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ABSTRACT. An initial-boundary-value problem for a class of sixth order viscous
Cahn-Hilliard type equations with a noulincar diffusion is considered. The
study is motivated by phase-field modelling of various spatial structures, for
example arising in oil-water-surfactant mixtures and in modelling of crystal
growth on atotnic length, known as phase ficld crystal model. For such problem
we prove the existence and uniguencess of a global in time regular solution. Fivst
the finite-time existence is proved hy means of the Leray-Schauder fixed point
thearem. Then, due to suitable estimates, the finite-time solution is extended
step by step on the infinite time interval.

1. Introduction.

1.1. Motivation and aim. In recenut literature one can observe a remarkable in-
terest in higher order phase field models of the Cahn-Hilliard and Landau-Ginzburg
(Allen-Cahn} types for microstructure evolution, see e.g. {8, 21] for overviews and
up-to-date references.

In this article we are concerned with an initial-boundary-value problem for a class
of sixth order Cahu-Hilliard type cquations with a nonlinear diffusion and viscous
effects. For such problem we prove the existence and uniqueness of a global in thne
regular solution.

The study is motivated by two physical problenis described by sccond order free
energies of the Landau-Ginzburg type: the model of microstructure evolution in
oil-water-surfactant mixtures and the so-called phase field crystal {PEFC) atomistic
model of crystal growth, proposed by Elder et al. (6, 7, 1, 2.
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The second order Landau-Ginzburg free energy for oil-water-surfactant mixtures
has been proposed in a series of papers by Gompper et al. {9, 10, 11]. A corre-
sponding sixth order equation, extending the classical fourth order Cahn-Hilliard
equation, has been recently studied in [18]. The existence and uniqueness of a reg-
ular solution on an arbitrary finite time interval have been proved there, provided
given sufficiently smooth initial datum. Here we incorporate viscous effects associ-
ated with the rates of the order parameter and its spatial gradients into the sixth
order model. Such effects - typical for soft-matter systems — may be relevant for
the description of oil-water-surfactant mixtures. Thanks to the viscous structure
of the model we are able to prove the global in time existence of regular solutions
under a weaker assumption on the initial datum than that postulated in [18]. The
key tool in the proof is an absorbing type estimate. Such estimate allows not only
to extend the finite-time solution step by step on the inifinite time interval but also
to conclude the existence of an absorbing set. The long-time analysis of solutions
is postponed for a future work.

We mention that a fourth order Cahn-Hilliard system (governed by a first order
gradient free energy) with a similar viscous structure and additional cross-coupling
terms has been derived and studied in [5] (for details see Section 2).

1.2. Problem statement. Let 2 < R? be a bounded domain with a smooth
houndary S, and T > 0 be a final time. We consider the following system of
Cahu-Hilliard type for the order parameter x and the chemical potential p:

(1.1) xe—MAp=0 in QT :=Qx(0,T),

1 . . .
(1.2) 1= fox = 52l VX ~ s Bx e + fx—vAx, in Q7.

with the initial condition

(1.3) Xle=0 =x0 in £,

and the boundary conditions

(1.4) n-Yx=0 on §7:=5x(0,T),
(1.5) n-VAx=0 on ST,

(1.6) n-Vu=0 on S7,

where M, x4, 3, v are positive constants, fo = fo(x), 51 = 2 {x) are given functions
specified below, 7 is the unit outward vector normal to S, x, = 0x/0%, f, = df /dx,
the dot, -, means the scalar product, V- stands for the spatial divergence, vectors
and tensors are denoted by bold letters and the suinmation convention is used.
The constants M, s, 3, v denote the mobility, the second gradient energy

coefficient, and the two viscosity coefficients respectively. Later on, for simplicity,
we set M = 1.
The function fyo(x) denotes the multiwell volumetric free energy density and 2 (x)
is the first gradient encrgy coefficient which may be of arbitrary sign. We shall
assume the polynomial forms of fy and 3 which comprise the oil-water-surfactant
model and the PIFC model as the particular cases (see Sect. 1.5):

2k
(1.7) Fol) = ax' with s €R, am >0, k> 1,

i=0
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aud
2
(1.8) )= by’ with b eR, x>0, [>1
i=0
The assumption that the leading coefficients ey and by are pousitive is motivated
by physical examples.

As in the standard fourth order Cahn-Hilliard problem the boundary couditions
(1.4) and (1.5) arise in a natural way from the free energy potential (see (1.18)
below) whereas (1.6) represents the mass isolation at the boundary S. Other types
of boundary conditions are also possible. In particular, it is relevant {and mathe-
matically simpler) to consider periodic boundary conditions.

