Reduction of the number of independent variables and optimization in swirling fluid flow

M. J. BRINK (FLINT, MICH.),
M. Z. KRZYWOBLOCKI (EAST LANSING, MICH.)

In the approach utilized for this investigation, transformations obtained by the application of continuous one-parameter group theory are applied to the fundamental system of non-dimensional equations for conservation of mass, conservation of momentum, and conservation of energy. The number of independent variables is reduced from three first to two then to one using the absolute invariants determined for each transformation group. The resulting system of nonlinear ordinary differential equations is then solved numerically by Hamming's modified pre-dictor-corrector technique. The one-dimensional solutions are transformed back to the threedimensional space. A Mayer type optimization problem is solved using the one-dimensional representations for conservation of energy and the swirl parameter to optimize the one-dimensional representation for pressure.

W sposobie wykorzystanym w tym badaniu zastosowano transformacje otrzymane przez wprowadzenie ciaglej jednoparametrowej teorii grup do podstawowego układu jednowymiarowych równań zachowania masy, pedu i energii. Liczba zmiennych niezależnych została zredukowana z trzech do jednej używajac bezwzglednych niezmienników określonych dla każdej grupy transformacji. Końcowy układ nieliniowych zwyczajnych równań różniczkowych rozwiqzano numerycznie stosujac zmodyfikowana metodẹ Hamminga prób i bledów. Jednowymiarowe rozwiązania zostaly przeksztalcone z powrotem do przestrzeni trójwymiarowej. Zagadnienie optymizacyjne typu Mayera rozwiazano u̇̇ywając reprezentacji jednowymiarowej dla zachowania energii i parametru wirowości w celu zoptymalizowania jednowymiarowej reprezentacji dla cisnienia.

Используется преобразование, основанное на применении теории непрерывных однопараметрических грушा к исследованию основной системы безразмерных уравнений сохранения массы, количества движения и энергии. При помощи абсолютных инвариантов, определенных для каждой из групा преобразований, число независимых переменных сокращено с трех до двух, а затем до одного. Полученная система нелинейных обыкновенньх дифференциальньх уравнений рещена численным путем, с применением техники предиктор-корректор, модифицированной Геммингом. Одномерные рещения преобразованны обратно в трехмерное пространство. Рещена оптимизационная задача типа Мейера. С целью оптимизации одномерного представления давления используются одномерные представления принципа сохранения энергии и параметра вихря.

Notations

```
    p pressure,
    \(r, \theta, z\) physical coordinates, independent variables,
\(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\) velocity components,
    \(\varrho\) density,
    \(y_{j}\) dummy dependent variable,
    \(h\) Bernoulli constant,
    \(\lambda_{j}\) Lagrange multipliers,
    \(K\) augmented function,
```

```
functional forms of optimal constraint equations,
swirl aspect ratio \(=r^{2} / z^{2}\),
tangential energy fraction \(=v^{2} /(h / \varrho)\),
swirl parameter \(=\pi_{1}, \pi_{2}\),
axial swirl length,
tangential velocity at the outer swirl radius,
dimensionless independent variable \(=r / z_{0}\),
dimensionless independent variable \(=z / z_{0}\),
dimensionless radial velocity component \(=u / v_{0}\),
dimensionless tangential velocity component \(=v / v_{0}\),
dimensionless axial velocity component \(=\omega / v_{0}\),
dimensionless static pressure \(=p /\left(\rho v_{0}^{2}\right)\),
dimensionless Bernoulli constant \(=h /\left(\rho v_{0}^{2}\right)\),
constants,
group parameter,
one-parameter group,
differential form of \(k\)-th order in \(m\) independent variables,
arguments of the \(k\)-th order differential form,
independent variables, absolute invariants of \(A_{1}\),
absolute invariants of \(A_{1}\),
group constant \(=t_{2} / t_{1}\),
group constant \(=t_{4} / t_{2}\),
two-dimensional representation for the radial velocity component,
two-dimensional representation for the tangential velocity component,
two-dimensional representation for the axial velocity component,
two-dimensional representation for static pressure,
constant,
constants,
group parameter,
one-parameter group,
independent variable, absolute invariant of \(B_{1}\),
group constant \(=\gamma_{1} / k\),
absolute invariants of \(B_{1}\),
one-dimensional representation for the radial velocity component,
one-dimensional representation for the tangential velocity component,
one-dimensional representation for the axial velocity component,
one-dimensional representation for static pressure,
constant \(=G_{1}^{2}+G_{3}^{2}=G^{2}\),
denotes differentiation with respect to the independent variable.
```


1. Introduction

Generally, swirling flow may be categorized as any flow in which the tangential velocity component has a finite magnitude such that the fluid has a macroscopic rotary motion. Typical flow examples occur in Hilsch tubes, vortex amplifiers, tornados, and rotating fluid machinery.

A large number of studies have been directed toward various aspects of swirling flow. The system of fundamental equations describing swirling flow in the general case includes three-dimensional, non-linear partial differential equations which are not amenable to solution by standard analytical techniques. Therefore, investigators of swirling type flows
were compelled to make various simplifying assumptions. All velocity components were assumed to be functions of only one independent variable [$5,10,13,14,15,25,27,35,47]$ or particular velocity components were assumed to have only certain special forms [12, 24, 26].

2. Mathematical model $\left({ }^{1}\right)$

For this model, inviscid-incompressible flow is assumed. The natural choice of coordinates is a cylindrical polar coordinate system, since the fluid has a macroscopic rotary motion. The equations governing swirling flow are based on the fundamental laws of conservation of mass, conservation of momentum, and conservation of energy. The model equations presented here are all in non-dimensional form.

