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1 Introduction 

This article is concerned with the existence and uniqueness of large-time regular solutions 
to a classical 3-D thermoviscoelastic system at small strains. The system describes mate­
ria.Is which have the properties both of elasticity and viscosity. Such materials a.re usually 
referred to as Kelvin-Voigt type. 

As noted in the recent paper by Roubicek [13] - and according to our best knowledge 
as well - the existence of large-time solutions to a thermoviscoelastic system with constant 
specific heat and heat conductivity is, in spite of great effort through many decades, stili 
open in dimensions n 2'. 2. In dimension n = l it was established in the pioneering pa.pers 
by Slemrod [15], Dafermos [5] and Dafermos-Hsiao [6]. 

The !ocal in time existence and global uniqueness of a weak solution to 3-D thermo­
viscoelastic system with constant specific heat and heat conductivity has been proved by 
Bonetti-Bonfanti [3]. Other known results on multidimensional thermoviscoelasticity deal 
with a modified energy equation. Modifications involve either nonconstant specific heat or 
nonconstant heat conductivity. Thermoviscoelastic system with temperature-dependent 
specific heat has been addressed by Blanchard-Guibe [2] where the existence of large-time, 
weak-renormalized solutions has been proved, and recently in [13] where the existence of 
a very weak solution has been established. 

In amore generał setting allowing for large strains 3-D thermoviscoelastic system with 
temperature-dependent specific heat has been studied by Shibata [14] under small data 
assumption. 

For thermoviscoelastic problems with modified heat conductivity we refer to Eck­
Jarusek-Krbec [8] and the references therein. 

In the present paper we consider thermoviscoelastic system with specific heat linearly 
increasing with temperature and with constant heat conductivity. Such setting is a par­
ticular case of systems addressed in [2] and [13]. 

The novelty of the existence result presented in this paper concerns the regularity 
of a 3-D large-time solution corresponding to appropriately smooth but arbitrary in size 
initial data. The proof of the existence theorem is ba.sed on the successive approximation 
method . The key regularity estimates a.re derived with the help of the parabolic theory in 
anisotropic Sobolev spaces W;,~0 (DT), nr= n x (O,T), p,p0 E (l,oo), with mixed norm 
with respect to space and time varia.bies. Such framework has been previously applied 
by the authors [12] to the thermoviscoelastic system arising in shape memory alloys. It 
turned out to be advantageous in the procedure of deriving regularity estimates. 

As known, in deriving a priori estimates for a solution of a system of ba.lance laws it 
is common to begin with estimates arising from the conservation of a total energy. Such 
estimates provide L00-time regularity for the conserved quantities. To take advantage of 
such time regularity in deriving subsequent regularity estimates it is desirable to work 
in Sobolev spa.ces with mixed norms, W;)0 (0T), where space exponent p is determined 
by the energy structure and time exponent p0 may be arbitrarily large. This is the idea 
behind using the framework of Sobolev spa.ces with a mixed norm to the thermoviscoelastic 
system under consideration. 

The theory of IBVP's in Sobolev spa.ces with a mixed norm is the subject of recent 
theoretical studies. We apply generał results due to Krylov [9] and Denk-Hieber-Pri.iss [7]. 
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The system under consideration has the following form: 

(1.1) 

(1.2) 

where 

uu - V· [A1E:t + A2(i:: - 0a)] = b, 

cv00t - kl::,.0 = -0(A2a) · E:t + (A1E:t) · E:t + g in nr= n X (0, T) , 

1 . T 
i::= i::(u) = 2(Vu + (Vu) ), 

Here n c JR3 is a bounded domain occupied by a body in a fixed reference configuration, 
and (O, T) is the time interval. The system is completed by appropriate, boundary and 
initial conditions. Here we assume 

(1.3) u= O, n· V0 = O on ST = S x (O, T) , 

(1.4) 

where S is the boundary of n and n the unit outward norma! to S. 
The field u : nr -, JR3 is the displacement, 0 : nr -, lR+ = (O, oo) is the absolute 

temperature, second order tensors i:: = (E;j) and E:t = ((Et)ii) denote respectively the 
linearized strain and the strain rate. 

Eąuation (1.1) is the linear momentum balance with the stress tensor given by a linear 
thermoviscoelastic law of the Kelvin-Voigt type ( cf. [8], Chap. 5.4) 

S = A1E:t + A2(i:: - 0a). 

