITIES 

(2.39) 

The first result of this paper is on the dynamical stability of 0-infinitesimally 
stable stationary solutions of system (1.1)-(1.2). 

Theo rem 1 Assume that 0 >-> H ( ·, 0) is concave. Let 0 > O be a constant 
and u E HJ n H 2(f!) an infinitesimally stable critical point of J6 such that 
E(u,0,0) = b = E(u0 ,u1 ,0o). Then (u,0) is dynamically stable in the sense 
that any E > O admits ó > O such that 

llv'(uo-u)IIH• < 6, IF(uo,80)-F(u,B)I < 6 

imply sup llv'(u(•, t) - u)IIH• < ,, sup IF(u(·, t), 0(-, t)) - F(u, 0)1 < ,, 
t~O t~O 

(3.1) 

where (u, 0) = (u(-, t), 0(-, t)) is a solution to 'system (1.1}-{1.2}, satisfying u E 
C([O, +oo), H 2 (fl)) and 0 > O. 

In the case of system (1.1)-(1.2) with 1<2 = v2 = O this result has been proved 
in [34]. 

Assume that H = H(,,0) takes the form (1.4)-(1.5) with functions W,(,) 
satisfying the growth rates 

(3.2) 

for large l•I, where i= 1, 2, 

O S K, < 6 if d = 3, O S K, < oo if d = 2. 

Then Theorem 1 implies the fo!lowing specialized form of the dynamical stabil
ity. 
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Corollary 1 In addition to the assumption of Theorem 1, suppose that H = 
H(e,0) takes the form {1.4)-(1.5} with {3.fł}. Then (u,0) is dynamically stable 
in the sense that any E > O admits li > O such that 

llv'(uo - u)lln• < li, , l~I In J;(Bo)dx - J;(0)/ < li 

imply ~~~ llv'(u(·, t) - u)lln• < E, ~~~ I l~I In J;(e(-,t))dx - J;(0) / < E, 

(3.3) 

where (u, 0) = (u(·, t), 8(-, t)) is a solution to system (1.1}-{1.fł}, satisfying u E 
C([O, +oo), H 2 (fl)) and 0 > O. 

The second result concerns the dynamical stability of b-infinitesimally stable 
stationary solutions. 

Theorem 2 Assume that H = H(e, 0) takes the form (1.4)-(1.5}, 0 ,-, H(-, 0) 
is strictly concave, and {3.2} holds. Let b = E( uo, u 1 , 00 ), u E V,, be an infinites
imally stable critical point of :lb, and 0 = G(b, u). Then (u, 0) is dynamically 
stable in the sense that any E > O admits li > O such that the implication {3.1} 
holds, where (u,0) = (u(-,t),8(-,t)) is a solution to system (1 . 1}- {1.fł}, satisfy
ing u E C([O, +oo), H 2 (fl)) and 0 > O. 

Corollary 2 Under the assumption of Theorem fł, (u, 0) is dynamically stable 
in the sense that any e > O admits ó > O such that the implication {3.3} holds, 
where (u,0) = (u( ·, t),0(-, t)) is a solution to system {1.1)-(1.fł}, satisfying u E 

C([O, +oo), H 2 (fl)) and 0 > O. 

Given a stationary solution (b, u), one can conclude the dynamical stabilities 
both by Theorem 1 and by Theorem 2. These dynamical stabilities are the 
same, and so there may arise a question concerning the relation between 0- and 
b-stabilities. The following theorem asserts that 0-stabilities are stronger than 
b-stabilities. 

Theorem 3 Assume that H = H(e, 0) takes the form (1.4)-(1.5} and 0 ,_, 
H(-,8) is strictly concave. Let b = E(uo,u,,0o), Bo> O, and u EV,, be a 
critical point of J.. Then u is a critical point of 18 on HJ n H 2 (fl), where 
0 = G(b, u), and the following Jacts hold. 

(i) !fu is 0-infinitesimally stable, then u is b-infinitesimally stable. 

(ii) !fu is 0-locally minimal, then u is b-locally minimal. 

(iii) !fu is 0-linearized stable, then u is b-linearized stable. 

Concerning the existence of a stationary solution, we can prove the existence 
of a global minimizer of the functional :lb- For this purpose, we a.ssume the 
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growth rates (3.2) and suppose that functions W; = W,(e) are bounded from 
below, i.e. 1 

W;(e) 2: -C,, (3.4) 

i = l, 2, which implies that J8 and Jb are bounded from below and coercive. 
There exists a global minimizer of J8 provided that 1<1 + 1<28 > O, 

and the growth rates 

for large l•I, where 

H(e,8) 2: -Co, 

/H,,(e,8)/ $ ClelKo-l 

O '., Ko < 6 if d = 3, O '., Ko < DO if d = 2. 

Theorem 4 The following facts hold. 

(3.5) 

(3.6) 

(i) Assume that 1<1 + 1<28 > O, and (3.5}, {3.6} hold. Then there exists a global 
minimizer of J8 on HJ n H 2 (f!). 

(ii) Assume that H = H(e, B) takes the form (1.4)-(1.5), B....., H(-, B) is strictly 
concave, and {3.2}, {3.4} hold. Let b = E(uo,u 1 ,Bo) and Bo> O. Then 
there exists a global minimizer of Jb on Vb. 

We note that a global minimizer of J8 does not necessarily correspond to a 
global minimizer of :1,. 

The solution asserted by Theorem 4 (ii) is a global minimizer of Jb, which is 
a solution to the stationary problem (1.25). Although the infinitesimal stability 
does not hold in generał, we are nevertheless able to show the infinitesimal 
stability of any !ocal minimizer provided that H is real analytic with respect to 
e. Here, we assume the growth rates 

(3.7) 

for large l•I where 

O $ Ko < 5 if d = 3, O ::; Ko < DO if d = 2, 

which guarantee the elliptic regularity [1] for the stationary problem (1.25). 

Theorem 5 The following facts hold. 

(i) Let 8 > O be a constant. Assume H(·, 8) E cw(Sym(d, IR), IR), and {3.5}, 
(3. 7) hold, where cw(Sym(d, IR), IR) denotes the set of all real analytic 
functions on Sym(d, IR). Then any local minimizer u E HJ n H 2(f!) of 
J8 is 8-infinitesimally stable. 

(ii) Assume thatH = H(e,B) takes the form (1.4)-(1.5), B....., H(-,B) is strictly 
concave, {3.4}, {3.7} hold, and f. E cw(IR+,IRl, W, E cw(Sym(d,IR),IR), 
i=l, 2. Letb=E(u0 ,u1 ,B0 ). ThenanylocalminimizeruEV, of:1, is 
b-infinitesimally stable. 

The above theorems clarify the interrelations between the stabilities, de-
scribed in Table 1. 
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3.2 REMARK ON EXJSTENCE RESULTS 

So far system (1.1)-(1.2) has been studied in literature only in the case 

(3.8) 

For the one-dimensional situation, d = 1, we refer to [3, 5, 16, 17, 31, 32, 42] and 
the references therein. In the three-dimensional situation the well-posedness of 
the system has been studied in [27, 28, 23, 24, 25, 41, 43] in the case f.(0) = 
-c0 01og0 and in [44, 26] in the case j,(0) = -c0 02/2. The existence of regular 
solutions on an arbitrary finite time interval has been established. However, the 
long-time analysis seems stili to remain an open problem. 

We recall two recent results in the case J.(0) = -c0 02 /2. 

Theorem B ([44]) Assume the following conditions with Ko = O, O :5 K 1 < 
12/7, and O :5 K2 < 6: 

1. The condition (3.8} holds. 

2. K. and v are any positive constants. 

3. f.(0) = -eu02/2. 

4. (NI} W1, W2 E C3 (Sym(d,IR),IR); W2 = W2(,) satisfies the bounds 

(3.9) 

with numbers O :5 K 0 :5 K2 , O :5 K2 < oo, c1, c2 positive constants and 
ca a real constant. 

5. (N2} W1 = W,(,), W2 = W2(,) satisfy the growth rates 

[W,,,(,)I :5 c[,[K,-1, 

JW2,,(,)I :5 c[,JK,-l, 

1w,, .. (,)I :5 cJ,[K,-2, 

IW2,,.(,)I :5 cJ,JK'-2, 

for large J,I, where O < Kr < oo. 

[W1,m(,)[ :5 c[,[K,-3 , 

[W2,m(,)I :5 cj,JK,-J 
(3.10) 

Let d = 3, T > O, and the numbers p, r E (1, oo) satisfy the conditions 

5 < p :5 r < oo. 

Then for any ( uo, u,, Bo) E Bt;,21• X B;,-;,21• x B;,-;.2/r with fl. :5 Bo :5 0, where 
!!. and 0 are positive constants, there exists a u.nique solution ( u, B) to system 
(1.1)-(1.2} satisfying 

(u, 0) E w:•2(n x (O, T)) x W;·'(n x (O, T)), 

o< e. :5 0 :5 e· < 00 a.e. in n X (O, T), 
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In this theorem, B;,ą = B;,.(O.) = [V(O.), Wj(!1)],fj,ą is the Besov space, 
where Wj = Wj(!1) is the standard Sobolev space and [·, ·],/j,ą is the real 
interpolation space. Since the embeddings 

w:•2 (0. X I)'-> BUC(I,B:;2IP) '-> BUC(J,H2 ), 

w;•1 (n x I)'-' BUC(I,B;,~2!•) '-' BUC(J,L1 ) 

hold for any bounded interval J, see [39], the assumptions of Theorem B guar
antee Theorems 1-3 and Corollaries 1-2. If we assume (3.4) in addition to the 
assumptions of Theorem B, then Theorem 4 also holds true. In such a circum
stance, the real analyticity of H with respect to • assures Theorem 5. 