The conservation of mass law is given by the continuity equation.
Conservation of mass (continuity equation)

$$
\begin{equation*}
\frac{\partial U}{\partial R}+\frac{U}{R}+\frac{1}{R} \frac{\partial V}{\partial \theta}+\frac{\partial W}{\partial Z}=0 \tag{2.1}
\end{equation*}
$$

The conservation of momentum law is given in scalar form by the three Euler equations.

$$
\begin{align*}
U \frac{\partial U}{\partial R}+\frac{V}{R} \frac{\partial U}{\partial \theta}+W \frac{\partial U}{\partial Z}-\frac{V^{2}}{R} & =-\frac{\partial P}{\partial R}, \quad R-\text { momentum; } \tag{2.2}\\
U \frac{\partial V}{\partial R}+\frac{V}{R} \frac{\partial V}{\partial \theta}+W \frac{\partial V}{\partial Z}+\frac{U V}{R} & =-\frac{1}{R} \frac{\partial P}{\partial \theta}, \quad \theta \text {-momentum; } \tag{2.3}\\
U \frac{\partial W}{\partial R}+\frac{V}{R} \frac{\partial W}{\partial \theta}+W \frac{\partial W}{\partial Z} & =-\frac{\partial P}{\partial Z}, \quad Z-\text { momentum. } \tag{2.4}
\end{align*}
$$

The conservation of energy law is given by Bernoulli's equation for this case.
Conservation of energy (Bernoulli equation)

$$
\begin{equation*}
H=P+\frac{1}{2}\left(U^{2}+V^{2}+W^{2}\right) \tag{2.5}
\end{equation*}
$$

The boundary conditions are all specified as constants at $R=R_{0}$.
At $R=R_{0}$,

$$
\begin{equation*}
U=U_{0}, \quad V=V_{0}=1, \quad W=W_{0}, \quad \text { and } \quad P=P_{0} . \tag{2.6}
\end{equation*}
$$

The product of the swirl aspect ratio $\left(R^{2} / Z^{2}\right)$ and the tangential energy fraction $\left(V^{2} / H\right)$ is defined to be the swirl parameter for this investigation.

Swirl parameter

$$
\begin{equation*}
S=\left(\frac{R V}{Z}\right)^{2} \frac{1}{H} . \tag{2.7}
\end{equation*}
$$

3. Three to two reduction in the number of independent variables

Continuous one-parameter group theory is now applied to the system of equations ain Sec. 2 to reduce the three independent variable (R, θ, Z) to two new independent vari-

[^0]bles (η_{1}, η_{2}). The general approach followed here for applying group theory to achieve a reduction in the number of independent variables for systems of partial differential equations was developed in two classic papers by A. D. Michal [31] and A. J. A. Morgan [33]. The new independent variables (η_{1}, η_{2}) are functionally independent absolute invariants of a subgroup of the one-parameter continuous group of transformations, A_{1}. There is no unique method for specifying such groups and the group A_{1} is chosen as shown:
\[

$$
\begin{align*}
\bar{R} & =e^{a t_{1}} R, \quad \bar{U}=e^{a t_{4}} U, \quad \bar{P}=e^{2 a t_{4}} P, \\
A_{1}: \quad \bar{\theta} & =\theta+a t_{2}, \quad \bar{V}=e^{a t_{4}} V, \tag{3.1}\\
\bar{Z} & =e^{a t_{1}} Z, \quad \bar{W}=e^{a t_{4}} W
\end{align*}
$$
\]

where t_{1}, t_{2}, and t_{4} are constants and a is the group parameter.
It can easily be shown that the partial differential equations in Sec. 2 are conformally invariant under the group A_{1}. A differential form Φ is conformally invariant under a oneparameter group A_{1}, if, under the transformations of the group, it satisfies the relation

$$
\begin{equation*}
\Phi\left(\bar{Z}^{1}, \ldots, \bar{Z}^{p}\right)=M\left(Z^{1}, \ldots, Z^{p} ; \text { a) } \Phi\left(Z^{1}, \ldots, Z^{p}\right)\right. \tag{3.2}
\end{equation*}
$$

where Φ is exactly the same function of the Z^{\prime} s as it is of the \bar{Z} 's and M is some function of the Z's and the parameter a. When the condition for conformal invariance is satisfied by each differential form in a system of partial differential equations, a reduction in the number of independent variables is possible for a system of partial differential equations.

There is no well defined method for selecting absolute invariants and the absolute invariants for the group A_{1} are chosen as shown:

$$
\begin{align*}
& \eta_{1}=e^{-\theta} R^{\xi}, \quad \eta_{2}=e^{-\theta} Z^{\xi}, \quad f_{1}=U e^{-\alpha \theta}, \quad f_{2}=V e^{-\alpha \theta}, \quad f_{3}=W e^{-\alpha \theta}, \tag{3.3}\\
& f_{4}=P e^{-2 \alpha \theta}, \quad \text { where } \quad \xi \equiv t_{2} / t_{1} \quad \text { and } \quad \alpha \equiv t_{4} / t_{2} .
\end{align*}
$$

Any absolute invariant of a group is expressible in terms of the functionally independent absolute invariants. Therefore,

$$
\begin{equation*}
f_{j}(U, V, W, P, R, \theta, Z)=F_{j}\left(\eta_{1}, \eta_{2}\right) \tag{3.4}
\end{equation*}
$$

$j=1,2,3,4$. Using Eqs. (3.3) and (3.4), the original dependent variables become functions of the new independent variables:

$$
\begin{gather*}
U=e^{\alpha \theta} F_{1}\left(\eta_{1}, \eta_{2}\right), \quad V=e^{\alpha \theta} F_{2}\left(\eta_{1}, \eta_{2}\right), \quad W=e^{\alpha \theta} F_{3}\left(\eta_{1}, \eta_{2}\right), \quad \text { and } \tag{3.5}\\
P=e^{2 \alpha \theta} F_{4}\left(\eta_{1}, \eta_{2}\right) .
\end{gather*}
$$

