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1. Introduction

1.1. Motivation and goal

In this paper we study an initial-boundary-value problem for the sixth
order Cahn-Hilliard type equation in 3-D. The problem describes dynam-
ics of phase transitions in ternary oil-water-surfactant systems in which
three phases, microemulsion, almost pure oil and almost pure water can
coexist in equilibrium. Surfactant is a surface active molecule which has
amphiphilic character; one ‘part of it is hydrophilic (water-loving) and the
other lipophilic (fat-lowing). Such molecule is called amphiphile. When
a small amount of amphiphilic molecules is added to a phase separated
mixture of oil and water, a homogeneous microemulsion phase forms.

Microemulsion is macroscopically a single-phase structured fluid. It
consists of homogeneous regions of oil and water which form a compli-
cated, intertwinned network with a typical length scale of a few hundred
Angstrom units. This is possible because of their amphiphilic character
the surfactant molecules form a monolayer at the interface between oil
and water regions and thereby reduce the interfacial tension. In result a
phase with an extensive amount of internal interface can become stable.
Among the most striking properties of microemulsions are that they can
coexist in three phase equilibrium with two other phases — almost pure oil
and almost pure water — and that the tension of the interfaces between
pairs of these coexisting phases is very low, typically the fraction 1072 or
10~% of the tension of the oil-water without surfactant.

Our study is motivated by the second order Landau-Ginzburg free
energy (involving second order space derivatives) proposed and justified
experimentally in a line of papers by G. Gompper et al. [8-13]. It has
been demonstrated that such free energy for a conserved order parameter
is able to capture many of the essential static properties of the ternary
oil-water-surfactant systems.

Assuming the Gompper et al. free energy we propose a conserved
evolution model for the oil-water-surfactant system. The model has the
form of an IBVP for the sixth order Cahn-Hilliard type equation and
resnlts as a direct extension of the clagssical fonrth order Cahn Hilliard
theory. We prove that such model is well-posed in the sense that it admits
a unique large-time regular solution which depends continuously on the

witial dabui,
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Higher order extensions of the Cahn-Hilliard equation arise also in
other physical problems and attract recently a mathematical attention.

In [14] stationary solutions to one-dimensional sixth order convective
Cahn-Hilliard type equation arising in epitaxially growing nanostructures
have been analysed; also other related references have been indicated. In
a very recent reference [4] the sixth order Cahn-Hilliard type equation in
2-D describing faceting of growing crystal surface [16] has been studied
from the point of view of the existence of global in time wealk solutions.

We mention also that the sixth order Cahn-Hilliard type equation
with a similar structure as considered in the present paper arises as a
conserved phase-field-crystal (PFC) model. It has been developed in {6, 2,
1] as an efficient tool to simulate materials on the microscopic scale. This
model is based on a second order free energy. In case of a nonconserved
evolution of the order parameter the corresponding fourth order parabolic
equation is known as the Swift-Hohenberg (SH) equation. For a detailed
discussion of PFC and SH equations and their hyperbolic type extensions
as well as related references we refer to the recent paper {7].

1.2. The Gompper et al. free energy
The free energy functional proposed by G. Gompper et al. [8-13] has the

form

(11) Fix) = /f<x,vX,v2x>dz, QCR,
Q

with the density
. 2 1 2 1 2
FOou Ve Vax) = fo(x) + 571001V xI” + 7(Ax)%

Here x is the scalar order parameter which is proportional to the local
difference of the oil and water concentrations. The properties of the am-
phiphile and its concentration enter model (1.1) implicitly via the form
of the functions fo(x) and () as well as the magnitude of constant
sy > 0.

The funciton fo(x) is the volumetric free energy with three local min-
ima at X = xo, X = Xw and x = 0 corresponding to oil-rich, water-rich
and microemulsion plases, respectively. In the absence of amphiphilic
wotecules fo(x) has two minima at ¥ — xo and ¥ = v, When ammphiphile
1s added Lo the oil-water system a third minimum of fy appears at y = U,
which describes o homogencous microemulsion phase. The value of the
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microemulsion minimum depends on the amphiphile concentration: fo(0)
is low for high amphiphile concentration and high for small amphiphile

concentration.
In [8, 10] the following sixth order approximation of fy is used

(1.2) Fo(x) = w(x — x0)* 0O + ho)(x = xw)®

where parameter %y € R measures the deviation from oil-water-micro-
emulsion coexistence and w is a positive constant. In case of oil-water

symmetry, ~Xo = Xw = Xsulk = 1, w = 1, and then
(1.3) Folx) = (x + D2(x* + ho)(x — 1%

In the absence of amphiphile the first gradient coefficient sr; is a
positive constant. When amphiphile is added to the sytem a minimum of
sr1(x) develops at ¥ = 0. For strong amphiphiles and with increasing their
concentration s (x) becomes negative at the microemulsion phase. In (8,
10, 13] the coefficient »; is approximated by the quadratic function

(1.4) s (x) = go -I-gz)(2

with constants go of arbitrary sign and g, positive.
The second gradient coefficient is a positive constant

(1.5) 9 = const > 0.

The Gompper et al. free energy (1.1)-(1.5) is justified by scattering
experiments. We recall after [9, 11, 13] that the scattering intensity S(q) -
which is the Fourier transform of the order parameter correlation function
- corresponding to the free energy (1.1) has the form

1
29* + 5 (xe)a® + £ (o)

S(g) ~

where xp € {x0,0, xw}. Experiments show a peak at ¢ = 0 in the oil-rich
and water-rich phases, but at ¢ # 0 in the microemulsion. This requires
sy to be posilive and #q to be positive in the oil and water phases hut

negative in the microemulsion.
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1.3. Conserved evolution system

Like in the classical Cahn-Hilliard theory the order parameter x in (1.1)
is a conserved quantity. Thus it satisfies the conservation law

(1.6) xte+V-3=0
with the mass flux § given by the constitutive equation
(1.7) j=-MVpu.

Here M > 0 is the mobility and u represents the chemical potential differ-
ences (shortly called the chemical potential) between the phases. In accord
with the Cahn-Hilliard theory the chemical potential is given as the first
variation of the free energy functional with respect to the order parameter:

The first variation & /6y is defined by the condition that

. d . §
(1.9) dj/f(k“k/\Q,VX+/\V(,V2x+/\vzodr,/\=o ::/gﬁ(dl‘
Q Q

1s to hold for all test functions ¢ € C§°(Q). In case of free energy (1.1)
(»2 = const) this leads to the following expressions for x4 and Vu:

B = fo )+ %”l,x(X)IVXP = V- (Ga(x)Vx) + sy

(1.10) :
= fox(x) — 5”1,x|VXl2 = (X)Ax + Ay,
and
. 1 1
(1n) VT b0V = S3a(OIVXE VX = 20 (O V(IVXP)

=1 x(X)AXVx = 31 (X)VAX + 50 VA% Y.

