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1 Introduction

This article is concerned with the existence and uniqueness of large-time regular solutions
to a classical 3-D thermoviscoelastic system at small strains. The system describes mate-
rials which have the properties both of elasticity and viscosity. Such materials are usually
referred to as Kelvin-Voigt type.

As noted in the recent paper by Roubicek [13] — and according to our best knowledge
as well — the existence of large-time solutions to a thermoviscoelastic system with constant
specific heat and heat conductivity is, in spite of great effort through many decades, still
open in dimensions n > 2. In dimension n = 1 it was established in the pioneering papers
by Stenirod [15), Dafermos [5] and Dafermos-Hsiao [6].

The local in time existence and global uniqueness of a weak solution to 3-D thermo-
viscoelastic system with constant specific heat and heat conductivity has been proved by
Bonetti-Bonfanti [3]. Other known results on multidimensional thermoviscoelasticity deal
with a modified energy equation. Modifications involve either nonconstant specific heat or
nonconstant heat conductivity. Thermoviscoelastic system with temperature-dependent
specific heat has been addressed by Blanchard-Guibé [2] where the existence of large-time,
weak-renormalized solutions has been proved, and recently in [13] where the existence of
a very weak solution has been established.

In a more general setting allowing for large strains 3-D thermoviscoelastic system with
temperature-dependent specific heat has been studied by Shibata [14] under small data
assumption.

For thermoviscoelastic problems with modified heat conductivity we refer to Eck-
Jarugek-Krbec [8] and the references therein.

In the present paper we consider thermoviscoelastic system with specific heat linearly
increasing with temperature and with constant heat conductivity. Such setting is a par-
ticular case of systems addressed in [2] and [13].

The novelty of the existence result presented in this paper concerns the regularity
of a 3-D large-time solution corresponding to appropriately smooth but arbitrary in size
initial data. The proof of the existence theorem is based on the successive approximation
method. The key regularity estimates are derived with the help of the parabolic theory in
anisotropic Sobolev spaces WZ (QT), QT = Q x (0,T), p,po € (1,00), with mixed norm
with respect to space and time variables. Such framework has been previously applied
by the authors [12] to the thermoviscoelastic system arising in shape memory alloys. It
turned out to be advantageous in the procedure of deriving regularity estimates.

As known, in deriving a priori estimates for a solution of a system of balance laws it
is common to begin with estimates arising from the conservation of a total energy. Such
estimates provide Lo.-time regularity for the conserved quantities. To take advantage of
such time regularity in deriving subsequent regularity estimates it is desirable to work
in Sobolev spaces with mixed norms, Wﬁ'plo(QT), where space exponent p is determined
by the energy structure and time exponent pg may be arbitrarily large. This is the idea
behind using the framework of Sobolev spaces with a mixed norm to the thermoviscoelastic
system under consideration.

The theory of IBVP’s in Sobolev spaces with a mixed norm is the subject of recent
theoretical studies. We apply general results due to Krylov [9] and Denk-Hieber-Priiss [7].




The system under consideration has the following form:

(11) U — V- [AlEt + A2(€ - 9&)] =b,
(1.2) c,00; — kOO = —0(Azax) - e, + (A1gy) e, + ¢ In O = Q x (0,7),
where

e =clu) = %(Vu+ (VW)T), e = efu) = —;—(Vut + (V).

Here 2 ¢ R3 is a bounded domain occupied by a body in a fixed reference configuration,
and {0,T) is the time interval. The system is completed by appropriate, boundary and
initial conditions. Here we assume

(1.3) u=0, n-V8=0 on §T=5x (0,T),

(1.4) ulimo = ug, ugfy=o = u1, Olimo =0 in §Q,

wlere S is the boundary of 2 and = the unit outward normal to S.

The field u : 7 — R? is the displacement, 8 : QT — R, = (0,00) is the absolute
temperature, second order tensors € = (g;;) and €, = ({&;);;) denote respectively the
linearized strain and the strain rate.

