XXV

ON THEOREMS RELATING TO SURFACES, OBTAINED BY THE METHOD OF QUATERNIONS*

Communicated 26 February 1849.

[Proc. Roy. Irish Acad. vol. Iv (1850), pp. 306-8.]
The following letter from Sir William R. Hamilton was read, giving some general expressions of theorems relating to surfaces, obtained by his method of quaternions:
'The equation of a curved surface being put under the form

$$
f(\rho)=\text { const.: }
$$

while its tangent plane may be represented by the equation,

$$
d f(\rho)=0
$$

or

$$
\text { S. } \nu d \rho=0,
$$

if $d \rho$ be the vector drawn to a point of that plane, from the point of contact; the equation of an osculating surface of the second order (having complete contact of the second order with the proposed surface at the proposed point) may be thus written:

$$
0=d f(\rho)+\frac{1}{2} d^{2} f(\rho) ;
$$

(by the extension of Taylor's series to quaternions); or thus,

$$
\begin{gathered}
0=2 \mathrm{~S} \cdot \nu d \rho+\mathrm{S} \cdot d \nu d \rho \\
d f(\rho)=2 \mathrm{~S} \cdot \nu d \rho .
\end{gathered}
$$

if
'The sphere, which osculates in a given direction, may be represented by the equation

$$
0=2 \mathrm{~S} \frac{\nu}{\Delta \rho}+\mathrm{S} \frac{d \nu}{d \rho}
$$

where $\Delta \rho$ is a chord of the sphere, drawn from the point of osculation, and

$$
\mathrm{S} \frac{d \nu}{d \rho}=\frac{\mathrm{S} \cdot d \nu d \rho}{d \rho^{2}}=\frac{d^{2} f(\rho)}{2 d \rho^{2}}
$$

is a scalar function of the versor $\mathrm{U} d \rho$, which determines the direction of osculation. Hence the important formula:

$$
\frac{\nu}{\rho-\sigma}=\mathrm{S} \frac{d \nu}{d \rho}
$$

where σ is the vector of the centre of the sphere which osculates in the direction answering to $\mathrm{U} d \rho$.
'By combining this with the expression formerly given by me for a normal to the ellipsoid, namely

$$
\begin{gathered}
\left(\kappa^{2}-\iota^{2}\right)^{2} \nu=\left(\iota^{2}+\kappa^{2}\right) \rho+\iota \rho \kappa+\kappa \rho \iota \\
\quad *[\text { See Lectures, Lecture VII.] }
\end{gathered}
$$

the known value of the curvature of a normal section of that surface may easily be obtained. And for any curved surface, the formula will be found to give easily this general theorem,* which was perceived by me in 1824; that if, on a normal plane $O P P^{\prime}$, which is drawn through a given normal $P O$, and through any linear element $P P^{\prime}$ of the surface, we project the infinitely near normal $P^{\prime} O^{\prime}$, which is erected to the same surface at the end of the element $P P^{\prime}$; the projection of the near normal will cross the given normal in the centre O of the sphere which osculates to the given surface at the given point P, in the direction of the given element $P P^{\prime}$.
'I am able to shew that the formula

$$
0=\delta \mathrm{S} \frac{d \nu}{d \rho}
$$

which follows from the above, for determining the directions of osculation of the greatest and least osculating spheres, agrees with my formerly published formula,

$$
0=\mathrm{S} . \nu d \nu d \rho,
$$

for the directions of the lines of curvature.
'And I can deduce Gauss's general properties of geodetic lines \dagger by showing that if σ_{1}, σ_{2} be the two extreme values of the vector σ, then

$$
\frac{-1}{\left(\rho-\sigma_{1}\right)\left(\rho-\sigma_{2}\right)}=\text { measure of curvature of surface }=\frac{1}{R_{1} R_{2}}=\frac{d^{2} \mathbf{T} \delta \rho}{\mathbf{T} \delta \rho \cdot d \rho^{2}}
$$

where d answers to motion along a normal section, and δ to the passage from one near (normal) section to another; while S, T, and U, are the characteristics of the operations of taking the scalar, tensor, and versor of a quaternion: and the variation δv of the inclination v of a given geodetic line to a variable normal section, obtained by passing from one such section to a near one, without changing the geodetic line, is expressed by the analogous formula,

$$
\delta v=-\frac{d \mathrm{~T} \delta \rho}{\mathrm{~T} d \rho}
$$

[^0]
[^0]: * [See Lectures, p. 600.]
 \dagger [See Lectures, article 617, for details and bibliography.]