Above and hereafter we use the notation x; = 8x/3t, f,(x) =
df(x)/dx, vectors are denoted by bold letters, the dot - means the scalar
product and V- stands for the divergence.

Combining (1.6)-(1.10) we get the following conserved evolution sys-

tem

xt =V - (MVu)=0 in Q7 =0 x (0,7,

. 1
(112) = fO,x(X) + aklyx(X)IVXlz
Vo (e1(X)VX) + 22 A% in Q7

5 277 31-8-2010



where © C R? is a bounded domain with the boundary S, occupied by
the ternary mixture, and (0,7") is the time interval. We complement this

system by the initial condition at ¢t =0
(1.13) x(0) = xo in £,
and by the following Neumann type boundary conditions

n.VXzo on ST:SX(OaT)v
(1.14) n-VAx=0 on 57,
n-VYu=0 on ST

where n denotes the outward unit normal to S. The conditions (1.14); 2
are "natural” for the functional (1.1) (see derivation of energy identity in
Lemma 3.1). In view of (1.7), the condition (1.14)3 represents the mass
isolation at the boundary .S. System (1.12) can be also considered with
other boundary conditions.

Combining equations (1.12); and (1.12),, and taking into account
that by (1.17) 2,

ne T = |- L al0VITR) + 0 70%]

system (1.12)~(1.14) can be formulated in the form of the IBVP for the
sixth order Cahn-Hilliard type equation:

Xt — ]\/—/%'.)ASX

(1.15) 1 ) . T
= MA | fox(0) = x0T = (0] in 9
(1.16) x(0)=x0 in Q,
n - Vyx=0, n-VAyx =0,
(1.17)

1
som - VAZy = 5m,x(x)n-V(|Vx|2) on ST
It is of interest to note that in contrast to the classical fourth or-

der Cahn-Hilliard IBVP (the case »; = 0 and s, = const > 0) system
(1.15)-(1.17) involves the nonlinear boundary condition.
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1.4. Assumptions and main result
We consider system (1.12)—~(1.14) (in equivalent form (1.15)~(1.17)) under
the following assumptions:

(A1) Q@ C R’ is a bounded domain with a boundary .S of class C% T > 0
is an arbitrary fixed time;
(A2) the free energy density f(x, Vx, VZx) is defined in (1.1) where:
(i) fo(x) is a sixth order polynomial satisfying the condition
(118) folx) > ex® ~¢ forall xy € R with constants
' c>0 and ¢>0;

(i1) s1(x) = go + g2x? with constants g¢ € R and go > 0;
(iii) 22 > 0 and M > 0 are constants.

Clearly, fo(x) given by (1.2) satisfies (1.18). We have the following
Theorem 1.1. (Existence) Let assumptions (A1), (A2) hold and the ini-
tial datum yo be such that
(1.19) Xo € H(9),

and x¢(0), computed from equation (1.15), satisfies

() = Moa 5 x0 + M foralxo) + 5 51,0, (10) Vol
(1.20)
— 9 (o na0) V)| € La(@)

Moreover, the following compatibility conditions hold on S:
(1.21)

1
n-Vyxe=0, n-VAys =0, n-: VA2x0 = Eulm(xg)n . V(}VX0|2).

Then for any T > 0 problem (1.12)-(1.14) admits a strong solution y €
VV;’I(QT) satisfying the estimate
(1.22) ”X”w;-‘(nT) <c

with a constant ¢ = @([ixoll me(a), 1x:(0)ll1,(q), T), where ¢(-) is a positive,
increasing function of its arguments,

Theorem 1.2. (Continuous dependence on xq)
Let x1,x2 € Loo(0,T; H*(Q)) be two solutions to problem (1.12)-(1.14)
corresponding to the initial data x10, x20 € H%(Q), respectively. Then

(1.23) () = xz2(BllLay = llx10 — X'ZOHL;(S—‘szt for t € (0,T),
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where
c= (XL ma2a)y) X = (x1,x2), and
2

0 s 0,732 = 9 Xil w0328 -
=1
Corollary 1.3. (Uniqueness) Theorem 1.2 implies that a solution x €
Loo(0,T; H*(Q)) to problem (1.12)—(1.14) is uniquely defined. In particu-
lar, the regular solution x in Theorem 1.1 is uniquely defined.

The results of this paper were announced without proofs in [16].

2. Notation and auxiliary results

2.1. Notation

Let 2 C R™ be an open bounded subset of R™, n > 1, with a smooth
boundary 5, and Q7 = Q x (0, T). We denote:
WE(Q) = H¥Q), k € NU {0} - the Sobolev space on § with the finite

o lull egay = ( /|Da“l dI) 2,

lal <k
HYQ) = Ly(Q);
WHNQTY = L (0, T, WH(Q) n W0, T; Ly(Q)), keN, I€N,
» € [1,00) - the Sobolev space on Q7 with the finite norm
1/p
HU‘HW:‘:‘(QT) = ( Z /[ch’?ﬂ{l’drdt) ;
loj+ka<kigr

WE(QT) = Ly(0, T, WE(Q) N W30, Ti Ly(R)), k € N, s € Ry, p €

[1,00) — the Sobolev-Slobodecki space on Q7 with the finite norm

Hullw;a.«(m):( > /ID"‘@“uV’dzdt

|+ ka<[ks) QT

|Dgu(z,t) — D&u(a’,t)]? ,
+ Z // o T,!nﬂ)(ks_[“] dadz'dt

la|= [’w} 0

|a[-" u(z,t) agflu(m | 1/p
/// [t — v [TFp(a=[s]) dtdt'd:r.)

where {s] is the integer part of s.
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By ¢ we denote a generic positive constant which changes its value
from formula to formula and depends at most on imbedding constants,
constants of the considered problem and the regularity of the boundary.

By ¢ = ¢(0o1,...,0k), k € N, we denote a generic function which is a
positive increasing function of its arguments o1,...,0k, and may change

its form from formula to formula.

2.2. Imbeddings in Sobolev-Slobodecki spaces

In accord with [18, 19, Sect. 12] we define the fractional derivatives norms.
For 1« € (0,1) and p € [1, c0) let

= (/ / / LCORICHL PR

= Hazt-L“”L,,(QT)a

1) — u(z',¢
(uu,00,07,2 = sup  sup Iz, 1) = wle’, 1) 17(75 )
t€(0,T) x,2/ €9 |z —a'|r

165 ull Lo 27y,

T T s
[ulppar,= (/// Ju(z, 1) ;;:51;: id dtdt'd:v)
0

Q0

and

= [0 u]|1,a7),

u(z,t) —u(z, ')
[}y 00,07,¢ =sup  sup I—-—’———-—’—~
1,00 t Q L E0T) it _ tfll,u

= ||16full v, (ary-

For simplicity later on we use the notation d*u and 5“
We need the following results.