Equation (1.1) is the linear momentum balance with the stress tensor given by a linear

thermoviscoelastic law of the Kelvin-Voigt type (cf. [8], Chap. 5.4)
S = A1g; + Az(e — fa).

The fourth order tensors Ay = ((A;)iw) and Ay = ((Az)iju) are respectively the linear
viscosity aud elasticity tensors, defined by

(1.5) € A€ = Mtrel + 2ue, p=1,2,

where Ay, 61 are the viscosity coefficients, and Ay, pp are the Lamé constants, both Ay, g
and Ag, po with values within elasticity range

(1.6) pp >0, 3, +2u,>0, p=1,2

I is the identity tensor.
The second order symmetric tensor o = (oy;)} with constant c;, represents the thermal
expansion. The vector fleld b : QT — R3 is the external body force.

Above and hereafter the summation convention over the repeated indices is used,
vectors and tensors are denoted by bold letters, and the dot denotes the inner product of
tensors, e.g.

(AE) e = Aijklfklfij-

Equation (1.2) is the energy balance in which the linear Fourier law for the heat flux

qg=—-kV#b

with constant heat conductivity k > 0, and temperature-dependent specific heat, ¢, 8 with
¢y > 0, have been adopted. The first two terms on the right-hand side of (1.2) represent



heat sources created by the deformation of the material and by the viscosity. The field
9: QT — R is the external heat source.

The boundary conditions in (1.3) mean that the body is fixed at the boundary §
and thermally isolated. The initial conditions (1.4) prescribe displacement, velocity and
temperature at ¢t = 0.

Let us introduce the linear viscosity and elasticity operators, @, and @Q,, defined by

(1.7) ur Quu = V- (Ape(u)) = ppAu+ Ay + 1p,)V(V ), p=1,2,

with domains D(Q,) = H*(Q) N H(Q).
Due to conditions (1.6) the operators @, are strongly elliptic. With the use of Q, system
(1.1), (1.2) takes the form

ug — Qu= Quu— V- (Ag(!@) + b,

1.8
(18) c,08;, — kAS = —8(Aqcx) -1 + (Ar18;) -, +¢g in QF,

with boundary and initial conditions (1.3), (1.4).
We prove the following existence and uniqueness result in Sobolev space with a mixed
norm.
Theorem 1 Let T > 0 and the numbers p,po, q,qo0 € (1,00) satisfy the conditions
3 2 3 2
(1.9) —+—=<1, =+=<1 p<q, po<q
D o 4 @

Moreover, let
(uo, w1, 80) € (W(S2) N Hy(Q)) x (BL,2P(Q) N H(2))
(1.10) x (BLA™(Q) 0 HY(Q)) = U,

(6:9) € Lopo(27) % (L1(0, T Loo(2)) N Ly (7)) =2 ¥

and B
0<f8<by <8 ae in Q,

920 ae in QF,

where §, 8 are positive constants.
Then there ezists a unique solution (u,d) to system (1.1)-(1.4) such that
(1.11) (u,8) € W2 (QT) x Wk (QT),
satisfying
(1.12) el zs, @ry + 10wz o) < ¢,
0<8.<6<80" ae in OF,
with constants ¢, 6., 6% depending on
(w0, w1, 60}l = lluollwacay + luallga-2rv0 ) + 1801l ga=2re0 gy
16, v = 1ll2, po() + 1911204025

and ezponentially on T.