System (1.1)-(1.6) with M = 1 can be cquivalently expressed as the follow-
ing initial-boundary-valie problem for the sixth order viscous Cahn-Hilliard tyvpe
equation:

Xt = BAYs + 70 ~ Ay

1.9 1 .
(1.9) = A(f(hx - 5;41“\(|Vx[‘2 - xlA,\) in 7,
(1.10) Xli=0 = xo in £,
(1.11) n-Vy=0 on ST,
(1.12) n-VAx=0 on ST,
. 1 .
(1.13) z2n~VA~’\,:1L-V<S;¢L\|V\'[Z) on S7.

‘We note that the coefficient s« (x) gives rise to the nonlinear boundary condition
(1.13).
1.3. Main result.

Theorem 1.1. (Global cwistence and uniqueness) Let us assume that @ C R3 is a
bounded domain with boundary S of class C8, T > 0 is a given number, functions fy
and > are defined by (1.7), (1.8), and the initial datumn xo is such that xo € H?(Q)
with the spatial mean
17
7[,\‘0d;u = W / Nodt =i A, | = wmeas £,
‘o Q
and satisfies the compatibility conditions
(1.14) n-Vxg=0 n-VAyy=0 on S
Then problem (1.9)-(1.13) (equivalent to (1.1)-(1.G)) has a unique global in time
solution such that
X € Lo(Ry; HO(S)) N HY Ry HI()),
(1.15) Xle=0 = X0, aud ][x(t)d:v = xm forall te€R, = (0,00),
Q
salisfying the energy estimate
(1.16) lxto o (rysarzeny + IXel oy @y + 1V ey 2y S @1
Xoml)+

with a constant ¢ = p(|xollrrz(a)
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Moreouer, there exvists a positive constant A, depending on the data and T but
independent of k € Ng = NU {0}, such that

(1.17) Lotk ernyrio )y + X i ger ey @) < (Ae, e, T),

where @ is o positive, increasing function of its arguments.

X

Remark 1. Our main goal behind this result was to investigate the influence of
viscous effects on the regularity of solutions. In the case of absent viscous terms
(8 = v = 0) the regularity question has been previously addressed in {18].

Of course, it is not necessary to restrict the analysis to regular solutions. The
weak solvability of systems similar to (1.1)-(1.6) was studied in [5] and {20]. It
seems to be possible to adapt the Galerkin approximation approach of [5] to system
(1.1)=(1.6) and its more general version {2.7) (see Section 2) to prove the existence
of a weak solution for the initial datum in the encrgy class. This question is left for
a future study.

1.4. Variational structure. System (1.1)-(1.2) is associated with the following
two gradient type potentials: the free energy

. 1 1 5
(1.18) F= 100 V% V2x) = folx) + () Vx[® + 50l ax],
2 2
and the dissipation potential
1 1 1
(1.19) D =D(xe, Ve, Vi) = 56xi + 57IVl® + 5 M|Vl
2 2 2
In terms of these potentials (1.1) and (1.2) read as
D
Xt—V~—0—:O in Q7,
OV
(1.20) g
of + D in QT
L= =+ — B
! X  dxe

where §f/8x (resp. §D/8x:) denotes the first variation defined by the condition

that
d 2 2 [ 6f
ﬁ,/ﬂXJr MG, Vx + AVC, TPy + AV3()dal,_, = / 50
Q &
must hold for all test functions ¢ € C§°(§2).
In fact, for f and D defined by {1.18), (1.19) we have

) 1

;5% = fox + -2-u1,x]VX|2 = V- (aVx) + A%y,
§D D

— = 0By1 — YA, ——— = MVpu,

S Xt — YAY¢ o MVpu,

which lead to (1.1), (1.2).

From (1.20) one can immediately deduce the energy equality. Formally, testing
(1.20)7 by u, (1.20)2 by ~ x+, adding the obtained relations, integrating over  and
integrating by parts using the no-flux boundary conditions (1.4)~(1.6) one arrives

at

(1.21) Zid—'t/f(x, vy, VZx)dr + /od:v =0,
0 Q
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wliere the quantity
oD ’ D
T = - —— .
Oxe M OV

denotes the dissipation density.

oD ; Y .,
Vxi + r Vi=8xi + 4V >+ AV 20

1.5. Model examples. Gompper et al. (9, 10, 11] have proposcd a phenomenolog-

ical Landau-Ginzburg theory for oil-water-surfactant mixtures. This theory is based

on the free energy (1.18) with constant scp > 0 and functions fo, 1 approximated,

respectively, by a sixth and a second order polynomials:

(1.22) folx) = (x+ 105 + ha)(x = 1%, 5a(x) = go + gax?,

where hy, go, gz are constants, g2 > 0 and hyg, go are of arbitrary sign. Here the

order parameter y represents the local difference of the oil and water concentrations.
Eider et al. [6, 7, 1, 2] have proposed the so-called phase feld crystal (PFC)

model to describe the phenomenon of crystal growth on atomic length and diffusive

time scales. The model is based on the free energy of the following form (known as

the Brazovskii or the Swift-Hohenberg one, see [8])

2ox L x

e ,
(123)  fere = fercln Vi ) = ol + £ X apy,

where y is an order parameter corresponding to atomie mass density, o = a8, —8),
@ > 0 15 the parameter of the systemn periodicity, 8, — 8 is the quench depth repre-
senting the control parameter with critical temperature ¢, and actual temperature
o.

With neglected gaussian random noise variable the PFC model is a conserved
version of the simplest forur of the Swift-Hohenberg equation:

dJrro
2 cp— =0,
(1.24) Xt — A ix
where sF
% =(1—a)y+x*+20x + 2%
Lct us note that the follo;vixlg second order free energy density
y 1 .

(1.25) F=F00 V% VEX) = folx) = VAl + 5iAx?
with

, Xt X

Jolx) = (1 —a) % + 5,

which is a special case of {1.18) with 33 = ~2 and > = 1, has the same first
variation as (1.23), §f/8x = § ferc/Sx. Whence the PFC model may be considered
as a particular nouviscous (# = v = 0) variant of equation (1.9);.

1.6. Relation to other results. System (1.1)~(1.6) with 8 = 4 = 0 and the
Gompper et al. free energy (1.18), (1.22) has been studied in {18]. In a more general
setting admitting the logarithmic type free energy fy and viscosity coefficients y = 0,
4 > 0, system (1.1)-(1.6) has been recently addressed in [20] from the poiut of view
of the existence of weak solutions. The behaviour of weak solutions in the case
when 5 is let tend to 0 has been studied there as well.

‘We mention also a sixth order Cahn-Hilliard type equation in two space dimen-
sions which arises as a model for the faceting of a growing crystalline surface, derived
by Savina et al. [19]. The model is based on a free energy of the form (1.25) with
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fo = folxar Xy) where x = x(2,y,t) describes the surface, {z,y) € R?. The model
differs from (1.1)~(1.2) with § = v = 0 by the presence of a force-like term |Vx|?
which is due to the deposition rate and causes that x is not a conserved quantity.
Such a model has been recently studied mathematically in [13, 14].

1.7. Plan of the paper. In Section 2 a thermodynamic background of system
{1.1)-(1.2) is outlined. A more general formulation of a thermodynamically consis-
tent sixth order system with a conserved order parameter is presented. In Section 3
notation and some auxiliary results are introduced. In Section 4 suitable a pri-
ori estimates are derived. They comprise energy estimates, finite-time estimates
depending on T, and additional global estimates. In Section 5 the proof of the
existence of solutions is presented. It is based on the Leray-Schauder fixed point
theorem and the global a priori estimate which allows to extend the unique finite-
time solution step by step on the infinite time interval.

2. Thermodynamic background.

2.1. Sketch of derivation. A general form of a thermodynamically consistent
system governed by a second order gradient free energy, including (1.1)—(1.2) as a
particular case, can be derived by employing the second law of thermodynamics in
the form of the Miiller-Liu entropy inequality with multipliers (16, 15].

The application of this approach in the case of gradient type systems requires a
special procedure which has been described in {17] for the Cahn-Hilliard and Allen-
Cahn equations accounting for elastic effects. Here we briefly sketch the procedure
leading to models with a second order free energy. The details of the derivation will
be presented elsewhere.

We consider a balance law (local form) for the order parameter x:

(2.1) xt+V-7=0 in Q7,

where 7 is the mass flux. 'We assume that j is given by the constitutive equation
7 = 7(Y) with the sct of constitutive variables

Y =% .., V%X, Vx)

accounting for inhomogencous and viscous effects, expressed by the space and time-
space derivatives, respectively. As explained in [17], in order to admit the frec
cnergy depending on V™, m € N, the set of constitutive variables has to include
V'm=1y,. Since our goal is to construct a model with the free energy depending at
most on V2x we have to admit Vy; as a constitutive variable.

Next we postulate the free energy inequality with a multiplier

(2.2) fid V-2 + A +V-4) <0
to be satisfied for all fields xy. Here f = f(Y) is the free energy, ® = <i>(Y) is

the free energy flux, and A = :\(Y) is the multiplier conjugated with the balance
equation (2.1). By algebraic operations the evaluation of (2.2) leads to a number
of relations for f, ® and A as well as to a residual inequality.