Theorem B has been recently generalized in [26] under the so-called viscosity
capillarity relation. 

Theorem C ((26]) Assume thefollowing conditions with Ko= O, O$ K, < 3, 
and O$ K2 < 6: 

1. The condition (3.8} holds. 

2. The viscosity-capillarity relation 

holds. 

3. J.(O) = -c.02/2. 

4- (Nl} holds. 

5. (N2} holds. 

Q < 2,/K ':, V 

Let d = 3, T > O, and the numbers p, q, r, s E (1,oo) satisfy the conditions 

3 2 -+ - < 1, 
p q 

3 2 
- + - < 1, p $ r, q $ s. 
r s 

Then for any (u0 , u 1 , 00 ) E s;-:;,21• x B;-:;,21• x B;;-;,21• with fl $ 00 $ 0, where 
fl. and 0 are positive constants, there exists a unique solution ( u, O) to system 
(1.1)-(1.2) satisfying 

(u, 0) E w:,J(n x (O, T)) x w,\1(n x (O, T)), 

O < 0. $ 0 $ 0• < oo a.e. in !1 x (O, T), 

where B. andB• depend onT, H.., 01 and Jl(uo,u1,Ba)IJB;;;2/<zxB;:;2/ąxB~;;2/•• 

In this theorem, Wjf2 = wff2 (!1 x (O, T)) denotes the anisotropic Sobolev 
space with a mixed norm with respect to space and time variables. 
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4 PROOFS 

4.1 PROOF OF THEOREM 1 AND COROLLARY 1 

In this subsection we consider the functional J9, and show that the dynami
cal stability of the stationary solution may be derived from the ii-infinitesimal 
stability. 

Proof of Theorem 1 To begin with, inequality {1.36) and 

iiF(u, ii) + b = J9(u). 

show the relation 

J9(u)-iiF(u,ii) = b ~ J9(u)-iiF(u,0) (4.1) 

between the Lyapunov functional F and the variational functional J9. Then it 
follows from the non-increasing property of F with respect to t that 

J9(u(•, t)) - J9(u)::; ii (F(u(-, t), 0(-,t)) - F(u,ii)) 

$ ii (F(u0 , 00 ) - F(u, ii)). 
{4.2) 

Recall that u E HJ n H 2{fl) is an infinitesimally stable critical point of J9. 
This means that there is Eo > O such that any E1 E {O, Eo/2} admits óo > O such 
that llv'(u - u)lln• < Eo and J9(u) - J9(u) < óo imply 

llv'(u - u)lln• < E1- (4.3) 

Therefore, given E > O, we can take sufficiently small ó E (O, Eo/2] such that 

J9(u(•, t)) - J9(u) < min (óo, i), 
by {4.2). 

Suppose that llv'(u{•, t) - u)lln• = ó ($ Eo/2 < Eo) for same t > O. Then 
applying (4.3) for Eo = ó, we obtain that llv'(u{•, t) - u)lln• < ó, which is a 
contradiction. Thus it holds that /lv'(u(·, t) - u)lln• eł ó for any t ~ O. Since 
u= u(•, t) E C{[O, +oo), H 2{fl)) and llv'(uo - u)lln• < ó, we obtain 

llv'(u(•, t) - u)lln• <ó, t ~ o, 

which completes the proof. 

(4.4) 

o 

Proof of Corollary 1 In the same way as Theorem 1, we obtain (4.2) and 
(4.3). Next, it follows that 

l~I II2(u(•, t)) -I2(u)/ $ C,/lv'(u(·, t) - u)lln• + C2llv'(u(•, t) - u)ll'k,, 

{4.5) 
1 

jnf /I2(uo) -I2(u)/ $ C1llv'(uo - u)lln• + C2llv'(uo - u)ll'k,. (4.6) 
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In fa.et, it follows from Hiilder's inequality that 

1 r -Inf Jn IW2(e(u(·, t)) - W2(e(u))I dx 

= l~I in IW2,, (-y(·, t),(u(•, t)) + (1 - 1(·, t))e(u)) · (e(u(·, t)) - e(u))ldx 

:::: l~I IIW2,, (-y(-, t)e(u(•, t)) + (1- 1(·, t)),(u))IIL''' IIV(u(·, t) - u)IIL•, 

where 1 = 1(x, t) E [O, 1). Using the growth rate (3.2) with O :,: K2 < 6 and 
Sobolev's inequality, we have 

1 r -Tm Jn IW2(e(u(·, t))) - W2(e(u))I dx 

:::: C1 (111'( ·, t),(u(·, t)) + (1 - 1(·, t))e(u)lli• + 02) IIV(u(·, t) - u)IIH, 

:::: C1 { (lle(u)IIL• + 111'(·, t) (e(u(·, t)) - e(u))IIL,)5 + C2} IIV(u(·, t) - u)IIH, 

:::: 03 (11vu:111. + IIV(u(-, t) - u)lli• + C2) IIV(u(•, t) - u)IIH, 

:::: 03 ( c,11vu:11k, + Cs IIV(u(·, t) - u)llk, + C2) IIV(u(·, t) - u)IIH• 

= c.11v(u(·, t) - u) IIH• + G2IIV(u(-,t) - u)llk,, 

and, therefore, it holds that 

1 Tm II2(u(·, t)) -I2(u)I 

:::: 2; 1 IIQ(u(•, t) - u)lli, + l~I in IW2(e(u(·, t)) - W2(,(u))I dx 

:::: G1llv'(u(-,t)-u)IIH• +G2IIV(u(-,t)-u)llk,-

In the same manner, we also obtain (4.6). 
From ( 4.6), it holds that 

l{ -} 1 f -Tm F(uo,Bo) - F(u,0) = Tm Jn H, 0 (,(u0 ), 00 ) - H, 0 (e(u),0)dx 

:O:, l~I in J;(Bo)dx - J;(ii)I + l~I II2(uo) -I2(u)I (4.7) 

SI l~I in J;(0o)dx- J;(ii)I + G1IIV(uo - u)IIH• + G2IIV(u0 - u)ilk,. 

Therefore, given e > O, we can take sufficiently small ó E (O, eo/2) such that 

J9(u(·, t)) - J,(u) < min (óo, ;) , 
by (4.2) and (4.7). 
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Therefore, as Theorem 1, we obtain (4.4). Moreover, it follows from (4.2), 
(4.5), (4.7), and (4.4) that 

, l~I 11;(0(, t))dx - 1;(0)/ 

1 { - } 1 :,; lfll F(u(-,t),0(-,t))-F(u,0) +jnfl1:2 (u(-,t))-I2 (u)I 

:,; l~I {F(uo, llo) - F(u,0)} + C1ll'v(u(•, t) - u)IIH' + C2 ll'v(u(·, t) - u)llt-, 

:,; J + 2C1 J + 2C2J6 , 

which completes the proof. 

4.2 PROOF OF THEOREM 2 AND COROLLARY 2 

(4.8) 

o 

In this subsection we consider the functional :Tb, and show that the dynami
cal stability of the stationary solution may be derived from the b-infinitesimal 
stability. 

Proof of Theorem 2 We first show the semi-unfolding-minimality 

1 - 1 
TnfF(u,0) = :Tb(u):,; int(u,11) (4.9) 

between the Lyapunov function F and the variational functional :Tb- Recall the 
definition (1.33) of :Tb- The monotone decreasing property of -4' implies that 

in the non-stationary state, where E(u, u,, 0) = b = E(uo, u1, llo)- Since -4' is 
convex, by using Jensen's inequality, we obtain 

Here, it follows from the definition (1.32) of 4' that 

1•· re) dT J.e -
-w(e.(0)) = - _ ---=r--( ) = _ 1;'(,)d, = 1;(0) - 1;(0), 

e.(B) e„ T fJ 
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where 8 E IR+ is a constant. Therefore, 

1 { 1 
Jb(u):,; jnj Jn (-<I>(e.(0)))dx + jnjI2(u) 

= l~I 1 l!(0)dx + l~II2(u) - 1:(0) 

1 -
= ,nt(u,0) - 1!(0). 