The fourth order tensors A 1 = ((A1);jkl) and A2 = ((A2);jkl) are respectively the linear 
viscosity and elasticity tensors, defined by 

(1.5) 

where )IJ, p 1 are the viscosity coefficients, and >.2 , p2 are the Lame constants, both >. 1, 1-i1 

and >.2 , 1-i2 with values within elasticity range 

(1.6) /.!p > o, 3Ap + 2/.łp > o, p = 1, 2; 

I is the identity tensor. 
The second order symmetric tensor a= (a;i) with constant O:;j, represents the thermal 
expansion. The vector field b : nr -, JR3 is the external body force. 

Above and hereafter the summation convention over the repeated indices is used, 
vectors and tensors are denoted by bold letters, and the dot denotes the inner product of 
tensors, e.g. 

(Ai::) · E: = AijklEklEij · 

Eąuation (1.2) is the energy balance in which the linear Fourier law for the beat ftux 

ą = -kV0 

with constant heat conductivity k > O, and temperature-dependent specific beat, cv0 with 
cv > O, have been adopted. The first two terms on the right-hand side of (1.2) represent 
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heat sources created by the deformation of the materiał and by the viscosity. The field 
g : nr -, IR is the external heat source. 

The boundary conditions in (1.3) mean that the body is fixed at the boundary S 
and thermally isolated. The initial conditions (1.4) prescribe displacement, velocity and 
temperature at t = O. 

Let us introduce the lineru· viscosity and elasticity operators, Q 1 and Q2 , clefined by 

(1.7) u>-> Qpu = 'v · (Ape(u)) = ~tpl::,.u +(Ap+ µp)'v('v · u), p = l, 2, 

with domains D(Qp) = H 2 (n) n Hl,(n) . 
Due to conditions (1.6) the operators QP are strongly elliptic. With the use of QP system 
(1.1), (1.2) takes the form 

Utt - Q1u = Q2u - 'v · (A2a0) + b, 

c,,00t - kl::,.0 = -0(A2a) ·et+ (A1et) ·et+ g in nr, 
(1.8) 

with bounclary and initial conditions (1.3), (1.4). 
We prove the following existence and uniqueness result in Sobolev space with a mixecl 

norm. 

Theorem 1 

(1.9) 

M oreover-, let 

(1.10) 

and 

Let T > O and the numbers P,Po, q, ąo E (1 , oo) satisfy the conditions 

3 2 3 2 - + - < 1 - + - < 1 p :S ą, Po :S Qo-
p Po-'ą Qo 

(uo,u1,0o) E (w;(n) nH6(n)) X (B;;;IP0 (n) nH6(n)) 

x (B;,;;/ąo(n) n H1(n)) =: U , 

(b, g) E Lp,p0 (nr) X (L1(0, T; L00 (n)) n Lą,ąo(nr)) =: V 

O < B_ :S 0o :S 0 
g 2'. o 

a.e. in n, 
a.e. in nr, 

where B_, [J are positive constants. 
Then there exists a unique solution (u, 0) to system (1.1)-(1.4) such that 

(1.11) 

satisfying 

(1.12) 
Jlutllw~:~0 (W) + ll0JJw;;.;0 (flT) :Sc, 
O < 0. :S 0 :S 0· a.e. in nr, 

with constants c, 0., 0• depending on 

ll(uo, u1, 0o)llu = lluollw~(fl) + llu1ll 8 ~:;,~/"o(n) + ll0oll 8 ;.~~/•o(l1)' 

li (b, g) llv = JlbJJLp,p0 (l1) + ll9lli •. ą0 (l1), 

and exponentially on T. 

,7 
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2 Auxiliary results 

By Sobolev space with a mixed norm Wp~;,~2(l1T), l1 C ]Rn, k, k/2 E N U {O} = No, 
p,p0 E [1, oo], we dentoe a completion of c00 (l1T)-functions under the finite norm 

(2.1) 

where o, = (a1, .. . , an) is a multiindex, lal = a1 + · · · + °'n, a; 2: O, i = 1, ... , n, 
D~ = a;1

1 ••• a::;. 
By Besov space B;,Po (!1), l1 C ]Rn, A E lR+, p, Po E [1, oo], we denote a set of functions 

with the finite norm 

llul1B;,,,0 (n) = llullLp(n) 

(2.2) 
( 

n J 11.6.t(h, l1)8~,ull1;,:(nJ ) !/po 
+ L hł+(~-l)po dh ' 

i=liR+ 

where m > A - l > O, m, l E No and .6.t(h, lt)u(x) is a finite difference of function u(x) 
of the order k with respect to X;: 

.6.1(h, lt)u = .6.;(h, lt)u = u(xi, ... , X;-1, X;+ h, X;+1, ... , Xn) - u(xi, ... , xn), 

and .6.;(h, lt)u = o for X+ h i/. n, 

.ó.7(h, lt)u = .6.;(h, l1).6.7-1(h, lt)u, k EN. 