The key point of the procedure is the postulate that the multiplier A is an ad-
ditional independent variable. This postulate originates from extended thermody-
namic’s idea of treating the Lagrange multipliers as privileged fields. Then, regard-
ing the obtained algebraic relations we arrive at an extended system of equations
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with x and 4 = —A as independent variables, and with the constitutive relation for

the free euergy restricted to f = f(x, Vx, Vx). This system has the form:
xe+V-3=0 in 7,

(2.3) 5f

u=3—+A°~V-A1 in 07,
X

where
5 . v 2 2
J*X*‘f,x_ Sox VT fe (VE=VV),
and the variable p is identified with the chemical potential.
~ -1 N

The quantities, the scalar A% = A%(Z) and the vectors Al =4 (2), 7 =372,
with the constitutive set Z given by

Z:=(X;w), X:=N\Vx,Vui), w:i=(xVx..., ASN
are determined as solutions to the residual dissipation inequality
(2.4) o= A+ Uy Al -V 20

to be satisfied for all variables Z.
Incquality (2.4) represents the standard thermodynamic inequality

c=X -J(X;w)>0 forall (X;w),
where J = (4%, A?, —7) is the thermodynamic flux, and the sets X and w correspond

to thermodynamic force and state variables, respectively. Moreover, o = ¢(X;w)

represents the dissipation scalar.
Inequality (2.4) can be solved by applying the Edelen decomposition theorcin

[4]) which asserts that there exists a dissipation potential D = D(X;w) which is
nonnegative, convex in X and achieves its absolute minimun of zero at X = 0,
such that
c=X -Dx(X;w)>0 forall (X;w).

Thus,

aD (%3] . 0D
=, A= =,

I OV xt IV
so that (2.3) leads to systew (1.20).

AU

2.2, Alternative representation. To solve the residual inequality (2.4) we can

apply instcad of Edelen’s theorem the linear map representation result due to Gurtin

[12]. Theu we arrive at an alternative fornmulation of the model with the second

order free energy f = f(x, Vx, VZx). It lias the form of system (2.3), where the
5 . 1 - LY. .

quantities 4% = A°(X;w) and A" = A" (X;w), 7 = F(X;w) are given by

AP =Pxi+a-Vxe+b Vi,
(2.5) Al = cxi + AVy, + BV,
—-j=dx . +CVx, +DVypu.

Here the constitutive moduli 3 (a scalar), a, b, ¢ and d (four vectors), and 4, B,
C and D (four matrices) may depend on the variables (X,w) and are consistent
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with the incquality

Xt B8 o b" Xt
(2.6) Vxt| le A B Vx: | 20
\70 d C D Vi

for all variables (X;w). Inserting (2.5) into (2.3) yields the system
=V (dxt+CVx:) =V - (DVp),

(2.7) u=bVu+V - (BVY =pxi+a V. —V-(cxe)
—VAAVX) + fx ~ V- foe + VP foay

with the moduli satisfying (2.6).

Equations (1.1)-{1.2) result from (2.7) by settinga =b=c=d=0,C =B =0
and A =~I. D = MI where I is the identity matrix.

It is of interest to note that system (2.7) with the restriction to the first order
gradient free energy, f = f(x, Vx), has been derived by Efendiev and Miranville [5,
eq. (2.10), (2.11)] in the framework of the Fried-Gurtin theory based on a microforce
balance. We remark also that in the case of a second order gradient free energy the
model formulated in {5} has a different, more complicated structure than (2.7).

3. Notation and auxiliary results.

3.1. Notation. Let & C R™ be an open bounded subset of R*, n > 1, with a
smooth boundary S, and Q7 = 2 x (0,T). We introduce:

wE) = H*(Q), keNu{0}
- the Soholev space on §2 endowed with the standard norm |} - ey
HYQ) = La(9);
WEHOT) = Ly(0, Ts W) n WO, T Ly(9)), k1 eN, peli,o0)
- the Sobolev space on Q7 with the finite norm
1/p
lell gy = ( > / IDé‘a{"u.l”dwdt> ;
|+ ko <kl
WE(QT) = L0, T WAN(Q) n W30, T; Lp(?), k€N, seRy, pe(l,o0)

- the Sobolev-Slobodecki space on 37 with the finite norm

||u[|‘,‘,lfw.,,m.,.)=( s /|D<\aﬂu|mm

|a\+lxn<[ks]nq-

|Dgu(z,t) — D2u(z', 6)?
+ Z /// - _z'[ﬂﬂ? ZS_[“]) dada’dt

fal= (’W] s

5 (5] 1/p
}0{ )n — Oy u(z, )P ,
/// f/|1+p(sA[ o dtdede

where [s] is the integer part of s.
By ¢ we denote a generic positive constant which changes its value from formula
to formula and depends at most on imbedding constants, constants of the problem

and the regularity of the boundary.
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By ¢ = ¢(01,...,01), & € N, we denote a generic function which is a positive,
increasing function of its arguments o1,...,0%, and may change from formula to
formula. Moreover, € will denote an arbitrarily small positive constant.