Theorem 2.1. (see [3, Chap. 3, Sect. 10]) Let u € W:“(QT), Q CR™,
s€ Ry, pe[l,o0]. Let

<n+k n+k

+la|+ka>i31,
P

ks

where ¢ € [1,00}, @ = (a1,...,@,) is the multiindex, i € NU {0},7 =
1,...,n,ae NU{0}, |al = a; + - + a,. Then

Didju € Ly(Q"), DZ=082,...,05",
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and the interpolation holds
n
( D288 I, camy < (185 ullp,ary + Y _ 105 ull L, @r))
2. i=1
+ee™ " lull L, a7y,

where ¢ € Ry and ¢ > p.
In case ¢ = oo, (2.1) holds provided » < 1.

Theorem 2.2. (direct boundary trace theorem, see {18])

(1) Let @ C R™ be a domain and S be either a boundary of Q or a
subdomain of  with dim § =n — 1.

(2) Let u e WE(QT), s e Ry, ke N, pe[l,e0), S € Cks.
Then there exists a function @ = u|gr such that

= kas—l/p,s—l/kp(sT)

and

(2.2) ”ﬁHW:s—!/p,s—l/‘-'p(ST) < C”“”W:""(QT)’

where ¢ does not depend on u.
Theorem 2.3. (inverse boundary trace theorem, see [18, 19, Sect. 20]).
Let assumption (1) of Theorem 2.2 hold. Let 4 € TV:S_I/p’sHl/kP(ST),
s€ERL, k€N, pe[l,o0), S e Ck Then there exists a function u such
that u|gr = 4, u € I/V:I”(QT) and
(2.3) ”u”W:"‘(QT) < C”ﬁllw’f'-‘/w-llw(sm,
where ¢ does not depend on @.

Theorem 2.4. (direct initial trace theorem) (see [18]) Let u € W*(QT),
seERy, k€N,s>1/p, p € (l,00) Then @ = uly=¢, where iy € [0,T},
belongs to W;s—k/p(Q) and

(2.4) "ﬂHW:"“:/P(Q) < C”u”W:"’(QTy
where ¢ does not depend on u.

Theorem 2.5. (inverse initial trace theorem) (see {18])
Let @ € T/V,fs-k/p(Q), s€Ry, keN, s> 1/p, p € (1,00). Then there
exists u € W (QT) such that uli=y, =1, to € [0,T), and

(2.5) lullte gy S cllillyre-srn gy,

where ¢ does not depend on .
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2.3. Estimates for second and fourth order elliptic problems

For further purposes we prepare two lemmas providing estimates for sec-
ond and fourth order linear elliptic problems. These estimates represernt
some specialized versions of the well-known general elliptic estimate, see
[15, Chap. 2, Thm. 5.1].

Let @ C R™ n > 1, be an open bounded subset of R™, with a smooth
boundary S. Let us consider the problem

Axy=Ff in Q,
n-Vx=0 on 5,
(2.6)
fxda: = Xm = const
0
where

fxdz: mil/)(dz,

Q Q

Lemma 2.6. Let r € NU{0} and f € H"(2). Then there exists a unique
solution x € H2"(Q) to (2.6) such that

(2.7 Ixlm2r ey < cllfllary + xml)-

Proof. Let us recall the elliptic estimate [15, Chap. 2, Thm. 5]
(2.8) Ixlez+ecay < clAxHar) + Ixlfaetn-:q))-
Since, by the interpolation,

Xl zczen-1cay < eillxllmetniny + e(1/e)llxl ), €1 >0,

(2.8) implies that the solution to problem (2.6) satisfies

(2.9) Il aer iy < il fllar@) + 11Xl La@))-

Multiplying (2.6); by x, integrating over 2, using the Young and Poincaré
inequalities leads to

(2.10) X2z + 1Vxllza00) < el fllzany + Ixml)-
Now applying (2.10) in (2.9) we concludc incquality (2.7). O
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Next, let us consider the fourth order elliptic problem

Aly=f n £,

n-Vy=0 on S,
(2.11) n-VAy =0 on S,

fxda: = Xm = const.

Q

Lemma 2.7. Let r € NU{0} and f € H™(Q). Then there exists a unique
solution y € H*7(Q) to (2.11) such that

(2.12) [Ny < clllfllzey + Ixm|)-

Proof. In accord with the elliptic estimate [15, Chap. 2, Thm. 5.1],
(2'13) ”X“H*‘r'(n) < C(”A2X|IH'(Q) + “X”H(4+r)—1(n))-
Since, by the interpolation,

Xl zeen-1qy < exllxllaer@) +e(l/e)lixlL0). & >0,
(2.13) implies that the solution to problem (2.11) satisfies
(2.14) xtaatr) < el flla-co) + lxlle,c0))-

In addition, we prove the estimate

(2.15) Ixlza@) + 1VXlLa) < el fllzo) + Ixml)-

To this end multiplying (2.11); by x, integrating over {2 and twice by parts
using boundary conditions (2.11)3 3, and applying the Young inequality we

get

(2.16) /(AX)Zdr < Ez/xzdm + C(l/Eg)/deI, g2 > 0.
& a &

Now, considering the auxiliary artificial problem (with Ay on the right-
-hand side of (2.17); treated as given)

Ax = Ax in Q,
n-Vx=0 on S,

(2.17)
//de = Xm;

Q
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and recalling the inequality (2.10), yields

2.18) 2, gy + 19Xy < / (Ax)d + o
Q

Inserting (2.16) into (2.18) and choosing e, sufficiently small we arrive az
(2.15). Now, using (2.15) in (2.14) gives (2.12). O

2.4. Linear parabolic problem of the sixth order

We recall the solvability result for the sixth order linear parabolic problem
which is of crucial importance for the proof of Theorem 1.1.