2 Auxiliary results

By Sobolev space with a mixed norm Wp; kﬂ(QT), Q C R, kk/2 € NU{0} = Ny,
P, Do € [1,00], we dentoe a completion of ¢ (QT)—functions under the finite norm

Po/p 1/po
(2.1) ”uHW:,}?o/Z(QT) = ( /[D“@“u]”dm) dt) R
|a|+2u<kn
where o = (y,...,®,) is a multiindex, ja| = a1+ -+ o, @ 2 0,1 = 1,...,n,

D& =02r...02.
z Ty n
By Besov space B PPU (Q), Q CR*, A€ Ry, p,po € [1,00], we denote a set of functions
‘with the finite norm

l[ullz;

P 1-‘0

2.2 m ARG 8l @) N
22 () )

'LlR

@ = llullz,@

where m > A =1 > 0, m,l € Ng and A*(h, Q)u(z) is a finite difference of function u(z)
of the order k& with respect to z;:

Al(h, Q)’U, = Ai(h’1 ‘Q)u = u(zh o Tie1 T h')'TH-l) s vzn) - U(IEl, Cee 73711‘):
and A;(h, Qu=0forz+h & Q,
AF(h, Qu = Ak, QDAY (W, Qu, ke N.

We recall from [4] the trace and the inverse trace theorems for Sobolev spaces with a mixed
norm.

Lemma 1 Let u € WER/2 (0 x R,). Then u(z, to) = ulz, t)im, € Bin!™(Q) and

(23) ”u( )HB" 2/1’0(9) < Ci'“!lp‘/;f,“o/z(nxk+)'

Moreover, for a given v € B;‘,‘pgz/p“(ﬂ) there exists a function 0 € W‘” ﬂ(Q x Ry) suck
that 5(z, )|y = v(z) and

(2.4) 9l str20anm,y S ellvlige=20 ).

We use theorems of imbeddings between Besov spaces and Besov and Sobolev spaces
from [1, 11].
Let us consider the parabolic non-diagonal problem
-Qu=7s i QT =Qx(0,7),
(2.5) u=0 on ST =8x%(0,7),

uli=0 = up in £,



where Q C R3, § = 00 and
(2.6) Qu = pAu+vV(V - u)

with positive constants g, v.
The next lemma plays a key role in the proof of Theorem 1. This lemma generalizes
the result by Krylov [9] from the single parabolic equation to the parabolic system (2.5).

Lemma 2 [7, 9, 12

(i) Assume that £ € Ly pe(QT), wo € Bape (), pypo € (1,00), S € C2. If 2—2/py -
1/p > 0 the compatibility condition ugls = 0 is assumed. Then there exists a unique
solution to problem (2.5) such that u € W21 (QT) and

@7 lleellvwas

21 omy S (I £llz, g0y + i'“f’”;a::,,g/m(n))

with the Calderon-Zygmund estimate constant ¢ dependent on Q, T, S, p, po.

i) Assume that f =V g+b, g,b € Lppo(Q7), ug € B;",,‘g/”" Q). Assume the compatibility
P.pa P

condition
ulg=0 if 1-2/po—1/p>0.

Then there exists a unique solution to (2.5) such that v € W,l,j,%?(QT) and

||U||W;,;;{]2(Qr) < ellgllz, o 07y + HbllL, 00T

(2.8)

+ HUOHBi;ﬁ/PU(Q))
with the Calderon-Zygmund estimate constant c.

To prove Theorem 1 we need also the following regularity result which is a special case
of general results in [7], Theorem 2.3.

Lemma 3 [7] Let us consider the problem

6, — A0 =g in O,
(2.9) n-V0=0  on ST,
9|t=0 =0 n Q,

where o(x,t) is a continuous function on QT such that infqo > 0. Assume that g €
Ly (QF), 6o € Bﬁ;f/m(ﬁ), P, 0o € (1,00), § € C? and the corresponding compatibility
conditions are satisfied. Then there exists a unigue solution to problem (2.9) such that
ge Wk, Q7Y and

(2.10) 161123, ary < U9z, pi@ry + 1ol ga-2ri0 )

VP

with constant ¢ dependent on Q, T, S, infar p and ||gl|c(ar)-



3 A priori estimates

In this section we outline the derivation of a priori estimates for solutions of problem
(1.1)-(1.4) on an arbitrary time interval (0,T). The estimates are essential for the proof
of the long time existence.