Application of Eqs. (3.3) and (3.5) to the system of equations in Sec. 2 yields a three to two reduction in the number of independent variables from (R, θ, Z) to $\left(\eta_{1}, \eta_{2}\right)$. The equations resulting from the transformations are:

$$
\begin{align*}
& \xi \eta_{1} \frac{\partial F_{1}}{\partial \eta_{1}}+F_{1}+\alpha F_{2}-\eta_{1} \frac{\partial F_{2}}{\partial \eta_{1}}-\eta_{2} \frac{\partial F_{2}}{\partial \eta_{2}}+\xi\left(\frac{\eta_{1}}{\eta_{2}}\right)^{1 / \xi} \eta_{2} \frac{\partial F_{3}}{\partial \eta_{2}}=0 \tag{3.6}\\
& \left(\xi F_{1}-F_{2}\right) \eta_{1} \frac{\partial F_{1}}{\partial \eta_{1}}+\left(\xi F_{3}\left(\eta_{1} / \eta_{2}\right)^{1 / \xi}-F_{2}\right) \eta_{2} \frac{\partial F_{1}}{\partial \eta_{2}}-F_{2}^{2}+\alpha F_{1} F_{2}=\xi \eta_{1} \frac{\partial F_{4}}{\partial \eta_{1}} \tag{3.7}
\end{align*}
$$

$$
\begin{gather*}
\left(\xi F_{1}-F_{2}\right) \eta_{1} \frac{\partial F_{2}}{\partial \eta_{1}}+\left(\xi F_{3}\left(\eta_{1} / \eta_{2}\right)^{1 / \xi}-F_{2}\right) \eta_{2} \frac{\partial F_{2}}{\partial \eta_{2}}+F_{1} F_{2}+\alpha F_{2}^{2}= \tag{3.8}\\
=\eta_{1} \frac{\partial F_{4}}{\partial \eta_{1}} \\
+\eta_{2} \frac{\partial F_{4}}{\partial \eta_{2}}-2 \alpha F_{4}, \tag{3.9}\\
\left(\xi F_{1}-F_{2}\right) \eta_{1} \frac{\partial F_{3}}{\partial \eta_{1}}+\left(\xi F_{3}\left(\eta_{1} / \eta_{2}\right)^{1 / \xi}-F_{2}\right) \eta_{2} \frac{\partial F_{3}}{\partial \eta_{2}}+\alpha F_{2} F_{3}=\xi\left(\frac{\eta_{1}}{\eta_{2}}\right)^{1 / \xi} \eta_{2} \frac{\partial F_{4}}{\partial \eta_{2}} \tag{3.10}\\
H=e^{2 \alpha \theta}\left(F_{4}+\frac{1}{2}\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)\right) \tag{3.11}\\
S=\left(\frac{\eta_{1}}{\eta_{2}}\right)^{2 / \xi} e^{2 \alpha \theta} F_{2}^{2} / H .
\end{gather*}
$$

The following table relates the new equations in two independent variables to the original equations in three independent variables.

Equation name	(R, θ, Z) space	$\left(\eta_{1}, \eta_{2}\right)$ Space
Conservation of mass	(2.1)	(3.6)
$R-$ momentum	(2.2)	(3.7)
θ-momentum	(2.3)	(3.8)
$Z-$ momentum	(2.4)	(3.9)
Conservation of energy	(2.5)	(3.10)
Swirl parameter	(2.7)	(3.11)

4. Two to one reduction in the number of independent variables

Continuous one-parameter group theory is now applied to the system of equations in Sec. 3 to reduce the two independent variables $\left(\eta_{1}, \eta_{2}\right)$ to one new independent variable (X). The new independent variable (X) is a functionally independent absolute invariant of a subgroup of the one-parameter continuous group of transformations, B_{1}. Again, noting that there is no unique way of specifying such groups, the group B_{1} is chosen as shown:

$$
\begin{array}{ll}
\bar{\eta}_{1}=c^{k} \eta_{1}, & \bar{F}_{2}=c^{\gamma_{1}} F_{2} \\
B_{1}: & \bar{\eta}_{2}=c^{k} \eta_{2}, \tag{4.1}\\
\bar{F}_{3}=c^{\gamma_{1}} F_{3}, \\
\bar{F}_{1}=c^{y_{1}} F_{1}, & \bar{F}_{4}=c^{2 \gamma_{1}} F_{4},
\end{array}
$$

where k and γ_{1} are constants and c is the group parameter.
It can easily be shown that the partial differential equations in Sec. 3 are conformally invariant under the group B_{1}. Therefore, utilizing the group B_{1}, a further reduction in the number of independent variables is possible for the system of partial differential equations in Sec. 3.

Since there is no well defined method for selecting absolute invariants, the absolute invariants for the group B_{1} are chosen as shown:
(4.2) $\quad X=\eta_{1} \eta_{2} . \quad g_{1}=F_{1} \eta_{1}{ }^{-\sigma}, \quad g_{2}=F_{2} \eta_{1}{ }^{-\sigma}, \quad g_{3}=F_{3} \eta_{1}{ }^{-\sigma}, \quad g_{4}=F_{4} \eta_{1}{ }^{-2 \sigma}$, where $\sigma \equiv \gamma_{1} / k$.

Note that the choice for X is suggested by the appearance of this ratio in the system of equations in Sec. 3.