We also obtain 

- 1 
Jb(u) = -<l>(e.(0)) + jnjI2(u) 

I - 1 I -= 1.(0) + jnjI2(u) - 1.(0) 

1 - -
= l!1IF(u, 0) - 1:(0), 

where 0 = 0(b, u). Consequently, we observe the semi-unfolding-minimality 

1 - - 1 
jnjF(u,0) = Jb(u) + 1:(0):,; ,nt(u,0). (4.10) 

Then it follows from (4.10) and the non-increasing property of F with respect 
tot that 

.J.(u(-, t)) - .J.(u) :,; l~I (F(u(-, t), 0(-, t)) - F(u, 0)) 

:,; l~I (F(u0 ,0o)-F(u,0)). 
(4.11) 

Recall that u E V,, is an infinitesimally stable critical point of Jb- This 
means that there is Eo > O such that any E1 E (O, Eo/2] admits 60 > O such that 
ll'i7(u - u)IIH' < Eo and .J.(u) - Jb(u) < óo imply 

(4.12) 

Therefore, given E > O, we can take sufficiently small ó E (O, Eo/2] such that 

Jb(u(-, t)) - Jb(u) < min ( óo, ;) , 

by (4.11). 
Suppose that ll'i7(u(-, t) - u)IIH' = ó ($ Eo/2 < Eo) for same t > O. Then 

applying (4.12) for Eo = ó, we obtain ll'i7(u(•, t) - u)IIH' < ó, which is a con
tradiction. Thus it holds that ll'i7(u(-, t) - u)IIH' ,fa ó for any t ;=: O. Like in 
Theorem 1, we obtain (4.4), which compl_etes the proof. O 

Proof of Corollary 2 In the same way as Theorem 2, we obtain (4.10), 
(4.11), and (4.12). Then in the same fashion as in Corollary l, with the aid of 
(4.5), (4.6), and (4.7), we deduce (4.4) and (4.8), which completes the proof. O 
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4.3 PROOF OF THEOREM 3 

(i) To prove the assertion, we show that .J.(u) - .J.(u) < óo implies 

1 -1n10 (J9(u) - J9(u)) < ÓQ. (4.13) 

From the definition (1.33) of .7,, we have 

.J.(u) - .J.(u) 

= -<l? (b-I1(u)) <l? (b-I1(u)) I 2 (u)-I2 (u) 
1n1 + 1n1 + 1n1 

= <l?' (b-71'.I1(u}-(l-71)I1(u)) I,(u)-I,(u) I2(u)-I2(u) 
1n1 1n1 + 1n1 

__ 1 (b- 71'.I,(u) - (1 - 7,)I,(u)) _, I1(u) -I1(u) I2(u) -I2(u) 
- e. 1n1 1n1 + 1n1 ' 

and, therefore, from the monotone increasing pro perty of e; 1 , it follows that 

.J.(u) - .J,(u) 

=( G(b-) ( _ )e(b ))_1 '.I1(u)-I,(u) I2(u)-I2(u) 1'2 , u + i 1'2 , u 1n1 + 1n1 , 

where 7, E JO, l], i= 1, 2. Moreover, I1(u) 2: I1(u) and I1(u) S I1(u} imply 
that 8(b, u) S 8(b, u) = 0 and 8(b, u) 2: 8(b, u) = 0, respectively. Therefore, 

1; 10 (Jo(u) - J9(u)) S .J.(u) - .J.(u). (4.14) 

Thus inequality (4.13) holds. Since u EV,, is 0-infinitesimally stable, it follows 
from (4.13) that u is b-infinitesimally stable. O 
(ii) The assertion results immediately from inequality (4.14}. O 
(iii) It follows from a simple calculation, see (4.19) and (4.22), that 

d2 I Q,,,,(w, w)= ;r,.7,(u + sw) 
S s=O 

where 0 = 8(b, u) and 

R,,,,(w,w) 

1 d2 I = ~ -d 2J9(u+sw) +R,,,,(w,w) 
0jl1j S •=O 

1 
= Bll11 Qo,,,(w, w)+ R,,,,(w, w), 

(4.15) 

= 1~12(e;1)' c-1;tl) ( 1<2 (Qu, Qw)L, + Io W2,,(e(u)) . e(w)dx r 
2: o, 
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because 

_1 ,(b-I1(u))- 1 _ 1 O 
(e, ) _1_n_1 - - e:(0) - -0n'(0) > -

Thus, if u E V,, is 0-linearized stable, then u is b-linearized stable. O 

4.4 PROOF OF THEOREM 4 

(i) From (3.5), 1<1 + 1<20 > O, and the L•-estimate JlullH' :c, C'IIQullL' for 
ell iptic systems [1], it follows that ]0 is bounded from below and coercive. Fur
thermore, the !ower semi-continuity of Jo follows from the sub-critical growth 
rates (3.6) on H = H(-, 0) in the Sobolev sense. Then it is easy to show the 
assertion by a standard variational method. O 
(ii) Recall that V,, is a nonempty open set in HJnH2(!1), where b = E(uo, u1, Bo) 
and Bo > O. First, assumption (3.4) implies that Jb on V,, is bounded from below. 
More precisely, it holds that 

Thus, there is {u,} C V,, such that Jb(u,) --> :J;, where :J; = infuev, Jb(u) . 
Furthermore, {u,} is a bounded sequence in HJ n H 2(!1). In fact, when 
V,, is unbounded in HJ n H 2 (!1), Jb is coercive since we have •- = -oo, 
limsl-= <I>(s) = -oo, I1(u) ~ CJluJIH, - C, and I2(u) ~ -C for a con
stant C > O, which can be derived from assumption (3.4) and the L•-estimate 
IJullH' :', C'IIQullL'- Thus {u,} weakly converges to u' E Vb after passing to 
a subsequence. 

Hence, it suffices to show the !ower semi-continuity of Jb: 

Jb(u') :c, lim inf Jb(u,) = :J;. ,-= 
It holds that 

Jb(u,) - J'b(u') 

( b-I1(u,)) (b-I1(u')) 1 , = -<I> 1!11 + <I> 1!11 + jnf (I2(u,) -I2(u )) 

= ~I (I1 (u,) - I1 (u'))+ l~I (I2(u,) -I2(u')) 

= ~I { ~ (JIQu,IJ1,, -11Qu'll1,,) + 1n W1(•(u,)) - W1(,(u'))dx} 

+ 2;1 (IIQu,111 2 - IIQu'lli,) + l~I (ln W2(,(u,)) - W2(e(u'))dx), 
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where 

O< M · = op' (b - -y'.I1 (u,) - (1 - -y)T1(u;)) 
- ' 1n1 

__ 1 (b--y'.I,(u,)-(l--y)'.I1(u;))-I 
- e, 1n1 < +oo, 

and -y E [O, 1). Using the inequality 

liminfliQu;llh 2': IIQu'lli,, ,-oo 
we have 

lim inf .J,(u;) - .J,(u') ,-oo 
2': ~i (\1::!!!f k W1(c(u;))- W1(c(u'))dx) (4.16) 

+ l~I (\1::!!!f k W2(c(u;)) - W2(c(u'))dx), 

where O$ M' = lim inf;-00 M; < +oo. Prom Holder's inequality, we deduce 

k JW,(c(u;)) - W,(c(u'))I dx 

= k IW,,, ('Y;c(u;) + (1 - -r;)c(u*)) · (c(u;) - c(u'))I dx 

$ IIW,,, (-y;c(u;) + (1 - -y,)€(u'))IIL, llv'(u, - u')b, 

where i= 1, 2, 'Y; = -r;(x) E [O, 1), and 1/p+ 1/q = 1. We recall now the growth 
rate (3.2) with O $ K, < 6 and take q E (6/5, 6/(K, - 1)). Then p < 6 and 
(K, - l)q < 6 hold, and, therefore, it holds that 

k JW,(e(u;)) - W,(e(u'))I dx 

$ C'1 (lb;c(u;) + (1 --y,)e(u')llt/;/ .. ,,, + C'2) llv'(u; - u')b 

$ C, { (Mu')IIL<K,-,,, + lb; (c(u;) - c(u'))IIL<K, - ,,,t•-' + C'2} 

x llv'(u; - u')IIL• 

$ C'3 (iiv'u' 11:;;,1 .. ,>, + llv'(u; - u')lli/;/ .. ,,, + C'2) llv'(u; - u')b • 

Since the embeddings H 1(!1) '-' L"(l1) and H 1(!1) '-' L(K,-l)ą(l1) are compact, 
we have k JW,(e(u;)) - W,(e(u'))I dx-+ O. (4.17) 

It follows from (4.16) and (4.17) that .J, is ]ower semi-continuous, so that .J; = 
.J,(u') . O 



32 !RENA PAWLOW, TAKASHI SUZUKI, AND SOHEI TASAKI 

4.5 PROOF OF THEOREM 5 

Before stating the proof, we fix some notations concerning the linearized stabili
ties and the linearized operators. Let iJ > O be a constant and u E HJ nH2 (f!) a 
critical point of J8. Then the quadratic form in the definition of the 0-linearized 
stability is 

Qe,u(w, w)= ::2 Je(u + sw)'•=O 

= h (1<1 + 1<2iJJIQwl2 

- (V· { (W,,,.(e(u)) + iJW2, .. (e(u))) · e(w)}] · wdx, 

where w E HJ n H 2 (f!). We define the linearized operator ½,u by 

(4.18) 

½,u(w) = (1<1 +1<20)Q2w-'i7-{ (W1, .. (e(u)) + 0W2, .. (e(u))) · e(w)}. (4.19) 

We write the eigenvalues ofthis self-adjoint operator in L2 (f!), with the domain 

D(½,ul = { w E H 4 (f!) I w= Qw = o on en}' 

as µ 1 :,; µ2 :,; • • • with counting multiplicities. Then the 0-linearized stablity of 
u E Hl, n H 2 (f!) means the positivity of the first eigenvalue µ 1 since 

Q8 (w,w) = (½u(w),w) , (4.20) 
,u , L2 

where w E D(½ ul- Henceforth, Jet <f>1, c/>2, · · · be the corresponding L 2-

normalized eigenv~ctors. 
N ext, let b = E( u 0 , u 1 , 00 ) and u E V& be a critical point of J&- Then the 

quadratic form in the definition of the b-linearized stability is 

Q&,u(w,w) = dd:2.J&(u+sw)l,=D 

= J:- f (1<1 + 1<2iJ)IQwl2 
01n1 ln 

- (V· { (W1,,.(e(u)) + iiW2,,.(e(u))) · e(w)}] · wdx 

+ l~/2 (e;-1)' c-,~'t)) ((Qu, Qw)p + J, {'il W2,,(e(u))} - wdx r 
(4.21) 

where w E HJ nH2(f!) and iJ = 0(b, u)= e;-1((b-I1 (u))//f!I)- We define the 
linearized operator .C&,u by 

.C.&,u(w) = (1<1 + 1<20)Q2w - 'i7 · { (W1,,.(e(u)) + 0W2,,.(e(u))) · e(w)} 

iJ _1 , (b-I,(u)) ( + lr!I (e. ) _l_f!_I - Jn {'il. W2,,(e(u))} . wdx 

x ('il· W2,,(e(u))). 
(4.22) 
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We write the eigenvalues of this self-adjoint operator in L 2 (!1), with the domain 

D(Cb,u) = { w E H 4 (!1) / w= Qw = O on 8!1}, 

as ii-1 :::; ii-2 :::; · · with counting multiplicities. Then the b-linearized stablity of 
u E Vi means the positivity of the first eigenvalue µ,1 whenever 7J > O, because 
of the equality 

1 
Q,,u(w,w) = 7ilfll (C,,u(w),w)L' (4.23) 

for w E D(Cb,u)- Henceforth, let J,,, 4>2, · · · be the corresponding L2-normalized 
eigenvectors. 