Lemma 2.8. (see {15, 19]) Let us consider the linear IBVP

(2.19)
xe—Ax =F in QT = x(0,7),
x(0) = xo in €,

n-Vx=0, n-VAx=0, n-VA>x =G on ST =25x(0,7),
where ¢ C R™ is a domain with a boundary S of class C°. Assume that
(220)  Fe Ly(QT), GeWy/* (8T, xo € WE(Q) = H3(Q).
Moreover, let the following compatibility conditions hold on S
(2.21) n-Vxo=0, n -VAxo=0, n-VA%y, =G(0)

with the last two in the weak sense. Then for any T > 0 problem (2.19)
has the unique solution x € W™ (Q7T) satisfying the estimate

(2.22)  Ixllwen ary < clliFfLary + [Gllyyzinegry + lxoll z3a))-

3. A priori estimates
We begin with noting the conservation property of system (1.12)-(1.14):

Q

which follows from (1.12); and (1.14);. It shows that the mean value of y

is preserved, l.e.,

(3.2) f,\/(t)dz = /xod:c = xm for £20.
Q Q

Next we derive the energy identity for (1.12)-(1.14).
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Lemma 3.1. (Energy identity) Let x be a sufficiently regular solution to
system (1.12)-(1.14). Then the following identity is satisfied

j,/[fo(xH 5 0)[Vx/?

(3.3) !

1
+ E%Z(Ax)sza:+M/]Vp|2dz:0 for t2>0.
Q

Proof. Multiplying (1.12); by 4, integrating over £ and by parts using
boundary condition (1.14); leads to .

(3.4) xepdz + M [ [Vyl*dz =0.
[

Further, multiplying (1.12); by —x: and integrating over Q2 gives

1

“/thd$+/[fo,x(X)Xt+ Em,x(x)|vx|2m

(3.5) Q Q
=V (Ga(0)Vxe + ){QAQth] dz = 0.

Since 4
[ fooxste = 5 [ fotx)dz,
Q 0

and on account of boundary conditions (1.14); and (1.14),,

1
E”I,X
Q

E 1x0OIVx P xe +3a(x)Vx - Ve ]d

=V (on (x)Vx)x:]dw

\

(3.6)

[l

% [ 00vxP,
2

%z/AZXXtd'L‘ = —%Z/VAX Vxedz —XQ/AXAX dx
Q

=3 dt/lAX, dz,
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the identity (3.5) becomes

d . 1 1
61 =[xt 3 [ 500+ 300V + Fralont?|dr
Q Q
Now, adding (3.4) and (3.7) by sides yields the assertion. O

From identity (3.3) we deduce

Lemma 3.2. (Energy estimate) Let assumptions (A1), (A2) hold and
xo € H%(Q). Then a solution to (1.12)-(1.14) satisfies

Il + 90 [ 319xPaz + [xdat [19upasar
(39) d S
<¢(Dp+1) for tel0,T]

where

Do = [ [1oxe) + Hlaol + sVl + Soall?] s
Q

Proof. Integrating (3.3) with respect to time from 0 to ¢ € [0,7] and
taking into account condition (1.18) in (A2) (i), we get

1 1
[ [+ 5tao + a9+ pa(ny?]do + [ 19Pards
39 4
< Dg+c¢ for tel0,T],

where Dq is defined in (3.8). Hence,

JI + g 19x 4 a8l + [ 1Vl ot
[} Qf

(3.10)
< clgol [ [VxPds + Do+ c.
Q

Let us consider now the artificial elliptic problem

Ax = Ay in Q,
n-Vy=0 on .5,

(3.11)
/xdz :/ng:c = Xm
Q Q
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with the right-hand side of (3.11); treated as given. Note that conditions
(3.11)3,5 are ensured by (1.14); and (3.2). Then, in accord with Lemma 2.6,

(3.12) Ixlm2a) < cllAx) a0y + Ixm).

By virtue of (3.12), applying the interpolations

/ IVx2dz < exllxlBagay + c(1/en)lixl
N

< erllixlirage) +e(l/en)EallxlG o) + c(1/e2)),

with £,e2 > 0, and choosing €1, €2 sufficiently small we deduce from (3.10)
inequality (3.8). O

Corollary 3.3. From (3.8) it follows that
(3.13) Xl Low 0,5 2000) + IV [y 007y < p(er)

where ¢1 = llxo|lm2qy. Note that constant ¢; is independent of T. By
virtue of the imbedding, (3.13) implies that

(3.14) IXlzw@ry Seler), IVxlloo 0,105y < eler)-

Corollary 3.4. On account of boundary conditions (1.4); 2, integration

of (1.12), gives
1
619 [ude = [ o0+ Jraatilva|ds
Q Q
Hence, using (3.14), it follows that

/udz

Q

(3.16) ess sup < ¢(cy).

t€[0,7]

Now, by the Poincaré inequality, estimates (3.13) and (3.16) imply that

(8.17) el 2o, 7m0y < p(ca).

Our goal now is to estimate the separate terms of Vy given by formula
(1.11).

16 277 81-8-201C



Lemma 3.5. (Estimate on VAx) Let the assumptions of Lemma 3.2 be
satisfied. Then

(3.18)  xllrwo, 15400y + IxAXN Laar) + IVAXI L a7y < w(e1, T).

Proof. Multiplying (1.12); by x, integrating over 2 and using boundary
condition (1.14); gives
1d 2
(3.19) ST x‘de +M | Vu Vyxds =0.
Q @

Inserting formula (1.10)2 for u, (3.19) becomes

1d

2 dt
(3.20) ¢

+ szzx> - Vxdz = 0.

1
a4 [ 9(fox00 = Sanb0IVxE = (05x
Q

On account of boundary conditions (1.14); and (1.14); integration by
parts yields

[ 7 (o0 = 309 = a()5x) - Vxda

(3.21) .
== [ (5 = 30097 = ra(00x ) Ao
1]
and
3, / V(A%y) - Vxdz = —MQ/AZXAXd-T
(3.22) ¢ @

— _,{2/v (VAx)Aydz = ;{2/ IVAY|*dz.
by} Q

Inserting (3.21) and (3.22) into (3.20) and using (A2) (ii), (iii) we arrive
at the identity

1d

aaz/xzdz—f—M;{z/]VAxfdr +Mg2/x2(Ax)2d:r
! Q

19
(23) =Moo [(8xPde+ M [ for(0ids
Q Q
— Mg, /lexlexd:c =h+ L+
Q
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On account of (3.13) and (3.14)q,
L <car, I < ellfoxOollzaallAxllrany < eler).
Moreover,
Iy, <egy /X2(1_\x)2d:c+c(l/a;)/le[‘*dz, g >0,
Q

Q

where by virtue of (3.14); the second integral is bounded by ¢(c1). Com-
bining the above estimates in (3.23), choosing ¢; small and integrating the
resulting inequality with respect to time we get

/dez+/XZ(AX)2dzdt+/]VAX(2dzdtg/xgdz-f—go(cl)T.
Q QT QT Q

Hence, by definition of c;, estimate (3.18) follows. ]
Corollary 3.6. Considering for t € (0,T) the artificial elliptic problem
Ax = Ayx n ,
n-Vx=0 on S,

fxdm :fXOdz = Xm,
Q Q

and recalling Lemma 2.6, it follows that
Dxllza0. o) < eUlAXIzaco,miav ey + T Pm )-
Hence, by virtue of estimates (3.13) and (3.18),
(3:24) llxliz 0,32y € T +¢(cr, T) + T2 x| = wler, Xm, T).