Any absolute invariant of a group is expressible in terms of the functionally independent absolute invariants. Therefore,

$$
\begin{equation*}
g\left(F_{1}, F_{2}, F_{3}, F_{4}, \eta_{1}, \eta_{2}\right)=G_{j}(X), \quad j=1,2,3,4 . \tag{4.3}
\end{equation*}
$$

Using Eqs. (4.2) and (4.3), the original dependent variables become functions of the new independent variable:

$$
F_{i}=\eta_{1}^{\gamma_{i}^{*}} G_{i}(X), \quad i=1,2,3,4, \quad x= \begin{cases}1, & i \neq 4 \tag{4.4}\\ 2, & i=4\end{cases}
$$

Application of Eqs. (4.2) and (4.4) to the system of equations in Sec. 3 yields a two to one reduction in the number of independent variables from $\left(\eta_{1}, \eta_{2}\right)$ to (X). The equations resulting from the transformations are:

$$
\begin{gather*}
(1+\xi \sigma) G_{1}+(\alpha-\sigma) G_{2}+\xi X G_{1}^{\prime}-\xi X^{1+1 / \xi} G_{3}^{\prime}=0 \tag{4.5}\\
\xi X G_{1} G_{1}^{\prime}+\xi \sigma G_{1}^{2}-\sigma G_{1} G_{2}-\xi X^{1+1 / \xi} G_{3} G_{1}^{\prime}-G_{2}^{2}+\alpha G_{1} G_{2}=-\xi X G_{4}^{\prime}-2 \xi \sigma G_{4} \\
\xi X G_{1} G_{2}^{\prime}+(\xi \sigma+1) G_{1} G_{2}+(\alpha-\sigma) G_{2}^{2}-\xi X^{1+1 / \xi} G_{3} G_{2}^{\prime}=2(\sigma-\alpha) G_{4} \\
\xi X G_{1} G_{3}^{\prime}+\xi \sigma G_{1} G_{3}+(\alpha-\sigma) G_{2} G_{3}-\xi X^{1+1 / \xi} G_{3} G_{3}^{\prime}=\xi X^{1+1 / \xi} G_{4}^{\prime} \\
G_{4}=\frac{H}{e^{2 \alpha \theta} \eta_{1}^{2 \sigma}}-\frac{1}{2}\left(G_{1}^{2}+G_{2}^{2}+G_{3}^{2}\right) \\
S=X^{2 / \xi} e^{2 \alpha \theta} \eta_{1}^{2 \sigma} G_{2}^{2} / H .
\end{gather*}
$$

To obtain a complete reduction to one independent variable in Eqs. (4.9) and (4.10), the constants α and σ must vanish. Let $\alpha=\sigma=0$, Eqs. (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) then become:

$$
\begin{gather*}
G_{1}+\xi X G_{1}^{\prime}-\xi X^{1+1 / \xi} G_{3}^{\prime}=0, \tag{4.11}\\
\xi X G_{1} G_{1}^{\prime}-\xi X^{1+1 / \xi} G_{3} G_{1}^{\prime}-G_{2}^{2}=-\xi X G_{4}^{\prime}, \tag{4.12}\\
\xi X G_{1} G_{2}^{\prime}+G_{1} G_{2}-\xi X^{1+1 / \xi} G_{3} G_{2}^{\prime}=0, \tag{4.13}\\
\xi X G_{1} G_{3}^{\prime}-\xi X^{t+1 / \xi} G_{3} G_{3}^{\prime}=\xi X^{1+1 / \xi} G_{4}^{\prime}, \tag{4.14}\\
G_{4}=H-\frac{1}{2}\left(G_{1}^{2}+G_{2}^{2}+G_{3}^{2}\right), \tag{4.15}\\
S=X^{2 / \xi} G_{2}^{2} / H . \tag{4.16}
\end{gather*}
$$

Equations (4.11) through (4.16) comprise the new system of equations for the fluid flow model in (X) space. Note that the original system of partial differential equations has been transformed into a system of ordinary differential equations.

The following table relates the new system of equations in one independent variable to both systems of equations in two and three independent variables.

Equation name	(R, θ, Z) Space	$\left(n_{1}, \eta_{2}\right)$ Space	(X) Space
Conservation of mass	(2.1)	$(3.0$	(4.11)
$R-$ momentum	(2.2)	(3.7)	(4.12)
θ - momentum	(2.3)	(3.8)	(4.13)
$Z-$ momentum	(2.4)	(3.9)	(4.14)
conservation of energy	(2.5)	(3.10)	(4.15)
swirl parameter	(2.7)	(3.11)	(4.16)

5. One-dimensional solutions of the ordinary differential equations

The exponential term $1+1 / \xi$ appears in each of the Eqs. (4.11) through (4.14). These equations are greatly simplified by choosing $\xi=-1$.

For $\xi=-1$, the system of ordinary differential equations consisting of Eqs. (4.11), (4.12), (4.13) and (4.14) simplifies to the following system of ordinary differential equations:

$$
\begin{align*}
-X G_{1}^{\prime}+G_{1}+G_{3}^{\prime} & =0, \tag{5.1}\\
\left(G_{3}-X G_{1}\right) G_{1}^{\prime}-G_{2}^{2} & =H G_{4}^{\prime}, \tag{5.2}\\
\left(G_{3}-X G_{1}\right) G_{2}^{\prime}+G_{1} G_{2} & =0, \tag{5.3}\\
\left(G_{3}-X G_{1}\right) G_{3}^{\prime} & =-G_{4}^{\prime}
\end{align*}
$$

Since this system of ordinary differential equations is non-linear, a numerical analysis approach is required to determine its solutions.