Lemma 1 Let m = 1, 2, 

(i) Under the assumptions of Theorem 5 (i), the Junction J, defined by 

is real analytic on R,-m. 

(ii) Under the assumptions of Theorem 5 (ii), the Junction J, defined by 

J(r) := Jb (u+ tr,J,,), T = (r1 , .. • ,Tm) E IRm, 
i=l 

is real analytic at T = O. 

Proof (i) We take r• = (ri, • • • , r,;.) E IRm and E• > O arbitrarily. We put 

M = IIE(u)IIL~ + L (lr,'I + E*) 11•(4>.)IIL~-
i=l 

Here we note that u E HJ n H 2 (!1) and 4>, E HJ n H 2 (!1), i= 1, · · ·, m, are 
given functions and that their regularity results from the standard elliptic theory 
with the help of the growth rates (3.7). It fol!ows from the real analyticity of 
H(·,8) that there exist constants Ci, C2 >Osuch that 

(4.24) 

for any l•I < M and lal = l, 2, · · ·. Then, for any TE lRm satisfying Ir - r*I < 
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g•, it holds that 

/a; 1H(•(u+t,r,\b,),e)dx/ 

= /1 aialH (• (u+ t,r,\b) ,e) fi •(\b,)°'dx/ 

~ 1 /aialH (• (u+ t, r,\b,) ,0) I fi 1•(\6.Jla' dx, 
where a= (a1 , ···,am) is a multi-index. Since the ineąuality 1-r - -r•I < g• 

implies that 

m 

~ /l•(u)/IL= + L (lr;I + 0 •) 11•(\6.)IIL= = M, 
i=l 

we obtain 

by using (4.24). On the other hand, it follows that 

a,. (IIQ ( u+ t, r,\b,) IL) = 1 ( Qu + t,r,Q\b,) · (Q\b;)dx, 

ar,ar,, (IIQ (u+ t, r,\b,) IL) = k Q\b, · Q\b,,dx, 

a;(/IQ(u+t,r,\b,)IL) =0, lal~3. 

Hence j is real analytic on !Rm. O 
(ii) First, in the same way as (i), we can show that the functions i, , defined by 

are real analytic on !Rm. Then j is real analytic at -r = O because of il> E 
cw((s- , s+), IR), derived from the inverse function theorem. O 



STRAJN-GRADIENT TYPE THERMOVISCOELASTIC SYSTEM 

Proof of Theorem 5 (i) It holds for w E HJ n H 2 (f!) that 

19(u + w) -19(u) 
1 = 2QB,u(w,w) + o(ll'vwllk,), 

= ½ f>, l(w, </>;}L,12 + o(ll'vwllk,), ll'vwllH' « 1. 
i=l 

35 

(4.25) 

Suppose that the critical point u E HJ n H 2 (f!) is non-degenerate, that 
is, the linearized operator ½ does not have the eigenvalue O. Then µ 1 > O 
because u is a loca! minimizetof 19. Thus there is C > O such that 

Q8,u(w,w) ~ Clł'vwllk,. (4.26) 

Actually, we have 
Q8,u(w,w) ~ µ11łwllŁ,, 

and there exist C1 , C2 > O such that 

QB,u(w, w)~ Cillwllk, - C2ll'vwll~, 
because of the LP-estimate llullH' ś C'IIQullL'. Then we obtain (4.26) by 
using Gagliardo-Nirenberg's inequality. 

Therefore, from (4.25) and (4.26), there exists O < Eo « 1 such that any 
01 E (O,so/4] admitsóo > Osuch that ll'vwllH' < 2eo and 18(u+w)-19(u) < 
Óo imply IJ'vwllH' < 01, which means that u is 0-infinitesimally stable. 

Suppose that the critical point u E HJ n H 2(f!) is degenerate with the 
multiplicity m = 1, 2, • • • : 

O = µ1 = · · · = µm < µm+I Ś µm+2 Ś · · · · 

As in the non-degenerate case, it follows from {4.25) that there exists O< eo « 1 
such that any 01 E {O, eo/4] admits ó1 > O such that ll'vwllH' < 2so and 
18(u + w) - l 8(u) < ó1 imply 

{4.27) 

Here and henceforth, we set Si= (w, </>t)L2, !Q = ~:,1 si'Pt, and W= L:m+l si<f:,i = 
w-w. 

A-; u E HJ n H 2(f!) is a ]ocal minimizer of 1/i and 18 is continuous on 
HJ n H 2 (f!), there is "to >Osuch that Oś r1 ś r2 ś E'o implies 

m 

18(u + r1w) ś 18(u + r2w) for any w= L s,q,,, (4.28) 
i=l 

where s = (s;),=1, .. ,m E s;n-1 and s;-1 = {s E llłm I isl = r }. We retake 
sufficiently small eo E {O, "to]. Given 01 E (O, so/4], 

18 (u+ f s,q,,), s E s;:1,}, 
i=l 
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has a global minimizer s = ,:1s/2 E s-;;121, because s-;:121 is compact. Let 

§ = (Si)i=ł,· .. ,rn and 'W= L:1 sią>i. 
Then the real analyticity of j at -r = O, proven by Lemma 1 (i), implies 

= ( m )j 
J9 (u+rw)-J,(u) = i(rs)-i(o) =~Ii t?aT, i(o), lrl « 1. 

Assume that 

1 ( m )' _ 
1 L'•°'· J(O) = O 
J i=l 

(4.29) 

for any j = 1, 2, · · · . Then, by the identity theorem for real analytic functions, 
we have 

j (rs) = i(O) (4.30) 

for any r E IR. On the other hand, it holds that 

Thus, the coercivity of J9 implies that 

j (rs) -, +oo, lrl -, +oo, 

which contradicts (4.30). Hence, (4.29) does not hold, that is, there is j = 1, 2, 
· · · such that 

/1, = 4 (f ,,aT,)' i(o) -1 o. 
J i=l 

Therefore, there is J = 4, 6, 8, · · · such that 

and µ, = O for any j < J, 
because u is a !ocal minimizer. Here, for any k = l, 2, · · ·, it holds that 

J9(u + w) - J9(u) 

where 

k l 
= L 1 d'J9(u)[w, ···,w]+ o(llv'wł1~1), llv'wllH' « l, 

i=l J. 

. d' I d1 J9(u)[w, ••· ,w}= -d . J9(u+sw) , 
sJ •=O 

j = l , 2, 

is a j-linear form. Then, it follows from (4.31) that 

J,(u + rw) - J,(u) = {d1J,(u)[rw, ... ,rw) + o (1r11) 
J. 

= /1;1rl1 + o (irl1) , irl « 1. 

(4.31) 
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More precisely, there exists O < r' < 1 such that 

(4.32) 

for any r E IR satisfying lrl ::; r'. Let R' > O be the supremum of r' satisfying 
(4.32). We recall that Eo E (0,l'o] is sufficiently small and that IRm is finite
dimensional. Then we can assume e0 ::; R•. 

Hence it fellows from (4.28) and (4.32) that 

for any :!!!. = I:;;:1 s;q>; satisfying Ei/2 ::; lsl < Eo. Therefore, there exists ó2 > O 
such that J9(u + :!!!_) - J0(u) < c52 implies lsl < Ei/2. Here it holds that 

J9(u+ w) - J9 (u + :!!!_) 

= 1 f µ; l(w, ą,;)L,1 2 + o(ll'i7wllkd, ll'i7wllH• « 1, 
i=m+l 

where µ; and ą,; denote the eigenvalues and the corresponding L 2-normalized 
eigenvectors of ½,u+,,,_, respectively. From the standard perturbation theory of 
eigenvalues [18], we have µ; > O for i ~ m + 1, because Eo > O is sufficiently 
small. Thus J9(u+w)-J0 (u +:!!!_)>O, and therefore, J9(u+w)- J9(u) < c52 

implies 

lsl<l (4.33) 

As a result, we obtain the 0-infinitesimal stability of u by inequalities (4.27) 
and ( 4.33). O 

(ii) The proof is analogous to that of (i). First, similarly to (4.25), it holds for 
w E HJ n H 2 (/J) that 

Jb(u + w) - :1,(u) 

1 2 = 2Qb,u(w, w)+ o(ll'i7wllH•), 

1 = 2 

= 20lfłl ~ii,/ (w,~,) u/ + o(ll'i7wllk,), ll'i7wllH• « 1, 

where 0 = 8(b, u) > O. Then in the same way as (i), recalling Lemma 1 (ii), we 
can prove the assertion. O 
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5 EIGENVALUE PROBLEM 

5.1 GLOBAL PROPERTIES 

When we ignore the positivity of the temperature 0 and regard the total energy 
b E IR as the eigenvalue, the stationary problem {1.25), expressed as 

1 (K1 + K20) Q2 u =V· H,,(e(u),0) 

u= Qu=O 

b = TIIQull},, + k H(e(u), 0) - H,9(e(u), 0)0dx, 

in n, 
on an, (5.1) 

is a nonlinear eigenvalue problem with non-loca! terms. The eigenvalue b E IR is 
also called the bifurcation parameter. We consider the total set of (b, u) which 
solves the stationary problem. On the other hand, for given any stationary 
temperature 0 > O, we can consider the loca! problem ignoring the total energy 
conservation (5.l)a. In this case, the total set of (0, u) which solves the !ocal 
stationary problem is to be investigated. It is rather easier to analyze the 
!ocal problem because there is no non-loca! term. Moreover, the main results 
formulated in Section 3 and summarized in Table 1 provide a bridge between 
these two solution sets. 