Lemma 3.7. (Estimate on VAZ?y) Let the assumptions of Lemma 3.2 be
satisfled. Then

(325) HVAZX”L2(QT) < W(Cl,vaT)

Proof. Using (1.11) we have

IVA*X|zyary < cllVeliLy@ary + [fo,xx(X) VXl L,car)
151, VX Vil Loy + 12 x0OVIVX) 2, ary
(3.26) + 1541, x(X)AXV Xl o amy + 11 (X)VAX] L, @7))
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Using (3.13) and (3.14),
L+ L+ Iy < g(er) T2
Further, by (3.14) and Holder’s inequality
L+ Is < o(e)ll VXV X ) Ly cam)

T 1/2
< oo [ 191 IV et
0

T 12
<ot [ IVxiE @)

Applying the interpolation and estimates (3.24), (3.13) we have
VXl La0,m52s()) S €IV XNza00,mimq) + IV Xl 22 0,1322020))
S ‘10(011 Xm, T)

Hence,
I4 + I5 S SD(CImevT)‘

Finally, by (3.14); and (3.18),
Is < w1, xm,T).

After using the above estimates in (3.26) we conclude (3.25). O
Corollary 3.8. Considering for t € (0,T) the artificial elliptic problem
Aty = A%y in Q,
n-Vx=0 n-VAx=0 on §

/xdz =f><odz = Xm,
Q Q

and recalling Lemma 2.7, it follows that
X200, 52500 < (A Xl 2200, 710) + T2 xml)-
Hence, since f A®xdz = 0, the Poincaré inequality implies that
Q

XN 220075850 < VA XNz 07y + T2 xm )
This upon the use of (3.25) gives the estimate
(3.27) Ixlzaco,mm5cay) < wlers xm, T)-

To get estimates on y: we consider system (1.12)-(1.14) rewritten in
the form (1.15)~(1.17) and differentiate equation (1.15) with respect to
time. We proceed in such a way because due to the nonlinear boundary
condition (1.17)s the direct approach based on multiplying (1.15) by x:
turns out to be unsuccessful.
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Lemma 3.9. (Estimates on x:) Let the assumptions of Lemma 3.2 be
satisfied and, in addition, let x:(0) computed from equation (1.15) be
such that

1
x:(0) = MA <f0.xo(X0) - 5%1,x(.><o)lvxa|2 — »1(x0)A X0

(3.28)
+%2A2Xo> S LQ(Q).
Then
/de(ﬂ+‘/|VAth,2d.’tdtl+/X2[Axtfl2d:1:dt'
(3.29) 4 3 i
< ¢ler, e, xm,T) for t e (0,T)

where ¢y = ||Xt(0)HLz(ﬂ)'

Proof. Differentiating equation (1.15) with respect to time, multiplying
by x: and integrating over § gives

1d 1
% /dez — M/A(szzx — 5"1,XIVX,2> tXtdz
(3.30) @ @

- M/A(fo,X — 1 Ax) 1 xedz = 0.
Q
Let us write the second integral in (3.30) in the form
2 I 2
— M A V }(QA X — Ekl’xlvxl Xt dIL‘
2 t
1
+M/V<X2A2X - 5%1'X|VX‘2> . V)ud:c = I1 + I2.
Q ot
In view of boundary conditions (1.17); 3 the integral /; vanishes, and
1
I = M/ v [(}QAZX - —ixl,X]VxIZ) th} dz
4 t
1
ol M/ <J{2A2X — Exl,X,vXP) Axtdil,‘ = I21 + I22
t
3 ,
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Using the Hélder and Young inequalities along with estimates (3.14); and
(3.13); we get

U"lsl < Cl“XtHLa(Q)”AXHLa(ﬂ)”AXtHLG(Q) + C“AXtHsz(m
< ESHAXt”?LG(n) + c."(1/\55)”Xt“2L3(0) +cflAx:

2
La(Q):
Now we apply the following interpolations together with the Poincaré in-

equality accounting for f Ay.dz = 0:
Q

Ixell2ec0y < esllVAXNT 0y + 2(1/e6)lixeliT )

3.32
B3 Aoy < eI VA e + 0 fen)xeluiy,  corer > 0.

Then we get

11| < el VAX T,y + w1 /es)lixell Ty, €8 > 0.

It remains to examine the integral K. After performing differentia-

tion,

Ky = ”‘A/I/(fﬁ,xxx!vXIz + fO.xxAX),tXtdl"
Q

= _]W/(fﬂ,xxxxXt(leQ + 20,5xx VX * Vit + fo Xt DX
Q
+ foxxDAxe)xedz.

Recalling (3.14 ),
[Ky| < w(cl)/[(XtVlVXIz + V! Vil Ixel + (xe)* | Ax]

Q
+ [Axi| [xellde = K + K2 + K3 + K.

Now, using (3.13), (3.14) and the interpolations in a similar way as above

we get

K S e(e)lxell L@l Vxllzemy < wledlixelliym
el VAxelE, oy + ¢(1/es, e)lixelllaiay € >0,

K3 < ole)lIVxll oy IV xell ooy e oo
< e10llVAX L0y + e(L/er0,e)lixell, @y €10 > 0,
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K3 < plenllaxlia@ lIxdli ) < wlellxellZ, o
< enlVAxdl L,y +e(1/eredlxdlll @y €u >0,

Ky <ple)lldxellalixelizae
< enl|VAX L) + e(1/e12,e)xell} ), €12 > 0

In result,
K| < exsllVAXeNT, ) + e(1/e13,e0)lxellZ ) €13 >0
Summarizing the above estimates in (3.30) leads to the inequality

1d

57 x;”dz+Mn2/[VAXg!2d:r,+Mg2/X2(AXz)2d:c
2 2 Q

(3.33)
< el VAXT ) +(1/e1e, e)lixelli ) for te(0,T),

where €4 + €5 + €13 < £14. Hence, choosing ¢4 sufficiently small and

applying the Gronwall lemma we conclude (3.29). O
Corollary 3.10. Since

Ixellzece) < clldxdlae) < cllVAX L),
which follows from the elliptic property and the Poincaré inequality
(Sf; yedz = 0, _£AX¢d$ = 0) , (3.29) implies the estimate
(3.34) Xt Lo 0,75 Lac0)) + WxellLa0,7 30 < wler, ez, Xm, T)-
Moreover, combining (3.27) and (3.34) we deduce that
(3.35) Ixllws.: @ry < #ler, 02, Xm, T)-