Hamming's modified predictor-corrector numerical method is utilized to obtain solutions for the system consisting of Eqs. (5.1), (5.2), (5.3) and (5.4). The method employs the following numerical calculations:

$$
\begin{array}{ll}
\text { predictor: } & P_{j+1}=G_{j-3}+\frac{4 h}{3}\left(2 G_{j}^{\prime}-G_{j-1}^{\prime}+2 G_{j-2}^{\prime}\right) \tag{5.5}\\
\text { modifier: } & M_{j+1}=P_{j+1}-\frac{112}{121}\left(P_{j}-C_{j}\right) \\
\text { corrector: } & C_{j+1}=\frac{1}{8}\left[9 G_{j}-G_{j-2}+3 h\left(M_{j+1}^{\prime}+2 G_{j}^{\prime}-G_{j-1}^{\prime}\right)\right] \\
\text { final value: } & G_{j+1}=C_{j+1}+\frac{9}{121}\left(P_{j+1}-C_{j+1}\right)
\end{array}
$$

If the results are known at the equidistant points $X_{j-3}, X_{J_{-2}}, X_{j-1}$ and X_{j}, the results at point $X_{j+1}=X_{j}+h$ (where h is the step size) can be computed using the numerical Eqs. (5.5), (5.6), (5.7) and (5.8). Hamming's modified predictor-corrector method is not self starting; that is, the functional values at a single previous point are not enough to get the functional values ahead. To obtain the starting values, a special Runge-Kutta procedure followed by one iteration step is added to the predictor-corrector method. For an extensive discussion on Hamming's modified predictor-corrector method, the reader is referred to Carnahan [8] or Wilp [38].

The IBM scientific subroutine DHCPG, a double precision arithmetic routine utilizing Hamming's method, was used in this investigation to solve the system of non-linear ordinary differential equations. The numerical computations were performed by an IBM 360 computer at General Motors Institute, Flint, Michigan, and the numerical results are displayed in Table 1.

The boundary conditions (2.6) are constants and transform to X space unaltered. The values for the boundary conditions are selected as shown:

$$
\begin{align*}
U_{0} & \rightarrow F_{1 *} \rightarrow G_{1 *}=1.0, \quad \quad V_{0} \rightarrow F_{2 *} \rightarrow G_{2 *}=1.0, \\
W_{0} & \rightarrow F_{3 *} \rightarrow G_{3 *}=1.0, \quad \text { and } \quad P_{0} \rightarrow F_{4 *} \rightarrow G_{4 *}=0.5 . \tag{5.9}\\
& \text { In } X \text { space, } G_{j *} \equiv G_{j}\left(X_{*}\right), \text { where } j=1,2,3,4 .
\end{align*}
$$

The boundary point X_{*} is the left limit of the X interval $\left(X_{*} \leqslant X \leqslant X_{r}\right)$. Using the result obtained from substituting Eq. (3.3) into Eq. (4.2), X_{*} is defined to transform as indicated by the following equation:

$$
\begin{equation*}
X_{*} \equiv \frac{\eta_{1 *}}{\eta_{2}}=\frac{e^{-\theta} R_{0}^{-1}}{e^{-\theta} Z^{-1}}=\frac{Z}{R_{0}} \tag{5.10}
\end{equation*}
$$

For the selected boundary conditions, the numerical solutions to Eqs. (5.1), (5.2), (5.3) and (5.4) are plotted for the interval $0.1 \leqslant X \leqslant 1.0$ in Fig. 1. The output from the computer program using the DHCPG subroutine was stored as the input to a subroutine which controls a Calcomp plotter from which the plots were made.

Fig. 1. One-dimensional functions.
At the point $X=0.46531$ in Fig. 1, the solution functions G_{1}, G_{2} and G_{3} all have a discontinuous derivative. G_{4} (the one-dimensional representation for pressure) reaches its maximum value and G_{2} (the one-dimensional representation for the tangential veloctiy
component) reaches its minimum value. Therefore, the point $X=0.46531$ is designated as the "tangential quasi-stagnation point" for this flow.

The solutions G_{1}, G_{2}, G_{3} and G_{4} were determined by simultaneously solving the one-dimensional representations for conservation of momentum and conservation of mass. To verify these results, the one-dimensional representation for conservation of energy, Eq. (4.15), is used to determine the Bernoulli constant H at each point X.

Rearranging Eq. (4.15), the equation for H is:

$$
\begin{equation*}
H=G_{4}+\frac{1}{2} \int_{i=1}^{3} G_{i}^{2} \tag{5.11}
\end{equation*}
$$

The value of H is fixed by the selected boundary conditions and for this case $H=2$. Data values for H were computed at each point X from Eq. (5.11) using the solutions G_{1}, G_{2}, G_{3} and G_{4}. From the H data values listed in Table 1, the maximum per cent deviation of H from the value $H=2$ is determined to be 0.28%. This maximum per cent deviation occurs at one point only. Most of the per cent deviations for H are in the range from 0.00% to 0.09% and hence Eq. (4.15) is satisfied.

Polynomial expressions for the solutions G_{1}, G_{2}, G_{3} and G_{0} are determined using a Gaussian least squares method. The polynomial expressions for the interval $0.1 \leqslant X \leqslant$ $\leqslant 0.46531$ are:

$$
\begin{array}{ll}
(5.12) & G_{1}=0.88531+1.104 X+0.44657 X^{2} \\
(5.13) & G_{2}=1.4366-9.5497 X+82.897 X^{2}-383.95 X^{3}+829.38 X^{4}-691.74 X^{5}, \\
(5.14) & G_{3}=1.0909-0.91970 X+0.13199 X^{2}, \\
(5.15) & G_{4}=0.40740+1.0314 X-1.0941 X^{2}
\end{array}
$$