Henceforth, we drop the condition 0 > O. Problem (5.1) can be rewritten as 

{
(K1 +K20)Q2u = V ·H,,(e(u),0) 

u=Qu =O 

0= 0(b,u), 

in n, 
on an, {5.2) 

where b E IR is regarded as the bifurcation parameter and 0 = 0(b, u) is defined 
by {1.29). We denote the solution set of this non-loca! problem and that of the 
!ocal problem 

{ (K1 + KoO) Q2u =V· H,,(e(u), 0) 
u=Qu=O 

with the bifurcation parameter 0 E IR as 

in n, 
on an, 

S := { (b, u) I classical solutions to (5.2)}, 

SL :=s { (0, u) I classical solutions to {5.3)}, 

respectively. From the strict convexity of 0 ,_. -H(-, 0), the mapping 

(b, u) ES {0,u) E SL, 

defined by 0 = 0(b, u), is a homeomorphism. 

{5.3) 

Note that u= O is the trivia/ solution to (5 .2). Namely, there is the trivia! 
branch {(b,O) I b E IR} in the (b,u)-space while {{0,0) I 0 E IR} is the trivia! 
br anch in the (0, u )-spa.ce. Any other solution is said to be a nontrivial solution. 
Concerning the nontrivial solution, we show the upper bound of the temperature 
0. 
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Theorem 6 Assume that H = H(e,0) takes the form (1.4)-(1.5} and 

W2,.(e) · E > O, Ei O. (5.4) 

Let (0, u) E lll'. x HJ n H 2 (f!) be a nontrivial solution to (5.3). Furthermore, 
assume that there is a constant C1 > O such that 

W1,.(e). E > -C1 
W2,.(e) · • -

for any • i O. Then there exists a constant 0' > O such that 

Proof To prove the a.ssertion, we multiply scalarly (5.3)i by u. Then it holds 
that 

1<1 + 1<20 2 r { - } --2-IIQullL' = - Jn W1,.(<(u)) + BW2,.(<(u)) · e(u)dx 2': O. (5.5) 

Hence we obtain 

In W1,.(<(u)) · <(u)dx _ 
-C1 < --i"'-=~~~~~- < -0 - In W2,,(<(u)) · <(u)dx - ' 

that is, 0 ś C1 = 0,. • 
So far we have described the common properties which can be observed in 

the energetic and the entropie ca.ses. Concerning the a priori bound of the 
stationary solution, there is a difference between the energetic case, ,c1 > O, 
1C2 = O, and the non-energetic one, ,c1 ;?: O, 1C2 > O. 

Theorem 7 Assume that H = H(e,B) takes the form (1.4)-(1.5} and (5.4). 
Let (0, u) E lll'. x HJ n H 2 (f!) be a nontrivial solution to (5.3) and 

{
-00 

,= -~ 
1<2 

if "1 > o, 1<2 = o, 
if 1<1 2': O, 1<2 > O. 

Assume that any 0, >, admits a constant C2 (0,) such that 

{W1,.(<) +0,W2,.(<)} · • 2': -C2 

Jor any • E Sym(d,IR). Then, any 0, >, admits a constant C(0,) > Osuch 
that 0 2': 0, implies 

llv'ullH• ś C(0,). 
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Proof It follows from the assumption that 

- {W1,,(€(u)) + 0W2,,(€(u))} · E(u) S - {W1,,(E(u)) + 0, W2,,(<(u))} · E(u) 

S C2. 

By (5.5), we obtain 

"'1 ~ ""811Qull},, S C2łl11, 
which completes the proof. O 

If we assume the growth rates (3.7), then the a priori bound of ll'ilullH' 
implies that of llullc•+•, a, E (O, 1), by the elliptic regularity. By Theorems 6 and 
7, we have Figure 5.1 which describes the upper bound of the temperature and 
the a priori estimate of the stationary solution in the (0, u)-space. In Figure 5.1, 
the horizontal and the vertical axes denote 0 and u, e.g. IIVullH', respectively. 
Namely, the hatched portion is the region where there is no nontrivial solution. 
In particular, we note that in the entropie case, ~1 = O, f'i/i > O, the positivity 
of the temperature does not signify the existence of an a priori bound of the 
stationary solution. 

0' 0 

Figure 5.1 Bounds of stationary solutions in the (0, u)-space 

5.2 ONE-DIMENS!ONAL CASE 

Henceforth, we consider the stationary solution in the one-dimensional case, 
d = l and l1 = (O, I) with I > O. Note that the energetic case includes the Falk 
model on shape memory alloys. 

We enumerate assumptions on the elastic energy H = H(,, 0). First, we 
always assume that H = H(,, 0) takes the form (1.4)-(1.5) with f,, W1 , W2 E 
C2(JR, JR) satisfying 

OH,ee < O, (5.6) 

which is expressed equivalently as 
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where e. = e.(0) is a C 1-function defined by e.(8) = J.(8) - 7JJ;(/i). We also 
assume that 

W1(0) = W1,,(0) = O, 

W2, .. (0) > O, W2(0) = W2,,(0) = O, 

Then W2 2 O. We may assume also that 

W12>:-C 

W2,,(<) # O, <#O. 
(5.7) 

(5.8) 

for a constant C 2 O. Furtheremore, it follows from the isotropic requirement 
that 

W,(<)= W,(-<), i= 1, 2. 

The bifurcation problem (5.2) can be written as 

j(i<1 + i<28)8!u = {W1,,(8xu) + 8W2,,(8xu)}, 
u= 82u = 0 

b = ~ll8;ulli, + Le.(8) + r' W1(8xu)dx, 
2 Jo 

in (O, ł), 
on {O, ł}, 

(5.9) 

(5.10) 

where b E IR is regarded as the bifurcation parameter, e.(0) = J.(0) - 0J;(0), 
and i<1 = 1<1(-"A + 2µA)2, i<2 = 1<2(-"A + 2µA)2. We denote the so!ution set of 
this non-loca! problem and that of the loca! problem 

{ (i<1 + i<28)8!u = {W1,,(8xu) + 8W2,,(8xu)} x 
u= 8;u = O 

with the bifurcation parameter 0 E IR as 

in (O, ł), 
on {O, ł} 

S := {(b, u) I classical solutions to (5.10)}, 

SL := { (/i, u) I classical solutions to (5.11)}, 

respectively. Then the mapping 

(b,u)ES ,_. (8,u)ESL, 

defined by 0 = 0(b, u), is a homeomorphism. 

(5.11) 

(5.12) 

By using the abbreviation < = <(u), that is, < = <(x) = 8xu(x), we can see 
that the problem (5.10) is reduced to 

j-(i<1 + i<28)<xx = -W1,,(<) -8W2,,(<) 
€3: = o 

8 = 0(b,<), l •dx = O. 

Here 0 = 0(b, <) is given by 

in (0,1), 

on {O, ł}, 

E>(b, <) = e;1 ( b -7i(<)), i1(<) = ~ll•xllŁ, + l W1(<)dx. 

(5.13) 
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lf (b, ,) solves (5.13), then the corresponding solution (b, u) E S to (5.10) is 
given by u(x) = J,;' ,(x')dx'. Similarly, the problem (5.11) may be reduced to 

,, = o on {O, ł}, (S.l4) !-(i<1 + i<:20),., = -W1,,(,) - 0W2,,(<) in (O, ł), 

1' ,dx = O. 

If (0, ,) solves (5.14), then the corresponding solution (0, u) E SL to (5.11) is 
given by u(x) = J,;' <(x')dx'. 

The quadratic form in the definition of the 0-Iinearized stability, see (4.18), 
is written as 

Q9,u(w,w) = ::2J9(u+swil,=O 

I 

= 1 (i<,+ i<20)l8,,pl2 - (W,,.,(<)+ 0W2,.,(,)) ,p2dx, 

(5.15) 

where, = 8,u, 'I'= 8,w E H 1(0, I). We define the linearized operator½,, by 

½,,('!') = (i<1 + i<20)8;,p - (W1, .. (,) + 0W2, .. (,)) 'I'· (5.16) 

Then the 0-linearized stability means the positivity of the first eigenvalue of this 
self-adjoint operator in L2 (0, I), with the domain 

D(½,,) = { 'I' E H2(0,I) /'I',= O on {0,1}, l ,pdx =O}, 

because of 
Q9,u(w,w) =(½,.('!'),'I') L' · (5.17) 

Similarly, the quadratic form in the definition of the b-linearized stability, see 
(4.21), is written as 

d2 I Qb,u(w,w) = ds2.Jb(u+sw) ,=O 

1 r' - 2 ( - ) 2 = 01 Jo (i<1 + i<-20)18,,pl - w,, .. (<)+ 0W2, .. (<) 'I' dx 

1 -1,(b-i1(•))(- [1 )
2 

+ 12 (e, ) --1-- 1<2 (8,,,8,,p)L, + Jo W2,,(<),pdx , 

where 0 = 0(b, u). We define the linearized operator f.b,, by 

f.b,,('I') =(i<,+ i<-20)8;,p - (W1, .. (,) + 0W2, .. (,)) 'I' 

+ i (e;')' e-fi(<)) (i<-2 (8,,, 8,,p)L, + l W2,,(,),pdx) 

X (-i<.28;,+ W2,,(<)). 