Estimate (3.35) allows to apply the parabolic theory (see Lemina 2.8)
to system (1.15)—(1.17) expressed as

(3.36)
1

= Mo b = M fox(x) = 3GV = (0

= F(x) in Q7
x(0) = xo in £,
n-Vx=0, n-VAxy=0 on ST,

1

n- VA = 572ul,x(x)n SV(IVxI?) = G(x) on ST,
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Lemma 3.11. (Estimate in Wy (Q7)) Let the assumptions of Lemma 3.9
be satisfied, and xg € H®(Q). Then a solution to problem (3.36) satisfies

the estimate
(337) ”XHWS-‘(QT) < @(C],CQ,C;;,Xm,T)

where ¢z = ||xolln3(a)-

Proof. By virtue of Lemma 2.8, if
F() € L"), G0 € WM (ST),  xo € HY(9),
and the compatibility conditions hold on § |
n-Vxo=0, n-VAx;=0, n VAl = G(xs)

(with the last two in the weak sense) then problem (3.36) has the unique
solution x € W;’I(QT) satisfying the estimate
(8.38)

cllwen ory < lECN Lo 07y + 1G22 (gry + Hxoll Hsay)-

By (3.35),
A= ”X”W;'l(QT) < (19(61762>Xm7T)'

We estimate the first two norms on the right-hand side of (3.38) by 4. Let
us note that on account of the imbeddings (see Sect. 2.2) the following

holds:

Ixllz..ary < ¢4,

”vX”Lq(QT) <cA forany ¢ < oo,
(3.39) IV2xllL,@r) ScAd for 2< ¢ <8,

(Vixllz,(ary S cA for 2< g <4,

|IV4X"Lq(QT) <cA for 2<g<8/3.

Moreover,

18/ Xll 1 27 < A4,
(3.40) 18;°Vxlln,ry S cA  for 2 <q < 48/5,
18}/°V2xli L, oy S A for 2<q< 48/11

where the notation of fractional derivatives is used (see Sec. 2.2).
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After differentiating,
1
Fix)=M [fO,xxx[VX,2 + fo,xxBX — ‘2"‘1,;<7<x[v/\’|4

3 1
- ’{l,xxv('vX,Z) “Vx - §“l,xxIVX|2AX - E’fl,xA(lv)(Iz)

— 2501 yVAY - Vx — ;q,x(Ax)z — A%y

On account of the assumptions of fy and s (see (A2) (i), (ii)), using
(3.39) we get

IFCON Lacary < ell IxP IV + x*[ax] + V2| VX

+ VX + IV AX] VX

+ (1 + xDIA X[ Loy
< cA*(IVXNL, cary + 18X N o) + IV X Loy IV XN 2 o)

FI1V2 N 0r) + IVAX Ly I VX gary + 1182l Ly 07))
< o(4).

To estimate the boundary term on the right-hand side of (3.38) we

introduce a smooth extension of the outward unit normal n to S onto

a neighbourhood of §. Then by the inverse boundary trace theorem (see
Theorem 2.3)

(3.41)

(342) ”G(X)” W;/Z'I/”(ST) < C”G(X)”W;,l/a(nT)

where W;/Z’I/IZ(ST) is the space of traces of functions from W;’I/G(QT)A
We have
1
”G(X)”W;'U‘S(QT) = 2_}(2'“}(10(‘” : v('lez)”W;-‘/ﬁ(QT)

1
(3.43) = z—}gilﬂl,xn VIV 0,752 ()

1 2
+ EZH;(I,XTL ’ V(IVXI )“W;/S(O,T;Lz(ﬂ)) =h+1a
On account of assumption on s, smoothness of S and the bounds (3.39)

the term I; is estimated as follows:

L < cA(HVXIV X Loy + 1 VXPIV Xl aory + VX Ly

4
F VXV X i La0my) = D 1T,

k=1
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where
I} < Al Vil an) | Vi Xl Ly@ry < @A),

iN

I} < cAVX| 1yany VX Lacar) < o(4),
I} < cAlIV3x|[1,ary < ¢(A),
I < cAllVxllLom I VixH Lyar) < w(4).
Hence,
(3.44) I < o(A).

Finally, using (3.39) and (3.40),
L < el {8 X1V X)) VX [ Locar) + CAH 18:/° VX1 19X [ acar)

Ly(aT) = Zfz,

+ cAl| VX118 Vx]

where
I} < 18 Xl b @) [V XN Lai@m) 192X 2aary < @(A),
12 < A8 VXl L@ IV Xl Loy < 9(A),
6
B < cAVxlzy @m0 Vixl Ly ar) < (A).
Hence,
(3.45) I, < (4).

After summarizing (3.42)—(3.45), we conclude that
(3‘46) “G<X)HW2‘/7-1/”(ST) < SO(A)-
Consequently, by (3.38) it follows that

weary S (4) + lxollmsey < wlers ez, e3,xm, T)

x|

which proves the assertion. a
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4. Proof of Theorem 1.1 (Existence)

We apply the Leray-schauder fixed point theorem in the following formu-

lation (see e.g. [5]):

Theorem 4.1. (Leray-Schauder) Let X be a Banach space. Assuine that

®: {0,1] x X — X is a map with the following properties:

(i) for any fixed T € {0,1] the map Is completely continuous;

(ii) For every bounded subset B of X, the family of maps ®(-,£) : (0,1] —
X, £ € B, is uniformly equicontinuous;

(iii) ®(0,-) has precisely one fixed point in X;

(iv) ‘There is a bounded subset B of X such that any fixed point in X of
®(7,") is contained in B for every 7 € [0,1].
Then ®(1,-) has at least one fixed point.
We choose as the solution space the Sobolev-Slobodecki space

(4.1) X =w(T), se(0,1), 2cCR?

with the finite norm

Dhysesgary = ( S [iproraa

[a(+6a<[ﬁsQT
|Dex(z,t) — D2 x(a', 1)
+ Z ]/// By ) dede'dt
=([6s 0

l@s]xmt— x(z, t)H|? 1/2
+ /// : ‘g - t),’IH(S (sl) ) dtdt’dz) .
Q00
The parameter s € (0,1) will be specified below in Lemma 4.1.
The solution map
(42)
o(r,) s Wy (07) 3 x - x e WPHQT) c w(aT), efo,1],

is defined by means of the following initial-boundary value problem

ad M}QASX = TMA [foyi(g)

1 N Ay A~ - .
- FasIVE - =AY =P AT,
4.3
(*3) x(0) = 7x0 in £,
n-Vx=0, n-VAx =0 on ST,

1
n- VA% = "o aa(n VIV =7G(%) on ST

where 7 € [0, 1].
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Clearly, x defined as a fixed point of @(1,-) is a solution to problem
(1.15)~(1.17).