The polynomial expressions for the interval $0.46531 \leqslant X \leqslant 1.0$ are:

$$
\begin{array}{ll}
(5.16) & G_{1}=1.5338-0.29709 X+0.43202 X^{2} \tag{5.16}\\
(5.17) & G_{2}=-36.184+241.04 X-636.39 X^{2}+838.23 X^{3}-546.94 X^{4}+141.25 X^{5}, \\
(5.18) & G_{3}=1.4350-1.7466 X+0.30862 X^{2}, \\
(5.19) & G_{4}=0.31091+1.5504 X-1.7556 X^{2} .
\end{array}
$$

6. Three-dimensional pressure and velocity curves

Application of Eqs. (3.3), (3.5), (4.2) and (4.4) to this case results in the following transformation equations:

$$
\begin{align*}
G_{1} X & =\eta_{1} / \eta_{2}=Z / R \tag{6.1}\\
G_{1}(X) & =F_{1}\left(\eta_{1}, \eta_{2}\right)=U(R, \theta, Z) \tag{6.2}\\
G_{2}(X) & =F_{2}\left(\eta_{1}, \eta_{2}\right)=V(R, \theta, Z) \tag{6.3}\\
G_{3}(X) & =F_{3}\left(\eta_{1}, \eta_{2}\right)=W(R, \theta, Z) \tag{6.4}\\
G_{4}(X) & =F_{4}\left(\eta_{1}, \eta_{2}\right)=P(R, \theta, Z) \tag{6.5}
\end{align*}
$$

The three-dimensional equations for pressure and velocity components are obtained by substituting the transformation relations (6.1) through (6.5) into Eqs. (5.12) through (5.19). For the interval $0.1 \leqslant Z / R \leqslant 0.46531$, the polynomial expressions become:
(6.6) $\quad U=0.88531+1.1040(Z / R)+0.44657 /(Z / R)^{2}$,

$$
\begin{array}{r}
V=1.4366-9.5497(Z \mid R)+82.897(Z / R)^{2}-383.95(Z / R)^{3}+829.38(Z / R)^{4}- \tag{6.7}\\
-691.74(Z / R)^{5},
\end{array}
$$

(6.8) $\quad W=1.0909-0,91970(Z / R)+0.13199(Z / R)^{2}$,
(6.9) $\quad P=0.40740+1.0314(Z / R)-1.0941(Z / R)^{2}$.

For the interval $0.46531 \leqslant Z \mid R \leqslant 1.0$, the polynomial expressions become:
(6.10) $U=1.5338-0.29709(Z / R)+0.43202(Z / R)^{2}$,
(6.11) $\quad V=-36.184+241.04(Z / R)-636.39(Z / R)^{2}+838.23(Z / R)^{3}-546.94(Z / R)^{4}$ $+141.25(Z / R)^{5}$,
(6.12) $W=1.4350-1.7466(Z / R)+0.30862(Z / R)^{2}$,
(6.13) $\quad P=0.31091+1.5504(Z / R)-1.7556(Z / R)^{2}$.

The absence of the θ coordinate in the transformed equations for U, V, W and P signifies that for this case an axially symmetric flow is obtained.

The U, V, W and P curves are plotted as functions of R using Z as a parameter. For Z as a parameter, the plot intervals are: $1.0 Z \leqslant R \leqslant 2.1491 Z$ and $2.1491 Z \leqslant R \leqslant 10.0 Z$. Figures 2, 3, 4 and 5 display the curves as plotted by the Calcomp plotter for pressure, radial velocity, tangential velocity, and axial velocity, respectively. For the parametric

Fig. 2. Pressure curves.

Fig. 3. Radial velocity curves.

Fig. 4. Tangential velocity curves.
values $Z=0.1, Z=0.4$ and $Z=0.7$, the corresponding tangential quasi-stagnation point locations are at $R=0.21491, R=0.85964$ and $R=1.5044$. In each set of curves except the set for axial velocity, the location of the tangential quasi-stagnation point is pronounced by an abrupt slope change. Figure 6 displays the real space functions U, V, W and P on a single diagram for the parametric value $Z=0.7$.

Fig. 5. Real space functions.

Fig. 6. Axial velocity curves.

7. Optimal solutions in X space

The methematical optimization model employs the one-dimensional representations for the conservation of energy Eq. (4.15) and the swirl parameter Eq. (4.16). For the case $\xi=-1$, these equations become:

$$
\begin{gather*}
G_{4}=H-\frac{1}{2}\left(G_{2}^{2}+G^{2}\right), \quad \text { where } \quad G^{2} \equiv G_{1}^{2}+G_{3}^{2} ; \tag{7.1}\\
S=G_{2}^{2} /\left(H X^{2}\right) \tag{7.2}
\end{gather*}
$$

The optimization problem is posed to discover that function G that will optimize G_{4}, subject to the restriction imposed by the swirl parameter S.

Let

$$
\begin{equation*}
\phi_{1}=G_{4}-H+\frac{1}{2}\left(G_{2}^{2}+G^{2}\right)=0 \quad \text { and } \quad \phi_{2}=G_{2}^{2}-S H X^{2}=0 \tag{7.3}
\end{equation*}
$$

The augmented function for this case is written as:

$$
\begin{equation*}
K=\lambda_{1} \phi_{1}+\lambda_{2} \phi_{2}=\lambda_{1} G_{4}-\lambda_{1} H+\frac{\lambda_{1}}{2}\left(G_{2}^{2}+G\right)+\lambda_{2} G_{2}^{2}-\lambda_{2} S H X^{2} \tag{7.4}
\end{equation*}
$$

This optimization problem is formulated as a classical Mayer type optimization problem.
Following the proposition given in reference [32, p. 33] for solving problems not involving derivatives of the dependent variables, a change of dependent variables is introduced.