3.2. Imbeddings in Sobolev-Slobodecki spaces. Following [22, 23] we intro-
duce the fractional derivative norms. For p € (0,1) and p € [1,00) let

fu(a, t) — (!, )P Ve
() iy e = </// T dada’dt = okl L, ary,

fu(z, t) — u(z’, )]
‘U] roo 3 = SUp  sup ——m———————
SA LE(0.T) 2,27 € | — 2! |

Tr |u 2, t) — u(z, )P R
[u]u,p,QT,t = (/// t'l“"’” dtdt/dl‘) = |[0§"(:,[[L"(m),
Q00

5 1) — ufw, t
(U] 000T,t = SUP  SUP fufe, ) = ule, )] 7(? )l
€ t.4€(0,T) [t -t

= ”aﬁf’“v“Lx(n'r),

and

= ”Cr)i'u“rw(n"y

For simplicity we denote the fractional derivatives by 08w and 8f're.

We need the following results.

Theorem 3.1. (sce /3, Chap. 3, Sect. 10)). Letw e WS(QT), Q CR™, n.k € N,
s€ Ry, pe(l,o0]. Let

koo k 1
}{:(n-k— —--’—L——+]uf+ku>—§1,
p r

q ks
where q,r € [1,00], a = {ay,...,ap) be the multiinder, a; € NU {0}, i = 1,...,n,
lal = a1+ +an, e € Ry U{0}. Then
Dedtu € L(0.T; Ly(R)), DS =820 ... g%,

and the following interpolation holds

1Dl o,y )y S €775 (“8?“”[1‘.(07') +> ”af;qu”L,,(SZ"")> +ce 7" hellL, ary,

where ¢ € Ry and g,r > p. In the case either ¢ = 00 or r = o0 the above inequality

holds provided s < 1.

Furthermore, in the case r = 00, ¢ < 00 and » = 1 we have the estimate
10208 ull Lo 0,152 () S ellttlliyinnqry-

Theorem 3.2. (Direct boundary trace theorem) [22/. Let us assume thai.

(1) 2 C R™ is a domain and S is either a boundary of Q or a subdomain of Q0 with
dimS =n-1.

(2)ue PV]f““S(QT), EeN,se Ry, pe(l,o0), §eCks.

Then there exists a function & = u|gr such that & € Wi* P15 (8TY yng
H‘L_L”‘v,l'(,«—l/,:.~—l/}.-,r(sT) < C”“”HQ{"“‘“(QT)’

where constant ¢ does not depend on u.
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Theorem 3.3. (Inverse boundary trace theorem) 22, 23, Sect. 20/. Let assumption
(1) of Theorem 8.2 be satisfied. Let i € Wﬁ”—l/”"”‘_’/k7’(ST), LeN seRy,pe
(1,00), S € C*. Then there exists a function u such that ulgr = i, u € W/f“‘(QT),
and

““’”W,f”r’(n'f) < C”"-‘”;v,f“*l/v‘--'"‘/*r'(s'”;
where ¢ does not depend on .

Theorem 3.4. (Direct initial trace theorem) [22]. Let v € WE(QT) k € N,
s € Ry. s> 1/p, p e (Loo) Then @t = tfi=y,, where tg € [0,T], belongs to

‘V,’f”—k/"(Q)‘. and
Hﬂnw;s_k/p(n) < C”‘U,H“,:.‘..‘(nq-)‘
where ¢ does not depend on w.

Theorem 3.5. (Inverse initial trace theorem) [22]. Let i € Wy ~*/?(Q), & € N,
sERL, s> 1/p, p€(1,00). Then there emisisu € Wfl’;""“(QT) such that uli=y, = @,
tg €10,7), and

“““w,’;‘-‘v‘(n'r) < C”ﬂ'”w:"kh’(ma
where ¢ does not depend on i.

3.3. Auxiliary linear problems. Let 2 C R™, n > 1, be an open bounded subset
of R™, with a smooth boundary S. Let us consider the problem

Ax=f in Q
n-Vx=0 on 5,
(3.1)
][xd:r = Xm>

Q
where f xdz = I—éT Jo xdz and xom is a given constant. We recall
0
Lemma 3.1, (see e.g. [18]). Let us assume that f € H™(Q), S € C™F%, r €

N U {0}, aend the compatibility condition fn Fdr = 0 holds. Then there erists a
unique solution x € H™*2(Q) to (8.1) such that

(3.2) Ixtarevay < elllfllar@ + IxmD),
where constant ¢ depends at most on r and S.