(5.18) 

(5.19) 
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Then the 1>-Iinearized stability means the positivity of the first eigenvalue of this 
self-adjoint operator in L2(0, !), with the domain 

D(Lb,,) = { ,p E H 2 (0, ł) / 'Px = O on {O, ł}, l ,pdx =O}, 

because of 

Q,,u(w, w)= 'ft ( Lb,,(,p), ,p) L'. (5.20) 

As in (4.15), we observe that 

d2 I Qb,u(w, w)= ;r,.Jb(u + sw) 
S s=O 

1 d2 I . = ~ -d 2 J9(u+sw) +Rb,,(,p,,p) 
01 s •=0 

(5.21) 

1 • 
= OlQ6,u(w,w) + Rb,,(,p,,p), 

where 

· 1 _1,(b-I1(•))(- 1' )2 
Rb,,(,p,,p) = 12 (e. ) --1- "-2 (8x<,8x,P)L' + 

0 
W2,,(<),pdx 2'. O 

because 

( _ 1)' (b-i1(•)) = _l_ O 
e. l e~(O) > · 

We formulate now several results concerning stationary one-dimensional so
lutions. The proofs of these results are presented in Subsection 5.3. 

Theorem 8 Assume (5.7) and (5.9). Let (b.,,.) E IRxC2 (0,ł) beany nontriv
ial solution to (5.13). Then in any sufficiently small neighborhood of (b., ,.), 
solutions to (5.13} generate a unique branch (one-dimensional manifold} in 
IR x c2 (0, tJ. 

Lemma 2 Assume (5. 7) and (5.9). Then the following facts hold. 

(i) Let (b., <,) E IR x C2 (0, ł) be any nontrivial solution to (5.13}. Jf the lin
earized operator Lb.,,., defined by (5.19}, has the eigenvalue O, then the 
eigenfunction i,= J(x) of Lb.,,. associated with the eigenvalue O satisfies 

(5.22) 
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(ii) Let (0., ,.) E IR x C2[0, I] be any nontrivial solution to {5.14}. ff the lin
earized operator½.,,., defined by {5.16}, has the eigenvalue O, then the 

eigenfunction ,f; = ,f;(x) of½.,,. associated with the eigenvalue O satisfies 

Lemma 3 Assume (5. 7) and {5.9). Then the following facts hold. 

(i) Let (b., ,.) E IR x C2 [0, I] beany solution to {5.13}. ff the linearized operator 
f.b.,,., defined by {5.19}, has the eigenvalue O, then it is simple. 

(ii) Let (ii.,,.) E IR x C 2[0, I] be any solution to {5.14). Then any eigenvaule 
of the linearized operator½.,,., defined by {5.16}, is simple. 

Theorem 9 Assume {5. 7). The bifurcation points on the branch { (b, O) J b E IR} 
consisting of the trivia/ solutions to (5.13} are b = b;, where 

b; = I (e.(0;) - W1 (0)), 

li;= 
12w,, .. (O) + j2rr2i<1 

12W2, .. (0) + j2rr2i<2' 

(5.24) 

j = 1, 2, · · ·. In a neighborhood of the bifurcation point (b;, O), the bifurcated 
branch consisting of solutions to {5.13} can be described as follows: 

C; = { (b(s), e(s)) E IR x C2 [0, I] I sE I}, e(s) = ,1,; + z(s), 

where I is an open interval containing O, b(O) = b;, z(O) = ż(O) = O, 

a - /2 j,rx 
b:I-+ IR, z:I-+ Z, ·= 8s' ,/;;(x) = y1 cos 1 , 

and Z is a complement of span { ,1,;} in C 2 [0, I]. Moreover, h(O) = O and 

.. j2,r2{_ e~(li;) • - • 
b(O) = w,, .. (O) + 12 1<1 - -2- (a, W,(O) + 0;8. W2(0)) 

( W2, .. (0) + j 2:?2 )-
1
}. 

if e. E C3 (1R), W1, W2 E C4(1R). 

(5.25) 

Theorem 10 Assume (5. 7). Let u E V,, be a critical point of :J, satisfying 
Qb,u(w, w) 2': O for any w E HJ n H 2(0, I). Then u= O or u has a definite sign 
in (O,l). 

Aanalysis similar to that in the previous subsection allows to conclude the 
following facts. 
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Theorem 11 Assume (5. 7) and (5.8) . Let (0, ,) be a nontrivial solution to 
(5.14). Then there exists a constant 0• > O such that 

Theorem 12 Assume (5. 7) and (5.8). Let (0, ,) be a nontrivial solution to 
(5.14) and 

'Y = {=; 
1<2 

i/ K1 > 0, K2 = 0, 

i/ K1 2: 0, 1<2 > 0, 

Assume, furthermore, that any 0, > 'Y admits a constant C1 > O such that 

W,(,)> -C 
W2(e) - I, (5.26) 

Then any 0. > 'Y admits a constant C(0.) such that 0 2: 0·. implies 

In the case i<2 = O, these resu]ts has been proved in [34). Concerning the 
stationary solutions, see also [35) for the boundary condition u, = a~u, = O on 
{O, I}, and [15) for the Falk model 

where n 1 , n 2 , <>3, and the critical temperature 0c are positive physical constants. 
We are naw able to draw the bifurcation structure by means of the above 

presented theorems together with the main results formulated in Section 3. 
First, the bifurcation points from the trivia! branch {(b,O) I b E IR} to (5.10) 
are b = b;, j = l, 2, • • •, given by (5.24). In the (0, u)-space, the associated 
bifurcation points are 0 = 0;, j = l, 2, • • ·, also given by (5.24). Here, 

0;l {=: 
"' 

if 1<2 = o, 
if K2 > 0, 

as j __, oo. Considering the typical case f,(0) = -c,,0log0, we have e.(0) = 
J.(0) - 0J;(0) = c,,0. If we define e.(0) = cu0 as a function on IR and a.ssume 
W1 (O) = O, then we also have 

{
-00 

b;l -~ 
"' 

see Figures 5.2 and 5.3. 

if K:2 = o, 
if 1<2 > O, 

Next, from Theorem 8, the total set of the stationary solutions with the bi
furcation parameter b E IR is composed of the trivia] branch and the nontrivial 
branches which may intersect only the trivia! branch. Such a structure observed 



46 IRENA PAWLOW, TAKASHI SUZUKI, AND SOHEI TASAKI 

0(b,u) 
--+ -00 

S1 

So 

··············---~----• 
- 00 +-- ... ii, ii, 

Figure 5.2 Bifurcation diagrams in the energetic case 

s2 

Figure 5.3 Bifurcation diagrams in the non-energetic case 

in the (b, u)-space is also the case in the (0, u)-space by virtue of the homeo
morphism (5.12). It can be directly proven as in Theorem 8. Furthermore, 
any nontrivial branch consists of nontrivial solutions which have j - 1 nodal 
zeros, j = 1, 2, • • • , whose number are invariant along the branch by a standard 
argument concerning the number of nodal zeros . More precisely, we have the 
following. 

Corollary 3 Assume (5. 7} and (5.9). Then the Jollowing facts hold. 

(i) ThesolutionsetS to (5.10} iscomposedofthetrivialbranch{(b,O) I b E IR} 
and the nontrivial branches which may intersect only the trivia/ branch at 
b = b,, j = 1, 2, · · ·, given by (5.24). 

(ii) The solution set SL to (5.11) is composed of the trivia/ branch {(0, O) I ii E 
IR} and the nontrivial branches which may intersect only the trivia/ branch 
at 0 =ii,, j = 1, 2, · · ·, given by (5.24}. 

On the other hand, Theorem 12 (or Theorems 6 and 7) ensures the upper 
bound 0• < +oo of the temperature 0 for the existence of the nontrivial solution 
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and the a priori estimate J!,(u)IIL- :,:; C(O,) for the solution (0, u) satisfying 
li 2'. li,. Consequently, we can assert the following, see [30]. 

Corollary 4 Under the assumptions of Theorem 9 and Coro/lary 3, any non
trivial branch belonging to the solution set SL to {5.11} is unbounded in the 
sense that 0 --> -oo i/ 1<.2 = O {energetic case) and 0 --> -Ki/ 1<.2 i/ t<.2 > O 
{non-energetic case). In other words, any nontrivial branch belonging to the 
solution set Sto {5.10} is unbounded in the sense that 0(b, u)--> -oo i/ t<.2 = O 
(energetic case) and 0(b, u)--> -1<.i/1<.2 if 1<.2 > O {non-energetic case). 

Let us take into consideration the stability of the stationary solutions and 
the positivity of the corresponding temperature, li = 8(b, u) > O. In the case 
b < b1 the trivia! solution u = O is not linearized stable so that there is a 
nontrivial global minimizer of .:7,. In view of (5.25) in Theorem 9, we can see 
that there arise both cases of super- and sub-critical directions of the bifurcated 
branch from (b1, O) which produce stable and unstable solutions. Note that any 
other bifurcated object consists of nodal solutions, which are therefore unstable 
by Theorem 11. We note also that any !ocal minimizer has a definite sign by 
Theorem 11. 