We recall from [4] the trace and the inverse trace theorems for Sobolev spaces with a mixed 
norm. 

Lemma 1 Let u E w;,;,k/2(!1 x lR+J· Then u(x, to) = u(x, t)t=to E B;,;;1„0 (!1) and 

(2.3) llu(•,to)ll 8 k-2/,,o(n)::; cllullwk,k/'(n IR)' 
11,po P,1JO X + 

Moreover, for a given v E B;,;;1P0(l1), there exists a Junction v E Wp~;,~2 (!1 x lR+) such 
that v(x, t)lt=to = v(x) and 

(2.4) llvllwk,k/2(n IR ) ::; cllvllBk-21,,o(n)· 
P,PQ X + l',1'0 

We use theorems of imbeddings between Besov spaces and Besov and Sobolev spaces 
from [l , 11] . 

Let us consider the parabolic non-diagonal problem 

(2.5) 

U1-Qu=f 

u=O 

in nT = l1 X (O, T), 

on sT = s x (o,T), 

ult=O = uo in !1, 
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where n C IR3 , S = 80 and 

(2.6) Qu =µ!:i.u+ v'v('v · u) 

with positive constants ~i, v. 
The next lemma plays a key role in the proof of Theorem 1. This lemma generalizes 

the result by Krylov [9] from the single parabolic equation to the parabolic system (2.5). 

Lemma 2 [7, 9, 12] 

{i) Assume that f E Lv,vo(Or), uo E B;:;;~/po(n), P,Po E (1,oo), SE C2. ff 2- 2/po -
l/p > O the compatibility condition uols = O is assumed. Then there exists a unique 
solution to problem (2.5) such that u E w;:!0 (nr) and 

(2.7) 

with the Calderon-Zygmund estimate constant c dependent on n, T, S, p, p0 . 

{ii) Assume that f = 'v · g+b, g, b E LP,Po(nr), u0 E B;:;;~/Po(n). Assume the compatibility 
condition 

uols = O if 1 - 2/po - 1/p > O. 

Then there exists a unique solution to {2.5) such that u E w~:!~2(0T) and 

(2.8) 
llullw;:!~'(OT) :S c(ll9IILv,vo(f!T) + llbllLP,Po(f!T) 

+ lluoll 8 ;:;,~J"o(n)) 

with the Calderon-Zygmund estimate constant c. 

To prove Theorem 1 we need also the following regularity result which is a special case 
of generał results in [7], Theorem 2.3. 

Lemma 3 [7] Let us consider the problem 

Bt - {}6.0 = g in 0T , 
(2.9) n· 'v0 = O on sr, 

Blt=O = Bo in n, 

where {}(x, t) is a continuous Junction on nr such that inf n{} > O. Ass1ime that g E 
Lv,vo(nr), Bo E B;,;;1P0 (0), P,Po E (1, oo), SE C2 and the corresponding compatibility 
conditions are satisfied. Then there exists a unique solution to problem (2.9) such that 
0 E W;,~ (OT) and 

(2.10) 

with constant c dependent on n, T, S, inf0 r {} and Jl{}llc(nr). 

-
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3 A priori estimates 

In this section we outline the derivation of a priori estimates for solutions of problem 
(1.1)-(1.4) on an arbitrary time interval (O, T). The estimates are essential for the proof 
of the long time existence . 

The main result of this section is the following 

Theorem 2 Assume that 

(uo, ui, 00 ) E (w;(O) n Hc}(O)) x (B;;~/Po(O) n Hc}(O)) x B;,;;/ąo(O) =: U1, 

(b, g) E Lp,po (OT) X L1 (O, T; Loo(O)) n Lą,ąo (OT) =: V1 , 

O < ę_ :S 00 < 0 < oo. 

Assume 
3 2 3 2 
- + - :S 1, - + - < 1, p :S q, Po :S Qo-
P Po q Qo 

Then solutions to problem (1.1)-(1.4) satisfy the estimate 

(3.1) llutllw~:~o(nT) + ll0llw,';,'o(nT) :S cp(ll(uo, u1, 0o)llu,, ll(b, g)llv,)-

where cp is an increasing positive Junction of its arguments. 