Next, let us consider the fourth order elliptic problem

Aly=f in £,
n -Vx=0, n-VAy=0 on S5,
(3.3) JUx X
][Xdl' = Xm»

Q

where x,, is a given constant. We have
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Lemma 3.2. (sec c.g. [18]). Let us assume that f € H™(Q), S € ¢, r ¢
N U {0}, and the compatibility condition fn fdx = 0 holds. Then there caists o
unique solution x € H™H(§2) to (3.3) such that

(3.4) D ey < clllf ey + Dl
where constant ¢ depends at most on v and S.
In the sequel we shall need the solvability of the following linear problen:

e = BAx +yAx — 2% = F i QT

Xli=0 = X0 in €,
(3.5) -

n-Vx=0, n-VAx=90 on S°,

n-VAlxy =G ou ST,

where /3, v, > are positive constants, and F, ¢, yg giveu functions,

Since problem (3.5) is not parabolic in the sense of Petrovskii, the general theory
of parabolic initial-boundary-value problems can not be applied. Hence, we prove
the following result.

Theorem 3.6. Let © C RY be bounded with boundary S € C°. F € La(Q7),
Ge inl/z'l/'l(ST), and o € H®(Q) satisfy the compatibility conditions

(3.6) n-Vxo=0 n-VAxy=0 on S

Then there cxists o unique solution to problem (9.5) such that x € Lo(0, T: HS ()N
HY0.T; HY(S))), and

I

37) Xl Lo mms) + x| Lo mm )
7 )
< e[| Fff nymy + “G’”‘,‘,»:\/'2,1/-1(57‘) + Ivolles gy + T2 00l Lay) = e,
where constant ¢ does not depend on T.

‘We prove this theorem in two steps. First we construct a weak solution and then
show that for sufficiently smooth data this solution has the desired regularity.

Lemma 3.3. Let Q € R? be bounded with the boundary S € C*, I' € Ly(QT),
G e Ly(ST) and xg € H¥(Q) satisfyn-Vxo =0 on S.
Then there crists a weak solution to problem (3.5) in the following sense

(3.8) X € Loo(0, T3 HY Q) N H(0, T3 HA(R)),
(3.9) x(0) = Xo,

(3.10) /(Mfﬂivm CVE+YAXAE + 2V AY - VAE)da = /FE([:Z: +/ Geds
2 1] 5

VEe HY ()= {€c HHQ) :n - VE=0, n-VAE=0 on S, ae te(0,T)}
Moreouer,

XN Lo 003052y + Hxell Laco. T2 ()

(.11) e ~
< c(iF N Laary + HGlLzsTy + lxollasi) + T HxollL.)) = cda.
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Proof. We will prove existence by the Galerkin method. To construct a basis of
HE(Q) we introduce the fourth order elliptic operator

L= {L,’ﬂ. . V|5, mn- vAjs},
where
(3.12) Lo =y~ BAp+~A% in Q.
We note that £ is unbounded, selfadjoint, linear operator and its inverse £ is
compact, selfadjoint, linear operator. Thus by the Hilbert-Schmidt Theorem we can
conclude what follows: There exist the eigenvalues {A;};en and the eigenfunctions
{¢i}en of £L71, defined by the problem

L_lgpj =X, m Q, jeN,
(3.13) n-Veo; =0 on S,

n:VAp; =0 on S.
The eigenvalues _:\j are real and they can be ordered such that {X;41] < [\y], j €
N, and limj_o A; = 0. Then £ has an infinite set of eigenvalues {/\j}jEN that
correspond to the set of eigenfunctions {p;};en. They can be ordered such that
[Aj411 2 1250 7 € N, and then lin; .o JAj] = co. Moreover, the value A = 0 does
not belong to the spectrum.
The set of eigenfunctions {¢;};en forms an orthonormal basis for Lp(§2) which is
also orthogonal in #2(Q). The orthogonality in H?(Q2) follows from the relations
(3.14)
Mi(psion) = (Lo o) = (L7905, LY%01) = (4, L) = Ailoj, 91,

(LY20;, L20) = 0 for A # A,

(L 2y, 1 2p) = /(sojwk + BV - Vo + v0p;Api)dz,
Q
and the fact that the norm generated by the scalar product (£1/%p, L1/2y) is equiv-
alent to the standard H2(Q)-norm.
Finally, we note that the system {y;};en C C4(Q) is dense in H3(Q).
Given m € N and the basis {¢;};en we introduce now the Galerkin approxima-
tion corresponding to the weak formulation of (3.5):

m
(3.15) X(a,t) = 5 al™ (O)p; (@),
i=1
(3.16)
/(xf’”‘)ﬁ""’ + AV VEM py Ay AE™ 4T Ay L VAL )dx
it}