We prove first that the map ®(7,-) is well-defined.
Lemma 4.1. Let the solution map ®(r,-) be defined by (4.2), (4.3) and
the solution space be Wi**(QT) with s € (11/12,1). Then for any ¥ €
W (QT) and xo € H3(Q) satisfying the compatibility conditions

(44) m-Vxo=0, n-VAyxe=0, n- VAl =G(x%(0)) on 3,

with the last two in the weak sense, there exists a unique solution x €

W (QT) to problem (4.3) such that

2

(4.5) HX”W2‘3-1(QT) < @(H)Z”Wf”‘(QT)’ llxoltmsay)-

Proof. Let ¥ € Wi *(QT) where s € (11/12,1) and let
A= 2l ysns amy

We proceed in the same manner as in Lemma 3.11. By virtue of Lemma
2.8 problem (4.3) has the unique solution x € W' (QT) provided that
TF(R) € Lo(QT), rG(%) € WP 12(ST), rxo € H}(Q) and compatibility
conditions (4.4) hold. Then
(4.6)

Il ry < T IFGOMLacary + NG paranriz oy + Tlixolimeca)-

We estimate the first two norms on the right-hand side of (4.6) by the norm
A. If the parameter s € (11/12,1) then on account of the imbeddings (see
Sect. 2.2) we have

¥ swory S A, VRl Le(ary S ¢4,
(Ivzf”Lq(QT) <cA for 2<g<9,
IV%ll L ary S cA for 2<q<9/2,
‘fv4f],Lq(QT) <cA for 2<¢<3.

(4.7)

Moreover,

Hazl/ﬁflle(QT) < ¢4,
(48) 104V ¥li s, @ry < cA  for 2< <9,
10}/° 2%l ary < A for 2<¢ < 9/2.
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Repeating estimates (3.41)—(3.46) from Lemma 3.11 and using (4.7), (4.8)

we conclude that
wy VOl <o), ~
. ”G()z)“w/;/?»‘/”(sT) < c”G(i)”W;vl/“(nT) < W(A)

Then, by (4.6),

(4.10) {ixllwer(ory < @(A) + ¢llxoll o) < elixllwse»@ary» Ixoll sy

for any 7 € [0, 1]. This proves the assertion. 0
We check that the map ®(7,-) defined by (4.2), (4.3) satisfles the
assumptions of Theorem 4.1.
(i) Complete continuity
From (4.2) it follows immediately

Corollary 4.2. Since for s < 1, the imbedding W' (QT) ¢ W5**(Q7T)
is compact, the map ®(r,-) takes bounded subsets in W **(07T) into pre-
compact subsets in Wi**(Q7).

Thus, to show the complete continuity of the map ®(r,-) it remains to
prove its continuity.

For a fixed 7 € [0,1], let x1 = ®(7,%1) and x2 = ®(r,%2) be two
solutions of problem (4.3) corresponding to 1 and ¥, from a bounded
subset of W (7)), such that

(4.11) Xkl ysee ry < B, k=12
Denoting the differences
(4.12) K=x1—x2» K=3-%,

and subtracting by sides the corresponding equations for x; and y, we
can see that K satisfies the following problem:

K — Mooy N K = v MA[(fo,5.(%1) = foz:(%2))
1
- g(kl,i« (XOIVERLP = 1,5, (%2)IVE2[?)
—(a(X)A% — a()A%)]) = 7F(%1, %)  in 07,

(4.13) K(0)=0 in Q,
n VK =0 n-VAK =0 on ST,

- 1 - -
n-VAMK = 15—, (%) V(VilP)
M2
=5 (Xa)n - VIV = 76, 2) on 7.
Analysis similar to that in the proof of Lemma 4.1 yields
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Lemma 4.3. (Continuity of &) For any %1,%2 € Wi'(am),
s € (11/12,1), satisfying (4.11), and for any = € [0,1], the unique so-
Iution K € W3 (QT) to problem (4.13) obeys the estimate

(4.14) ?II{||w/f"(QT) < TQO(B)“IN{”W,E"‘(QT)'

Proof. First, let us note that by virtue of the imbeddings the following
estimates hold for ¥, k = 1,2 (compare (4.7), (4.8))

%6l 2oy o7y + IV Rkl Lo oy + 10 Rkl Lo
< CH)Ek”Wf’v‘(QT) < CB»
V2%l L, cam) + Ilawtllev):'k”Lq(QT)
(4.15) < C”f(k”pyzﬁsv‘(QT) <cB
V3 5kl 2, cam) + 110:° V2 5kliz, m)
< C”/\jknwzﬁ’:‘(g’r) <cB for 2<¢< 9/23

for 2<¢ <9,

[lv4>zk['Lq(QT) < Cllikllw;a,a(gr) <cB for 2<¢<3.

From Lemma 2.8 it follows that if 77 (%, %2) € L(Q7), 7G(%1,%2) €
W'zlﬂ’l/n(ST) and the compatibility condition

(4.16) G(#1(0), %2(0)) = 0

holds on S, then there exists a unique solution to problem (4.13) such that
(4.17)
”B’”Wf’l(QT) < C(T”F(>217>22)||L2(9T) + T”G(Xla22)”W;/2v1/”(5'7‘))~

Let us note that condition (4.16) holds true since §; and Y2 satisfy (4.4).
We proceed to estimate the norms on the right-hand side of (4.17).
Using the assumptions on fo and s we write (%1, %2) in the form

3

(4.18) P(f1,%2) =) Bi(%1,%2)
=1

where

Fi(%1,%2) = MAfo,5.(01) = foza(R2)]
= M{foeeee (E)IVRLPK + fo za522:(%2) (VX1 + Vi2) VK
+ fO,nnv(TJ)A)le + fox2%2 (XZ)AI;’]
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with some &, € (X1, X2),
L 1 o N
Fy(%1,X2) = =5 MAPau (0IVEL® = 5,5 (%) V2]
714

1 - . . 3
= —EMgg[[V;ZIIZAK +2V(VH1Y) - VE + AV
+ A% VE + V%) VE +2V% - (Vi1 + V%) VEK)
+2V52 - (VPE(Vi + V%)) + %2VAGG + %2) - VE
+2%2(V2%1 + V2%2) - V2K + %2(Vi + Via) - VAL,
F3(>217)22) = —MA[(X1)A%: — 1(X2)A%2)
= —Mg[(A%1 + AR)AX K + 2V + Vi) - VAK K
+2A8%:(Vii +VX2) - VK + (%1 + fz)Azilﬂ’
+2(%1 + %2)VAR - VK + (1 + £ AR AR
+ A% AK +2V%, - VAK + 52 A’K} — MgoA?K.