Let

$$
\begin{equation*}
\alpha^{\prime}=G_{4}, \quad \beta^{\prime}=G_{2} \quad \text { and } \quad \gamma^{\prime}=G . \tag{7.5}
\end{equation*}
$$

Substituting Eq. (7.5) into Eq. (7.4) results in the following expression for the augmented function:

$$
\begin{equation*}
K=\lambda_{1} \alpha^{\prime}-\lambda_{1} H+\frac{\lambda_{1}}{2}\left(\beta^{\prime 2}+\gamma^{\prime 2}\right)+\lambda_{2} \beta^{\prime 2}-\lambda_{2} S H X^{2} \tag{7.6}
\end{equation*}
$$

Similarly, the constraint equations become:

$$
\begin{equation*}
\phi_{1}=\alpha^{\prime}-H+\frac{1}{2}\left(\beta^{\prime 2}+\gamma^{\prime 2}\right)=0 \quad \text { and } \quad \phi_{2}=\beta^{\prime 2}-S H X^{2}=0 \tag{7.7}
\end{equation*}
$$

A single degree of freedom exists for this problem as there are three dependent variables (α, β, γ) and two constraint Eqs. (7.7). Hence one optimum requirement can be imposed on α. The following end conditions are specified for this problem: $X_{i}, X_{f}, \alpha_{f}, \gamma_{i}$, and α_{f}. Now, the optimization problem is specifically formulated as follows: In the class of functions $\alpha(X), \beta(X)$ and $\gamma(X)$, which are consistent with the constraint Eqs. (7.7) and the specified end conditions, find that special set which minimizes the difference $\Delta \alpha=$ $=\alpha_{f}-\alpha_{i}$. Note that for α_{f} specified, minimizing the difference $\Delta \alpha$ corresponds to maximizing α_{i}.

There is one Euler-Lagrange equation for each dependent variable [1]

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\partial K}{\partial y_{j}^{\prime}}\right)-\frac{\partial K}{\partial y_{j}}=0, \quad j=1,2,3 . \tag{7.8}
\end{equation*}
$$

Application of Eqs. (7.8) to the augmented function K Eq. (7.6) leads to the following results:

$$
\begin{gather*}
\lambda_{1}^{\prime}=0 \quad \text { or } \quad \lambda_{1}=\text { constant } \tag{7.9}\\
\left(\lambda_{1}+2 \lambda_{2}\right) \beta^{\prime \prime}+\left(\lambda_{1}^{\prime}+2 \lambda_{2}^{\prime}\right) \beta^{\prime}=0, \tag{7.10}\\
\lambda_{1} \gamma^{\prime \prime}+\lambda_{1}^{\prime} \gamma^{\prime}=0 . \tag{7.11}
\end{gather*}
$$

Substitution of Eq. (7.9) into Eq. (7.11) demonstrates that,

$$
\begin{equation*}
\gamma^{\prime}=L / \lambda_{1} \tag{7.12}
\end{equation*}
$$

where L is an integration constant. Since λ_{1} is a constant, an obvious solution to Eq. (7.10) is obtained by choosing λ_{2} to be a constant. Let

$$
\begin{equation*}
\lambda_{2}=\text { constant }=-\lambda_{1} / 2 \tag{7.13}
\end{equation*}
$$

The value of $\lambda_{1}=-1$ is determined by application of the transversality condition [Eq. (7.14)] from the calculus of variations,

$$
\begin{equation*}
\left.d \alpha+\left(K-\sum_{j=1}^{n} \frac{\partial K}{\partial y_{j}^{\prime}} y_{j}^{\prime}\right) d X+\sum_{j=1}^{n} \frac{\partial K}{\partial y_{j}^{\prime}} d y_{j}\right]_{i}^{f}=0 . \tag{7.14}
\end{equation*}
$$

It is easily demonstrated that the Legendre-Clebsch necessary condition [Eq. (7.15)] is negative for this case which means that the optimum obtained for this case is a maximum,

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} K}{\partial y_{k}^{\prime} \partial y_{j}^{\prime}} \delta y_{k}^{\prime} \delta y_{j}^{\prime}<0 . \tag{7.15}
\end{equation*}
$$

The optimum expression for G_{4} is obtained by substituting Eqs. (7.5), (7.7), (7.12) and $\lambda_{1}=-1$ into the first constraint Eq. (7.7),

$$
\begin{equation*}
G_{4}=H-\frac{1}{2}\left(S H X^{2}+L^{2}\right) . \tag{7.16}
\end{equation*}
$$

Equation (7.16) represents the optimum G_{4} when the sum $G^{2}=G_{1}^{2}+G_{3}^{2}+=L^{2}=$ a constant and G_{2} is goveined by the swirl parameter S as given by Eq. (7.2). G_{4} attains its maximum value at $X=X_{i}$.

Since G_{4} is the one-dimensional representation for pressure, it is restricted to positive values. This restriction on G_{4} restricts the swirl parameter as shown:

$$
\begin{equation*}
S<2-L^{2} / H \tag{7.17}
\end{equation*}
$$

From Table 1, the values $H=2.0000$ and $L^{2}=2.6951$ are selected, since they occur at the point, where the function G_{4} is a maximum as determined by the solution of the system of ordinary differential equations in Sec. 5. For the selected values of H and L^{2}, Eq. (7.17) requires that $S<0.6525$.

Computing the maximum G_{4} at $X=X_{i}=0.1$ using Eq. (7.16) with the previously mentioned values for H and L^{2}, the computed maximum G_{4} for $S=0.25$ is found to be within 0.02% of the maximum value given in Table 1 . For $S=0.65$, the computed maximum value of G_{4} is found to be within 0.63% of the maximum value given in Table 1 . Therefore, the maximum G_{4} value determined by Eq. (7.16) compares favorably with the maximum G_{4} value determined by the solution of the system of ordinary differential equations in Sec. 5.