= /FE(’”)(IJ;+ /Gf(’”)dSVE(m) € Vin =span{py,...,¢m}, ae t€ (0,T),
O K

817) XM 0) = X,
where x(()m) € V},, is the projection of xo on V,,, such that

(3.18) X = xo weakly in H3(Q).
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From (3.15)—(3.17) we obtain the system of ODE’s

S <—a€ )(t)a,‘jﬁ—agy)(t)bij) :/F(t)gajdn:+/G(t)ijdS,
Q 5

=1 df -
(3.19)
a;(0) = /XSM)‘PL j=1...,m,
113
where
0y = /(t,’)icpj + AV0; - Vo + 1000, )dx, by = x/vawva%dw.
Q Q

Due to the properties of the basis {i;}, the matrix (@s); j=1.... . 13 diagonal and
invertible. Hence we conclude the existence of a solution af'")(t), i=1....,m to

(3.19).
‘We derive now uniform with respect to 7 estimates on y("™. Setting £ = (")

in (3.16) yields
d
L
Q

+u/ VA Pdy = / Fx("l>da:+/cx<"”ds.
Q Q &

X(7)1)12+ﬁlv\((171)|2 +"/|Ax(m)[2)dﬂ?

[

(3.20)

Hence, after integrating with respect to thme and applying the Young inequality to
the two iutegrals on the right-hand side we obtain the first uniform estimate

H.\’(m)(t)”i:(n) + /7||V/\(m)(?’)”§,:(n) + ')||AX<’")(1‘,)H'22(Q)
Laery < U ENan + 1G1E,5)

(3_21) + %HVAX(’HL)

+ e+ OIS Mgy + BITAE 12 ) + AN M Lagery, ¢ € (0,T).

Next, setting €0 = x{™ in (3.16) yields

m), . n) i m) s d 2
SO+ goxdE oo + 25 [ 198
Q Q

(3.22)
= / Fyi™dy + / Gx™as.
Q s

Again, integrating with respect to time and applying the Young inequality to the
integrals on the right-hand side we obtain the second uniform estimate

m myy2
La(02) +/3HVXE' )”iz(s)t) +7||AX§/ '”Lz(n')

foyr LEOT).

# VAT Oy + i
< ciFI3, @) + 1GH3 ,s0) + 21T AxE™)

From (3.21) and (3.23) it follows that there exists

(3.24) Y € Lo (0, T H3(2)) N H(0, T3 H2(Q))
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and a subsequence of solutions Y™ to (3.16) (denoted by the same index) such
that as m — oo
(3.25) '™ — v weakly” in Lo (0, T; H3(Q))

™ 5 xe weakly in Lo(0,T; H2(52)).
Hence, by compactness arguments,
(3.26) x™ = x strongly in C([0, T]; H2(2)).
From (3.26) it follows that
(3.27) x™(0) = x* — x(0) strongly in H2(f),
which together with (3.18) implies that
(3.28) x(0) = xo.
Due to the convergences (3.25) we can immediately pass to the limit m — oo in
(3.16) expressed in the form
/ (™ + VX - VE+ 106N AE + 1V AXT - VA dudt
ar
= / Fédrdt +/ GEASdL YE € La(0,T; Vin).

)

QT

(3.29)

To this end we follow the standard procedure. First we fix m = my € N in the
space V;,,, take subsequences (3.25) with m > mg and pass to the limit in (3.29) for
a subsequence my < m — oo. Next we pass to the limit mg — 00 in Vi,,. Taking
into account the density of [J,,cn Vin in H%(£2) we arrive at (3.10).

A priori estimate (3.11) follows immediately from the uniform estimates (3.21),
(3.23) and the weak convergences (3.25). Thus, the proof is complete. O

Proof of Theorem 3.6. Let x be a weak solution to problem (3.5), constructed
in Lemma 3.3. It will be of use to note that, setting £ = 1 in (3.10), yields

]r{x;(t)dz = ﬁ(n/l?(t)da' + S/G(t)zlS) = M(t),

t
x(t)dx = £ xoda + [ M(t)dt = M(t).
frosesg o]

Let us consider the following problem which results from (3.5)1, (3.5)2 and {3.5)4:

(3.30)

YA X = 1A =F - x; + fAx = Fy in QF,

(3.31) xli=0 = xo0 in ),
n- VALY =G on ST,

By (3.11) we have

(3.32 170l o7y SIF L,y + ellXell Ly 0,7 m2 () S cAa.