Above and hereafter we shall use cp as a generic function so it changes from formula 
to formula. 

Theorem 2 is proved by means of the series of lemmas. 
In the first lemma the !ower bound for 0 is established. To get such a bound we assume 

that 0 2: O a.e. in oT_ This property will be proved in Section 4 by applying the methocl 
of successive approximation and prolonging a loca! solution step by step in time. 

Lemma 4 (Lower bound on 0) Assume that 0 2: O, g 2: O a.e. in OT and 00 2: ę_ > O, 
where ę_ is a constant. Then there exists a positive constant c such that 

(3.2) 0(t)c::fexp( - cT)=0,, tE[O,T]. 

The next lemma provicles energy estimates which arise from the conservation of the 
total energy. 

Lemma 5 (Energy estimates) Assume that 00 2: ę_, 

( uo, u1, 0o) E H5(0) X L2(0) X L2(0) =: Uo, 

(b,g) E L2,1(0T) x L1(0T) =: V0 . 

Then solutions to (1.1)-(1.4) satisfy the estimate 

(3.3) 
llutllL=(o,T;L2(n)) + llellL=(o,T;L2(n)) 

+ ll0JIL=(O,T;L2(n)) :S cp(lluo, u1, 00Jlu0 , IJb, 9llv0 ). 
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Further procedure consists in iterative improvement of energy estimates. The main 
tools applied in this procedure are the results on linear parabolic systems in Sobolev 
spaces with a mixed norm, stated in Lemmas 2 and 3. 

First, using Lemma 2.2 (ii) and recalling energy estimates (3.3) we clirectly c\ec\uce 

Lemma 6 Assume that 0 2'. fl. > O, g 2'. O and 

(uo,u1,0o) E H5(0) x B;::2/u(D) x L2(D) =: U1(2,0'), 

(b,g) E L2,u(DT) X Li(DT) =: Vi(2,0'), O' E (l,oo). 

Then solutions to (1.1)-(1.4) satisfy the estimate 

(3.4) 

Testing equation (1.8)i by Qut and (1.8)2 by 0 in conjunction with interpolation in­
equalities allows to prove 

Lemma 7 Assume that 00 2'. fl. > O, g 2'. O, 

(uo, u1, 00 ) E (H2(D) n H5(0)) x (B~~2/u(D) n H5(0)) x L3(0) = U2(2, O'), 

(b,g) E L2,u(DT) X L2,1(!1T) = V2(2,0'), O' E (l,oo). 

Then solutions to (1.1)-(1.4) satisfy 

(3.5) 
lle:dJLoo(O,T;L2(!1)) + JJv'e:tl1L2(!1T) 

+ JJBJILoo(O,T;L3(!1)) + 1Jv'0IJL2(!1T) :=:; ,p(JJ(uo, u1, Bo)Jlu,(2,u), 
JJ(b, g)JJv2(2,u), T). 

Further estimates on e:t and 0 follow by testing energy equation (1.8)2 by Bt and 
afterwards applying Lemma 2 (i). 

Lemma 8 Assume that 00 2'. fl., g 2'. O, 

Then 

(3.6) 

(uo, u1, Bo) E (H2 (D) n Hó(D)) x (B~~2/u(D) n H5(0)) x H1(0) = U3(2 , O'), 

(b,g) E L2,u(DT) x L2(DT) = V3(2,0'). 

lle:tllw;•1/ 2 (!1T) + JJv'BJILoo(O,T;L,(!1)) + IIBtllL,(!'JT) -,• 
:=:; 'P(1i(uo,u1,0o)llu3(2,u), ll(b,g)llv,(2,u),T), O' E (4,oo). 

The subsequent steps concern improvement of estimates on 0. The finał goal is to 
prove the continuity of 0 and then to apply the existence result stated in Lemma 3. 

.. 

• 
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Lemma 9 Assume that 0o 2: fi> O, g 2: O, 

(uo, Uj, 0o) E (w;(O) n H 2(0) n H5(0)) X (s;;2fu(n) n H5(0)) X H 1(0) 

= U4(p, Cl), 

(b, g) E Lp,u(DT) X L2(SlT) = V4(p, CJ), p, CJ E (1, oo). 