On account of assumption on 31 the boundary term takes the form

Ml

G, %) 5—};{(%1,)—“(,%1) — s (@) V(TP
+ 31,5, (X2)m - V(VEE = (V2]

L0 V(YK + fon - (V5 + VP 32)VE)

29

+ %2n - (VER(V%1 + Vi)

(4.19)

Using (4.15) and the analogous imbeddings for K we estimate the

particular terms £} to obtain

(4.20) Z 1Fi (%0, %2l acary < GO(B)”I%“W.‘?”’(QT)'

i=1

The boundary term (4.17) is estimated as follows:
”é(il?XZ)HW;/Z“/lz(ST) < c”é()zlvfe?)“w;rl/s(gr)
= c(|G(%1, X2 Lao, iwrcay) + NG (Fn, X2 )y s wive (o.1)
= Il + I

where ~ -
I < eflln- VUV K a0, mwi )

+lixzn - (V%1 + V2 %)V E) Lo, r w5 )
+ [[X2m - (VEE (Vi1 + VX2 0,mwp )]
3
= ZI{,
=1
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L < dfn-V(VRP)E w1
+lx2m - (V25 + V2 %2)VE) | 1y ,wiis0,m)
+ [f2m - (VK (VR + V)| Ly (w170 0,7))

Again, on account of (4.15) and the analogous imbeddings for K after the

straightforward calculations we have

I < PBWEK |l pyse.s )

(4.21) I|C~Y'(>217fZ)HWyZ-””(sT) < Z
e

2 3
i=1 j=

Substituting (4.20) and (4.21) into (4.17) implies the desired estimate
(4.14). 0
Concluding, Corollary 4.2 and Lemma 4.3 prove that assumption (i)

of Theorem 4.1 is satisfied.
(ii) Uniform equicontinuity
Let us consider the family of maps &(-,¢) : [0,1] — W, (QT) with
£ in a bounded subset of W**(QT), s € (11/12,1):
(4.22) teB={ew;@Q7): €llwseeary < s}
Let x1 = ®(m1,£), x2 = ®(n2,€), € € B, 71,72 € [0,1] be two families of

solutions to problem (4.3) corresponding to parameters 71 and 72, respec-
tively. For a fixed £ € B let us denote the difference

H=)x1-xz
which satisfies the following problem

H, — Mx;N°H = (1, — )F(€) in QT

(4.93) H{0) = (1 — 72)x0 on ,
n-VH=0, n-VAH =0 on ST,
n-VAYH = (1, — 72)G(£) on ST.

Lemma 4.4. (Uniform equicontinuity) For any £ € B and any 71,72 €
[0,1] the solution H € Wy (QT) to problem (4.23) satisfies the estimate

(4.24) 1H |l wer qry < elesslixollas@))lm — 72l
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Proof. We use Lemma 2.8 which implies that the unigue solution
H e WSH(QT) to problem (4.23) satisfies

495 ||H[‘Wf-l(nT) < e(]ry ~ 72 ”F(f)”Lg(nT)
(2 = Al UG araans sr, + I~ mal ol sy

Recalling estimates (4.9) we have

NEOlzzcary < e(liEliwsee ar)) < wles),

20 6@ yarnans sr € el wans any < les)
for any ¢ € B. Thus, (4.25) and (4.26) imply (4.24). O

Lemma 4.4 proves the uniform equicontinuity of the family of maps
®(,€): [0,1] = Wy (QT), £ € B.
(iii) Uniqueness for 7 =0

By Lemma 2.8 for 7 = 0 problem (4.3) has the unique solution x = 0.
(iv) A priort bound

It follows from Lemma 3.11 that there exists a bounded subset 53 of
W (QT), given by

B={xe W Q) : [xllwes(ary < cs = olllxoll sy, Ixe (Ol 2o, T):

such that any fixed point of &(1,-) is contained in B. It is clear that the
same property holds for any 7 € (0, 1], so assumption (iv) of Theorem 4.1

is satisfied.

In conclusion, we deduce from Theorem 4.1 the existence of at least
one fixed point of the map ®(1,-) in the space Wy (Q7), s € (11/12,1).
By the regularity properties (4.5) of the solution map it follows that the
fixed point belongs to the space Wy (2T). Clearly, in view of the defi-
nition of the map ®(1,-) this means that IBVP (1.15)-(1.17) (equivalent
to (1.12)~(1.14)) has a solution x € W (QT) satisfying estimate (1.22).
Thereby the proof of Theorem 1.1 is completed. a

5. Proof of Theorem 1.2 (Continuous dependence on x,)

Let x1,Xx2 € Loo(0,T; H*(§2)) be two solutions to problem (1.12)—(1.14)
corresponding to Xx1g, x20 € H?(Q), respectively. Denoting

K=x1—x2, Ko=x1w0—x20 and N =p;—pu,
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where p; = p(x;), we have
K~V -(MVN)=0 in QF,
N = fox.(x1) = foxa(x2) — %(Xl'XI(XI)’vxllz
= 31,5, (X2)IVx2[*) — Ga(x1)Axa — 1 (x2)Ax2)

(5.1) TN in Q7,
K(0) = Ky n Q,
n-VK =0, n-VAK =0 on ST,
n-VYN =0 on ST

Multiplying (5.1); by K, integrating over £ and twice by parts we get

1d

2 —— tdr — dz = 0.

(5.2) Zdt/K da M/NAAdz 0
Q. Q

After inserting the identity (5.1)2 for &V, and taking into account that
31 = go + g2x?, (5.2) takes the form

d

1 -2 12
2dt/A dz+M>(2/|\7AI&| do
Q Q

= M/(fO,X1(X1) — fore(x2))AKdz

Q

1
- 5 Mg, /(A"]VXIIQ +x2V(x1 + x2) - VE)AKdz
Q

- M /(golAKI? + 92 K(x1 + x2)Ax1 AK + gax2|AK |} dz.
Q

(5:3)

Hence, in view of the fact that fo € C? and x1,%2 € Loo(0, T; H2(Q)) it
follows that

b=

d
a;/fx'2dz+M}(2/|VAK(2dz
(54) Q Q

< @(XN oo o712 @)K 200

- _ 2
where ¥ = (x1,X2), ¥l ze 0, 75m200)) = Licy IIxill Lo 0,752 ¢0)) -
Now, applying the interpolation

15 | 2gay < el VAKG 0y + (/K T, 0y, €>0,
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we deduce from (5.4) that

d . - _ (2
E/Iﬂdx—}-/wﬂf\'lzdz S eIl o 0,720 WE N7 p002)-
s

Hence, by the Gronwall inequality, it follows that

which proves the theorem.

“I"(t)”%,(m < |[K0H%z(mev(llille(o,T;Hz(m)t for te€(0,7),
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