If we sct

(3.33) v= A%y
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then (3.31) yields
U~ xAv = Fy in QT,
(3.34) V|pmp = vp = A’xg in 9,
n-Vo=G on 8T,
where Fy € Ly(Q7) and, by assumptions, G € W;/z']“(ST) and vg € H'(£2). Thus,
by virtue of the classical parabolic theary {22, 23] there exists a unique solution to
problem (3.34) such that v € W3 (QT) and
lolfwz oy S cllFolla@my + 1G5y + ool @)

(3.35) < (A2 + |Cllyprznmgry + Ixoliae ()

< I FllLyamy + Gl wirrsgry + ol i) = e

where coustant ¢ does not depend on T due to Theorem 3.1.1 from {21, Cl. 3].
Let us now counsider the elliptic problem which follows from (3.33), (3.5)3 and
(3.30):

Ay = in Q, ae t€{0,7T),
n-Vy=0, n-VAy=0 on S
(3.36) , '
]Z xda = M.
I

Then by the elliptic estimate (see Lemma 3.2) we have

XN sraqy < elfvllgr@y + 1M]), r=0,2,
Ixellzey < elllvdizas +1M]).
Consequently, from (3.35) and (3.37) it follows that

IIx
Ixellzao ) < cllvdlpary + 1M 1 Ly0.0) € cdy

(3.37)

La,1005¢2) < clllell,ommey) + 1My .m) < edr,

which completes the proof.

4. A priori estimates.
1.1. Energy estimates. I7irst we notice that integrating (1.1) over Q and using

boundary condition (1.6) yields

d
4.1) i xdx =0,
Q

which shows that the spatial mmean of x is preserved,

][x(t)da: =][Xuda' =: Xn, forall {eR,.
Q Q

Next we notice that on account of assumptions (1.7), (1.8) it follows that there exist
positive constants ¢y, and ¢, such that

1 : 1
(1.2) fol) 2 Goax™ =g 2 (X) 2 50ax™ = -

We have
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Lemma 4.1. (Energy estimate). Let us assume that xo € H*(Q), f xodz = Xm-
Q

Then a sufficiently regular solution to problem (1.1)-(1.6) satisfies
?ﬂm) + ﬁ”X:'“%?(Qr)

X7,y + bl X Il g + X

FAVXe Ny + IVHIT 00 S for tERy,

vy

) 212, Coeyy Cy5 Q2K

with a constant c1 = o(llxollr2(q)s [Xm

Proof. As shown in Section 1.4, any sufficiently regular solution to (1.1)-(1.6) sat-
isfies energy cquality (1.21). Integrating this equality in time and using (4.2) we
obtain

. 1
2 + E}{glAXP) dr

1 w1, o
— oy =b
/(Qsz + g bax IVx
@

(4.4 + [ AT T
4

1
S-/'f(o)ld:r+6fu|9[+;(‘,,q /IVXng;.
Q 0

The last term on the right-hand side of (4.4) is controlled with the help of suitable
interpolation inequalities and Lemma 3.1 to give

”VXNL(Q) < 51HV2X”$,2(Q) +c(1/e1)llx
< ere(l|AXE ) + x5) + c(l/e)(ElX)EE, o) + c(1/e2)),

where €1, €2 are any positive constants. Choosing them such that g1, < 52/2,
eac(l/e1)cy, < a2t/2, and noting that [ f(0)||n, @) < wllxoll#z(ny), we conclude
estimate (4.3). [m]

Corollary 4.1. In the sequel we shall use (4.8) in the following simplified form
(4.5) xlleensmz) + Ixeloua @) + IVEl L@y < wle1)  for te Ry,
Corollary 4.2. On account af (1.4). (1.5), integration of (1.2) gives

1
_//1,(1.1: = / <f0,x + 5%1,X|V,\'[2) dz.
Q Q

Hence. using (1.7), (1.8) and (4.5), we obtain

2
L)

(4.6) €SSSUPy e,y /udz < (er).

Q
Moreover. by the Poincaré inequality, (4.5) and ({.6) imply that
(4.7) Nitll ooy € (en)t?/? for te Ry

Lemma 4.2. Let us assume that xq € H3(Q), fdea: = Xin- Then a sufficiently
Q

regular solution to (1.1)-(1.6) satisfies

2 2
s ix Lo (0.6 77 (1)) + byl 5 Axl 1 (0,652 (1)
(4.8) + el ey + B2 La(0,6H () T Y2 X0l La 00172 (00))
< plen, Ixollmeay )t/ for te Ry




























