Moreover, let 0 E Lp,u(Slr), p, CJ E (1, oo). Then the inequality 

(3.7) 
llut llw~;Y'(nT) :S cll0IILp,a(nT) 

+ cp(ll(uo, U), 0a)llu,(p,u), ll(b, g)llv,(p,u), T) 

holds. 

By testing energy equation (1.8)2 by 0r, r > 1, and using estimate (3.7) we prove 

Lemma 10 Assume that 0a 2: fi> O, g > O, 

(ua,u1,0o) E (w!(O)nH2(Sl)nH5(Sl)) x (s;;2/u(Sl)nH6(Sl)) 

x (Lv(D) x H1(0)) = Us(P,CJ), 

(b, g) E Lp,u(SlT) x (Lv,u(SlT) n L2(SlT)) = Vs(P, Cl), 

p, CJ E (1, oo). 

Assume also that the inequality 

(3.8) 

holds for r E (1, oo). 
Then 

(3.9) ll0IIL=(O,T;L,-(n)) :S cp(lluo, u1, 0o)llus(,·,,·), ll(b, g)llvs(r,,·), T). 

Lemma 10 has important consequences. Using (3.9) in (3.8) yields 

(3.10) llet IIL.,,(nT) :S cp(II ( uo, U), 0a) llu,(p,u), li (b, 9) llv,(p,u), T), 

for (p, CJ) E (1, oo). 
Next, Lemma 10 implies 

(3.11) 
ll0llw;·'(W) + 11v011Lp,,,(nT) 
:S cp(II ( uo, u1, 0a) llu,(r,r), li (b, 9) llv,(,·,,), T) 

where s < 2 but close to 2 and s :S p' < 6. 
On account of the bound on V0 in (3.11) we deduce 



Lemma 11 Assume that Bo 2:: fl. > O, g 2:: O, 

Then 

(3.12) 

(uo, u1, 0o) E (w; n H 1(D)) X (s;;21"(D) n H6{D)) X (Lp(D) n H 1(D)) 

= UG(P, a), 

(b,g) E Lp,a(DT) X Lp,a(DT) = V5(p,a), p,a E (1,oo). 

llc:dlw~;'.;2(nr) :S cllutllw::.',(nr) 

:S <p(T, ll(uo,u1,0o)llu6 (p',s), ll(b,g)llvo(p',s)) 

Jor s < 2 close to 2, s :Sp' < 6. 

The above lemma allows us to conclude the following key estimates on et and 0: 

(3.13) 
JJc:tllL2(0,T;L=(n)) + JJ0IIL=(nr) + IJ0llw;·'(W) 
:S <p(T, ll(uo,u1,0o)IJu6 (p',s), ll(b,g)llv.(p',s))· 

9 

Due to estimates (3.13) we can use the parabolic De Giorgi method in the way pre­
sented in [10], Chap. II. 7 to deduce 

Lemma 12 Let the assumptions of Lemma 3.8 hold. Let 00 E C"(D), a E (O, 1). Then 

(3.14) 

Thanks to the Holder continuity of 0 we can apply Lemma 3 on heat equation with 
continuous coefficient to conclude the estimate on 0 in W;,ą~ (DT)-norm and subsequently 
the estimate on Ut in w;;~(DT)-norm. This way we complete the proof of Theorem 2. 

4 Existence 

To prove the existence of solutions to problem (1.1)-(1.4) we use the following methocl of 
successive approximations: 

u~+l - V· (A1e(u;'+1)) =V· [A2e(u") - (A2a)0n) + b in 

( 4.1) 

Cv0oe;•+I - kt::,,en+I = Cv(0o - 0n)0;i+1 

- 0n(A2a)c:(u;') + (A1c:(u;')) · c:(u;') + g 

un+I = O 

n· "\10n+l = Q 

un+llt=O = uo, u~+ 1 lt=0 = u1 

0"+11t=0 = 0o 

where un, en are treated as given. 

in nr, 
011 sr, 
011 sr, 
in n, 
in n, 
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Moreover, the approximation (u0 , 0°) is constructed by an extension of the initial data in 
such a way that 

( 4.2) 

and 

(4.3) UO = 0, n· "iJ0° = 0 Oil ST. 

First we show that the sequence {un,en} is uniformly bounded. 