Same physical parameters comply with the sub-critical condition, b(O) > O 
for (5.25) (see e.g. [11, 5}). Moreover, the temperature 01 = 8(b1, O) at the first 
bifurcation point is often positive. In this case, the temperature 0 = 8(b, u) is 
positive at least near the first bifurcation point (b1, O). 

Henceforth we focus on the first branch bifurcated from (b1, O) and suppose 
b(O) > O for (5.25) and 01 = 8(b1, O) > O. Then we can obtain Figures 5.2 and 
5.3 as possible bifurcation diagrams. 

From Corollary 4, the bifurcated branch has at least one turning point in 
the (0, u )-space and the temperature 0 finally goes to -oo in the energetic 
case, 1<.2 = O, and to -1<i/ 1<.2 in the non-energetic case, 1<2 > O. Hence by 
the comparison of the bifurcation structures to (5.10) and (5.11) along with 
Theorem 3, which implies the b-stability of any O-stable critical point, we can 
say that the bifurcated branch has at least one turning point also in the (b, u)
space. 

More precisely, we can parametrize the branch emerged from (b1, O) by 
s E IR such that (b(s),u(s)) = (b(so),u(so)), (b(s),u(s)) = (b(si),u(s1)), and 
(b(s), u(s )) = (b(s2), u(s2)) denote the bifurcation point, the first turning point 
in the (b, u)-space, and the first turning point in the (0, u)-space, respectively. 
Here s0 = O, s1 > O, s2 > O, and, in particular, (b(O), u(O)) = (bi, O) . The 
temperature li= 0(b(s), u(s)) is non-decreasing in (O, s2), and so there is ,5 > O 
such that 0(b(s), u(s)) > O fors E (s1, s2 + ,5) since li, = 8(b1, O) > O. Then we 
obtain s1 :,:; s2 by Theorem 3. 

We can show that the inverse assertion of Theorem 3 does not hold in 
generał by presenting a counterexample. It follows from Lemmas 2 and 3 
that Rb(si),,(u(,i)) > O and Rb(,,),,(u(,,)) > O in (5.21). Hence the turning 
point (b(s2), u(s2 )) is not li-linearized stable (degenerate) but b-linearized sta
ble, which is a counterexample to the inverse assertion of Theorem 3. Thus we 
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have s1 < s2, see Figures 5.2 and 5.3. Furthermore, {(b(s), u(s)) Is E (s1, s2)} 
consists of not 8-linearized stable but 1>-linearized stable ( or degenerate) solu
tions. 

Thus, from 01 = 0(b1 ,0) > O, there is ó >Osuch that (b(s),u(s)) satisfies 
0(b(s), u(s)) > O and is 1>-linearized stable (or degenerate) for a.nys E (s1, s2+ó) . 
By virtue of Theorem 2 or Corollary 2, there is a dynamically stable nontrivial 
solution to (1.25) which coexists with the stable trivia! solution u= O. Conse
quently, there arises a hysteresis related to the change of stable stationary states 
as b decreases and increases. The existence of the hetero-clinic orbits and the 
hysteretic cycle may be suggested by the bifurcation diagram. 

5.3 PROOFS 

Proof of Lemma 2 (i) Let <. = <.(x) be j-times symmetric, j = 1, 2, 
This means that ,/,1 = 8,,. = 8,,.(x) has exactly j - 1 nodal zeros x = 1/j, 
21/j, · • ·, (j - 1)1/j in (O, I). Then the isotropic assumption (5.9) implies that 
,. = ,.(x) has exactly j nodal zeros x = 1/(2j), 31/(2j) , • • •, (2j - !)l/(2j) in 
(O, I). 

Suppose 

i<2 (a,,.,a,{;t, + l W2,,(<.)'if;dx = O. 

In view of (5.16) and (5.19), we have 

f.b.,,. ('if;) = ½.,,. ({,) = 0, 

that is, 

{ -(~1 + i<2B)8;{, +(W,,,.(<.)+ B.W2, .. (,.)) {,=O 

8,,/, = O 

in (0,1), 

on {O, I}, 

where B. = G(b., <.). On the other hand , differentiating (5.13) with respect to 
x , we have 

{
-(i<1 + i<28)8;,/,1 + (W11 .. (<.) + B.W21 .. (<.)) 'Pl= o 
'Pl= 0 

in (O, l), 
on {O, ł} 

for V'!= 8,, •. As ,/,1 = ,/,1 (x) has a definite sign in (O, 1/j), it follows from (5.9) 
and Sturm's comparison theorem (see e.g. [6)) that {, = {,(x) has exactly one 
nodal zero x = l/(2j) in (O, 1/j). Without loss of generality, we assume that 
{,>O and,. > O in (O, ł/(2j)) and that {, < O and,. < O in (1/(2j), 1/j). Then 
it holds that 8,,. < O and a,{, < O in (O, 1/j) . Moreover, W2,,(,.){, > O in 
(O,l/j) \ {1/(2j)} from (5.7). Hence by a reflection argument, we have 

i<2 (a,,., 8,{,) + (1 W2 ,(,.){,dx 
L'(O,I) } 0 ' 

1/j 

=ii<2 (a,,. ,a,{,\,(o,i/;J +j 1 W2,,(,.){,dx > O, 
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which is a contradiction. This completes the proof. O 
(ii) In the same way as (i), we may prove the assertion by a contradiction. O 

Proof of Lemma 3 (i) If •• = O, then J~ W2,,(<,)1,dx = O, and, therefore, 
the simplicity of any eigenvalue follows from the Sturm-Liouville theory. Thus 
we assume that (b., <,) is a nontrivial solution. Let V,1 and V,2 be eigenfunctions 
of f.b.,,. associated with the eigenvalue O: f.b.,,. (V,1 ) = f.b.,,. (V,2) = O. It 
follows from Lemma 2 that 

i<2 (a,,.,a,-i,,t, + l W2,,(<.)'ifJ1dx ,i o, 
l 

i<2 ( 8,<., 8,V,2) L' + 1 W2,,(<,)'ifJ2dx # O. 

The n there exist nonzero constants c1 and c2 such that 'if,3 = c1 'if,1 + c2'ifJ2 satisfies 

Hence it holds that 'if,3 = O by Lemma 2, that is, V,, and 'ifJ2 are linearly depen
dent. O 
(ii) The assertion is obvious thanks to the Sturm-Liouville theory. o 

Proof of Theorem 8 If f.,.,,. does not have the eigenvalue O, then the 
assertion follows from the implicit function theorem. Thus suppose that f.,. ,,. 
has the eigenvalue O. From Lemma 3, it is simple. Let ef, be the eigenfunction 
associated with the eigenvalue O: f.b.,,. (V,) = O. Then it holds that 

Ker(f.,.,,.) = { a'if, / a ER}. 
Define the operator IV : R x R x X -+ C[O, I) by 

IV(s,1,v) 

where 

= -(i<1 + ii.20)8;(<. + s'if, + v) - W1,,(<. + s'if, + v) 

- B(b. + '/, •• + s'if, + v)W2,,(<, + s'if, + v), 

X={vEC2 [0,1] Jlv'if,dx=O, v,=0 on{O,l}}-

Zeros of IV have one-to-one correspondence with solutions to (5.13) and it holds 
that IV(O, O, O) = O. Then the linearized operator 1Vt7,v)(O, O, O) : RxX-+ C[O, I). 
given by 

IVt7,v)(O,O,O} = C~(~.}I (-ii.28;<.+ W2,,(<.}) f.,.,,,) • 
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is a homeomorphism by the aid of Lemma 2, where 0. = G(b., ,.) and e;(0.) > 
O. Therefore, it follows from the implicit function theorem that for JsJ « l, 
there exists a unique C1 mapping 

s ,_, (-y(s), v(s)) E IR x X 

such that 
-y(O) = O, v(O) = O, \J!(s, -y(s), v(s)) = O. 

Consequently, 
C' = { (b(s), ,(s)) E IR x X J JsJ « l} 

is the unique branch in the assertion, where b(s) = b.+-y(s), ,(s) = ,.+s;&+v(s). 
o 

Proof of Theorem 9 The bifurcation points from the trivia! branch { (b, O) J 

b E IR} are obtained by the standard bifurcation theory from simple eigenvalues, 
see Crandall-Rabinowitz [7]. In fact, we have 

Ker ( C;) = { a:;&; I a E IR} , 

Ran ( C;) = { v E C[O, I] I l v;&;dx = O} , 

H,.,(b;, O);&; = ~2·='.(0) ;&; ~ Ran (c;), 
e.(0;)1 

;&;(x) = ff cos j~x, 

where C; = Cb,,o and 

H(b, ,) = -(i<1 + i<20(b, ,))8;, + W1,,(,) + G(b, ,)W2,,(,). 

Next, we consider the branch C; emerged from (b;,O). For (b(s),,(s)) EC;, 
it holds that 

H(b(s), ,(s)) = -(i<1 + i<20(s))8;,(s) + W1,,(,(s)) + 0(s)W2,,(,(s)) = O, (5.27) 

where 

We note that 

0(s) = EJ(b(s), ,(s)) = e;1 (/J(s)), 

/J(s) = b(s) - 7,(,(s)). 