The main result of this section is the following

Theorem 2 Assume that

(uo,u1,80) € (W2(Q) N Hy () x (Bz;g/""(ﬂ) N Hy () x Bg‘;f/‘”(ﬂ) =: Uy,
(b:) € Lo () X Ln(0,T; Loo() 1 Lo (OF) = V1,
0<8<8y<8<oo.
Assume 3 9 3 9
~+ =<1, -+—=<1, p<Lgq po<qo
P Po 9 Qo
Then solutions to problem (1.1)-(1.4) satisfy the estimate

(3.1) luelliwzs ary + (6llwzz ry < @(li(uo, u1, 60)llear, 11 (b, gl )-

2,90

where @ 1s an increasing positive function of its arguments.

Above and hereafter we shall use ¢ as a generic function so it changes from formula
to formula.

Theorem 2 is proved by means of the series of lemmas.

In the first lemma the lower bound for £ is established. To get such a bound we assuine
that 8 > 0 a.e. in QT. This property will be proved in Section 4 by applying the method
of successive approximation and prolonging a local solution step by step in time.

Lemma 4 (Lower bound on §) Assume that § > 0, g > 0 a.e. in Q7 and 8, > § > 0,
where @ is a constant. Then there exists a positive constant ¢ such that

(3.2) 8(t) > fexp(~cT)=46,, tel0,T)

The next lemma provides energy estimates which arise from the conservation of the
total energy.

Lemma 5 (Energy estimates) Assume that 8y > 6,
(uo,ul,eo) € Hé(Q) X Lz(ﬂ) X LZ(Q) =: U,
(b,g) € Lo (QT) x Ly(QF) =: V.

Then solutions to (1.1)-(1.4) satisfy the estimate

lwellaoto.riaem + €] Latomizaco)

(33) 18 omizay < 9ot Boll 15, gllve).



Further procedure consists in iterative improvement of energy estimates. The main
tools applied in this procedure are the results on linear parabolic systems in Sobolev
spaces with a mixed norm, stated in Lemmas 2 and 3.

First, using Lemma 2.2 (ii} and recalling energy estimates (3.3} we directly deduce

Lemma 6 Assume that8 > 6 >0, ¢ >0 and

(w0, u1,80) € HA(Q) x B3 7(Q) x Ly(2) = Uy(2,0),
(b,9) € Ly (QT) x Ly(QT) =V (2,0), o€ (1,00).

Then solutions to (1.1)~(1.4) satisfy the estimate
(3.4) el zz.0t0m) < 0(lluo, w1, Bollea 2o, 1B, Oy 20, T)-

Testing equation (1.8); by Qu,; and (1.8), by 8 in conjunction with interpolation in-
equalities allows to prove

Lemma 7 Assume that g > 8 >0, ¢ > 0,

(w0, u1, 60) € (HA(Q) N HA(Q)) x (B2 () N HY(Q)) x Ls(Q) = Un(2,0),
(b, 9) € Ly o(QT) x L1 (QF) = Wa(2,0), o € (1,00).

Then solutions to (1.1)-(1.4) satisfy

et Lo riza(@) + Ve Ly
(3.5) + 10l e 0i200) + VOl ygary < w(|(w0, 21, 60)ir(2.09
(5 920y, T

Further estimates on €; and 6 follow by testing energy equation (1.8); by 6, and
afterwards applying Lemma 2 (i).

Lemma 8 Assume that 6y > 6, g > 0,

(u0, w1, 60) € (H2(Q) N HH(Q)) x (BE,Y7(Q) N HYQ)) x HYQ) = Us(2,0),
(b,g) € LQ,U(QT) X L‘)(QT) = Va(g, O').

Then

el a2 qry + 1Vl ooty + 16:llzacor)

(3.6)
< 90(”(‘”-0, Ui, 90)“113(2‘0): H(ba g)“VJ(Q,U)» T)> S (4’ OO)

The subsequent steps concern improvement of estimates on §. The final goal is to
prove the continuity of & and then to apply the existence result stated in Lemma 3.

