Lemma 13 Assume 

D = lluollw~(!l) + llud 8 2-21vo(n) + ll0oll 8 2-21,o(n) + llbllL,,,v0 (W) 
P,PO q,ąo 

+ ll9IIL,,ą0 (W) < oo, P?: q, 2q?: P, Po ?: ąo, 2qo ?: Po, 

ł + 1. < 1 ł + .1. < 1. Assume that T is sufficiently small. Then there exists a constant q ąo- 'p po-
A s1ich that 

(4.4) 

where A is independent of n but depends on D, p, q, Po, qo. 

To show convergence of the seąuence {u", en} we introduce the differences 

(4.5) 
Un(t) = un(t) - un-l(t), 

1Jn(t) = 0n(t) - 0"- 1(t), 

which are solutions to the following problems 

(4.6) 

and 

(4.7) 

U~+I - "il· (A1e(Uf+1)) ="il· (A2e(Un)) - "il · (A2a19n), 

un+ilt=O = o, u;+11t=O = o, un+11s = O, 

Cv0n19~+I - kt,.19n+I = -Cv19n0~ 

- 0"(A2a) · e(Ut) -19n(A2a) · e(un 

+ (A1e(Ut)) · e(uf) + (A1e(urn · e(Ut), 
19n+1 lt=O = O, n · '719"+11s = O. 

Let us introduce the ąuantity 

(4.8) 

We have the following 
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Lemma 14 Let the assumptions of Lemma 13 hold. Assume that q = 2/'j, q0 = 2ij0, 

i!+J.-i1-J-<1 ~+J.<4 ~+J--1=--4-<1 i1+.1.._i1_.1.<l. 
'L. ąo p po ' q ąo ' p Po 2q 2ąo ' P Po ą ąo 
'.l'hen there exists a constant d wnich depends on D, p, Po, q, ąo, p, Po such that 

(4.9) 

where n E No= N U {O}, Y 0 = JJu0 Jiw~-~ (W)+ JJ0°JJw2,, (W) and°'> O. 
P,PQ if,qo 

Lemmas 13 and 14 imply the existence of !ocal solutions to problem (1.1)-(1.4). 

Lemma 15 Let the assumptions of Lemma 13 and 14 hold. Then there exists a local 
solution to problem {1.1)-(1.4) such that Ut E w;;;0 (ff), 0 E w:,ą~(iY) and 

JJutJlw;,:~0 (nT) + IIBJlw,;)0 (!1T) 

::; (/?(ll(uo, u1, 0o)llu, IJ(b, g)Jlv), 
(4.10) 

where (/? is an increasing positive Junction and 

( 4.11) 
JJ(uo,u1,Bo)Jlu = 1luo1lw2(n) + 1lu1JJ8 2-21„o(n) + l1BoJJ 82-2/ąo(nJ' 

P P,Po ą,qo 

JJ(b, q)JJv = llbJJL,,,0 (!1T) + llgJJLą,ą0 {11')· 

To prove the existence of solutions on the interval [O, TJ which appears in Theorem 
3.1 we choose p,po,ą,ąo, so large that U1 = U. 
Then Theorem 2 implies the estimate 

(4.12) JJutJlw;,:~0 (flT) + JJ0Jlw;_-;0 (nT) :S (/?(JJ(uo, u1, Bo)llu, IJ(b,g)Jlv). 

From (4.12) we obtain for any t E (O, TJ the estimate 

( 4.13) 
llut(t)ll 8 ;:;;~lvo(n) + JJ0(t)Jl 8 ;.~;i•o(n) 

:S (/?(1l(uo,u1,0o)llu, IJ(b,g)Jlv). 

To use (4.13) for a prolongation of the !ocal solution described by Lemma 15 we need to 
estimate llu(t)Jlw?,(n) in terms of the right-hand side of (4.13). Since 

t 

u(t) = J ut,(t')dt' + u(O), 

o 

we have 
t I/po 

llu(t)llw?,(11) :S tlfvó (! llut(t')JJ~?,(fl)dt') + JJu(O)JJw?,(11) 
o 

where .l. + + = 1. 
Po Po 
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Hence, (4.13) implies 

(4.14) ff(u(t),ut(t),0(t))ffu ~ rp(ff(uo,u1,Bo)[fu, f[(b,g)ffv). 

In view of (4.14) we can divide interval [O, Tj on subintervals of the length T, where T is 
described by Lemmas 13, 14. Hence we can start from t = kr, k E N, and prove the 
existence in [kT, (k + l)r] by Lemma 15. 
Repeating the argument on any subintervals [kr, (k + l)r] , k = O, l, ... , [fl we prove the 
existence of solutions described in Theorem 1. 
This concludes the proof of Theorem 1. 
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