0(0) = 0(b;,O) = e;1 (t) = 0;, /J(O) = f· 
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Differentiating (5.27) with respect to s, we have 

O= -(i<1 + i<,O(s))8;(-ł,, + ż(s)) - i<,"0(s)8;e(s) + +W1 ,,.(-ł,, + ż(s)) 
(5.28) 

+ O(s)W2,,(<(s)) + O(s)W2,,.(<(s))(-ł,, + ż(s)), 
where 

os=~ ( ) e~(O(s))' 

/J(s)= T { b(s) - i<1 l 8,e(s)8,(,l,, + ż(s))dx- l W1,,(<(s))(,1,, + ż(s))dx}. 
Note that 

/J(o) = i,~) , /3(0) = b(O). 
e~(O,)I l 

Differentiating (5.28) once more, we have 

O= -(i<1 + i<28(s))8;i(s) - 2i<20(s)8;(-J",, + ż(s)) - i<20(s)8;,(s) 

+ a;W1(e(s))(,1,, + ż(s))2 + W1,.,(<(s))i(s) 

where 

+ 0(s)W2,,(<(s)) + 20(s)W2,«(<(s))(-ł,, + ż(s)) 
+ B(s) { a;W2 (e(s))(-ł,, + ż(s))2 + W2,,.(<(s))i(s)}, 

""c ) ii( s) -•~~' (B~(""'s )~) /3~(~• )_2 

O 5 = -.~-(8-(s-)) - e~(0(s)) 3 ' 

iJ(s) = T { b(s) - KJ l l8x(,j,, + ż(s))l2 + 8x<(s)8xi(s)dx 

-l W1,«(<(s))(,j,, + ż(s))2 + W1,,(<(s))i(s)dx }· 

We note that 

"- iJ(o) e"(O )/3(0) 2 
0(0) = --- - * 1 , 

e~(O,) e~(0,)3 

.. 1 {·· 1' - 2 11 ~2 } /3(0) = y b(0) - i<1 
0 

18x,t,, I dx - W1, .. (0) 
0 

,t,, dx 

1 {·· j21r2i<1 } = y b(0) - - 12 - - W1,.,(0) , 

(5.29) 

because 11,l,, li~ = 1 and 118x-i,j li~ = j 2rr2 /12. Hence, ta.king s = O in (5.29), we 
obtain 

• .. 2b(0) ( - - 2 - ) L'.,(z(O)) + -,--- W2, .. (0),t,, - "28x'Pi = O, 
e.(0,)1 
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and, therefore, 

b(O) = i(O) = /J(O) = B(O) = O. 

By differentiating (5.29) once more, we have 

o= -(i<1 + i<2B(s))a;a;z(s) - 3i<20(s)a;z(s) - 3i<20(s)a;(,i;; + ż(s)) 
+ a:w,(,(s))(,i;; + ż(s))3 + 3&,W1(,(s))(,i;; + ż(s))i(s) 
+ W1, .. (<(s))8:Z(s) 

- i<28;B(s)a;,(s) + 8;B(s)W2,,(<(s)) + 30(s)W2,.,(<(s))(,i;; + ż(s)) 

+ 30(s) { a:W2(<(s))(,i;; + ż(s)) 2 + W2, .. (<(s))i(s)} 

+ 0(s) { a:w2(<(s))(,i;; + ż(s)) 3 + 3a:w2(,(s))(,i;; + ż(s))i(s) 

+ W2, .. (<(s))8;z(s) }, 

where 

(5.30) 

a'B(s) = 8}f3(s) _ 3e~(B(s)) {J(0)/3(0) + (3e~(B(s))2 _ e\3\B(s))) {J(s)' 
s e~(B(s)) e~(0(s))3 e~(B(s))5 e~(B(s)) 4 ' 

8;/3(s) = H o;b(s) - i<, l 38,(,i;; + ż(s))8,i(s) + a,,(s)8,8;z(s)dx 

l -1 aJW,(<(s))(,i;; + ż(s))3 + 3W1,.,(<(s))(,i;; + ż(s))i(s) 

+ W1 ,,(<(s))8;z(s)dx }· 

Hence, taking s = O in (5.30), we ob tai n 

O= .C;(o;z(O)) + 30(0) (-it28; + W2,.,(0)) ,i;; 

+ (a:w,(o) + B(O)a;'W2(0)) ,i;J 

- 3 3 { .. j2,r2 i<1 } - 2 -= .C;(8,z(O)) + e~(O;)l b(O) - - 12- - W1,.,(0) ( -1<28, + W2,,.(0)) ,/;; 

+ (a:w, (O)+ B;a;'W2(0)) ,i;], 

and, therefore, 

·· j2rr2 i<1 e~(B;) - 4 b(O) = W1, .. (0) + - 12 - - - 2 - (a;'W1(0) + 0;8. W2(0)) 

1/,i;;I/! ( i<21/8,,i;;l/~W2, .. (0) + 1/,i;;l/~r 
•2 2 { I (ii ) 

=W1,,.(0)+\; it1 -e*/ (o:W1(0)+B;o:W2 (0)) 

( W2, .. (0) + j2:?2 )-
1
}. 
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This completes the proof. o 

Proof of Theorem 10 Suppose that u= u(x) has j - 1 nodal zeros in (O, ł), 
j = 2, 3, • • •. Differentiating (5.13) with respect to x, we have 

{
-(i<1 + i<20)8;,/,1 + (W1, .. (<) + 0W2, .. (<)) V'l = o 
'Pl= 0 

in (O,ł), 

on {O, ł}, 

where ,f,1 = 8,e, • = 8,u, and 0 = 8(b, u). Here ,t,1 = ,f,1(x) has exactly 
j - 1 nodal zeros x = l/j, 21/j, • • •, (j - 1)1/j in (O, ł). Define the function 
,f1 E H1 (0,ł) by 

Then J~ ,f1dx = O. Moreover, ,f1 = ,f1(x) and 8,e = 8,e(x) are antisymmetric 

while • = e(x) and a,,i,1 = 8,,f1(x) are symmetric with respect to x = l/j in 
[O, 21/j] . Hence we obtain 

ie, (a,, ,a,,i,1) L' + l W2,,(<),f1dx 

21/ . 
= i<2 (a,e, 8,,i,1) + { 1 W2 ,(e),f1dx = O. 

L'(D,21/j) } 0 ' 

Consequently, it holds that Qb,u(w, w) = O for w = w(x) = J; ,f1(x')dx'. 
Recall that Qb,u(w, w) ~ O for any w E H 2 n HJ (O, l). Then w = w E H 2 n 
HJ(O, l) is a global minimizer of Qb,u = Qb,u(w, w) and it satisfies 

{ -:-(ić1 + ić20~8;,f1 + (W1,.,(<) + 0W2, .. (<)) ,f1 = O in (O, ł), 
,t,1(0) = 8,,t,1(0) = O. 

This implies ,i,1 = O because of the uniqueness of solutions to the initial value 
problems for ODEs, which is a contradiction. O 

Proof of Theorem 11 Let x = x. E [O, I] be any critical point of E = e(x). 
It holds that 

(i<1 + i<20) 2 - -
2 <, = W1(<) + OW2(<) - W1(<(x,)) - OW2(<(x,)) in [O, I]. 

Any nontrivial solution E = e(x) has a simple nodal zero x = x1 E (O, ł), that is, 

e(x1) = O and e,(x1) eł O, because J~ edx = O. Hence we have 

(i<1 + i<20) 2 -
2 <,(x1) = -W1(<(x.)) - OW2(<(x,)) > O. (5.31) 



54 !RENA PAWLOW, TAKASH! SUZUKI, AND SOHEI TASAKI 

Next, it holds that 

( 1 2 2 W1 v) = 2W1, .. (0)v +o(v ), 

1 2 2 W2(v) = 2W2, .. (0)v +o(v) 
(5.32) 

for lvl « l. Suppose the assertion does not hold. Let 0 2: 81 be a constant, 
where 01 > O is a constant satisfying 01 > IW1, .. (0)/W2, .. (0)I- It follows from 
(5.32) that there exists a constant ó1 > O such that 

1 2 
W2(v) > 2W2, .. (0)ó1 

- W1(v) - 8W2(v) $ O 

for lvl 2: Ó1, 

for O$ lvl $ Ó1, 

(5.33) 

(5.34) 

by (5.7) and (5.32). Moreover, if 0 2: O, then it follows from (5.8) and (5.33) 
that 

for lvl 2: ó1. (5.35) 

Here, we take a constant 02 2: 01 satisfying 02 > 2C/(W2,.,(0)on and 02 > 
IW1,.,(0)/W2, .. (0)I, and retake 0 2: 82. Then inequalities (5.34) and (5.35) still 
hold true because of W2 2: O. Hence it holds that 

for any v E IR 

if 0 <'. 82. Thus the assertion follows from (5.31). o 
Proof of Theorem 12 Let x = xo E (O, l) be a maxima! point of l<I = l<(x)I: 
ll<IIL~ = l<(xo)I- It holds that 

(i<1 + i<28) 2 - -

2 <, = W1 (<) + OW2(<) - W1(<(xo)) - OW2(<(xo)) in (O, ł]. 

Any nontrivial solution € = <(x) has a simple nadal zero x = x1 E (O, ł), that is, 
<(x1) = O and <,(x1) 'f" O, because J~ edx = O. Hence it follows that: 

~1 2 -
2 <,(xi) = -W1(<(xo)) -OW2(<(xo)) > O (5.36) 

in the energetic case, i<2 = O, and that 

( - i<1) 2 ( - ) O+-=-- = --=----( )2 W1 (<(xo)) + OW2(<(xo)) > O 
K2 Jv.!E:r: Xl 

(5.37) 

in the non-energetic case, i<2 > O. Here it holds that W2(<) > O for any < i O 
from (5. 7). Therefore, it follows from (5.36) that 

W1(<(xo)) < _0 < _0 
W2(<(xo)) - • 

if 0 <'. 0,. Thus assumption (5.26) implies ll<IIL~ $ C(B,). o 
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