Figures 7 and 8 illustrate the G_{2} and G_{4} curves generated from Eqs. (7.2) and (7.16). The maximum value of G_{4} occurs at the left end of the X interval, where G_{2} is at a minimum.

Fig. 7. G_{2} curves, S parameter.

Fig. 8. G_{4} curves, S parameter.

8. Three-dimensional optimal pressure and velocity curves

The three-dimensional equations for optimum pressure and tangential velocity are obtained by substituting the transformation relations (6.1), (6.3) and (6.5) into Eqs. (7.2) and (7.16):

$$
\begin{equation*}
P=H-\frac{1}{2}\left(S H(Z \mid R)^{2}+L^{2}\right), \tag{8.1}
\end{equation*}
$$

$$
\begin{equation*}
V=[S H]^{1 / 2} Z / R \tag{8.2}
\end{equation*}
$$

The optimum P and V curves are plotted as functions of R using Z as a parameter and $S=0.65$. For Z as a parameter, the plot interval becomes: $Z \leqslant R \leqslant 10 Z$. The maximum value of P occurs at the right end of the R interval, where V is a minimum. This same result is obtained in Sec. 6 for the transformed equations of the solutions to the system of ordinary differential equations. Figures 9 and 10 display the curves for optimum pressure and tangential velocity, respectively. For the parameteric values $Z=0.1, Z=$ $=0.4$ and $Z=0.7$, the corresponding maximum pressure locations are $R=1, R=4$, and $R=7$.

Fig. 9. Optimum pressure curves.

$Z=0.1$, square
$Z=0.4$, circle
$Z=0.7$, triangle

Fig. 10. Velocity curves for optimum pressure.

Table 1 presents the numerical data for the solutions to the system of non-linear ordinary differential equations given in Sec. 5. In addition to values for G_{1}, G_{2}, G_{3} and G_{4}, values for H, S, L^{2} and π_{2} are listed. The values of these functions at each value of X are displayed in the order shown in the following 2×5 matrix:

$$
X \text { value }\left[\begin{array}{ccccc}
G_{1} & G_{2} & G_{3} & G_{4} & H \\
S & L^{2} & \pi_{2} & - & -
\end{array}\right]
$$

Table 1. Numerical data for solutions to the system of ordinary differential equations

No.	x	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)
1	0.10000E 00	$\begin{aligned} & 0.10000 \mathrm{E} 01 \\ & 0.50000 \mathrm{E} 02 \end{aligned}$	$\begin{aligned} & 0.10000 \mathrm{E} 01 \\ & 0.20000 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.10000 \mathrm{E} 01 \\ & 0.50000 \mathrm{E} 00 \end{aligned}$	0.50000E 00	0.20000E 01
2	0.10500 E 00	0.10060 E 01 0.44846 E 02	$\begin{aligned} & 0.99441 \mathrm{E} 00 \\ & 0.20033 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.99560 \mathrm{E} 00 \\ & 0.49443 \mathrm{E} 00 \end{aligned}$	0.50394 E 00	0.20000E 01
3	0.11000 E 00	$\begin{aligned} & 0.10120 \mathrm{E} 01 \\ & 0.40399 \mathrm{E} 02 \end{aligned}$	$\begin{aligned} & 0.98876 \mathrm{E} 00 \\ & 0.20067 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.99120 \mathrm{E} 00 \\ & 0.48882 \mathrm{E} 00 \end{aligned}$	0.50783 E 00	0.20000E 01
4	0.11500 E 00	0.10181 E or 0.36536 E 02	$\begin{gathered} 0.98304 \mathrm{E} 00 \\ 0.20103 \mathrm{E} 01 \end{gathered}$	$\begin{aligned} & 0.9868 \mathrm{IE} 00 \\ & 0.48318 \mathrm{E} 00 \end{aligned}$	0.51167 E 00	0.20000E 01
5	0.12000E 00	$\begin{aligned} & 0.10242 \mathrm{E} 01 \\ & 0.33160 \mathrm{E} 02 \end{aligned}$	$\begin{gathered} 0.97725 \mathrm{E} 00 \\ 0.20140 \mathrm{E} 01 \end{gathered}$	$\begin{gathered} 0.98242 \mathrm{E} 00 \\ 0.47751 \mathrm{E} 00 \end{gathered}$	0.51547E 00	0.20000 E 01
6	0.12500E 00	$\begin{aligned} & 0.10302 \mathrm{E} 01 \\ & 0.30195 \mathrm{E} 02 \end{aligned}$	0.97139 E 00 0.20179 E 01	$\begin{aligned} & 0.97803 \mathrm{E} 00 \\ & 0.47180 \mathrm{E} 00 \end{aligned}$	0.51922E 00	0.20000 E 01
7	0.13000E 00	0.10364 E or 0.27578 E 02	$\begin{aligned} & 0.96547 \mathrm{E} 00 \\ & 0.20220 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.97364 \mathrm{E} 00 \\ & 0.46606 \mathrm{E} 00 \end{aligned}$	0.52292E 00	0.20000 E 01
8	0.14000E 00	0.10487 E 01 0.23188 E 02	$\begin{aligned} & 0.95339 \mathrm{E} 00 \\ & 0.20307 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.96487 \mathrm{E} 00 \\ & 0.45448 \mathrm{E} 00 \end{aligned}$	0.53019 E 00	0.20000E 01
9	0.15000E 00	0.10610 E 01 0.19678 E 02	$\begin{aligned} & 0.94102 \mathrm{E} 00 \\ & 0.20400 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.95612 \mathrm{E} 00 \\ & 0.44276 \mathrm{E} 00 \end{aligned}$	0.53725E 00	0.20000E 01
10	0.16000E 00	$\begin{aligned} & 0.10735 \mathrm{E} \text { or } \\ & 0.16832 \mathrm{E} 02 \end{aligned}$	$\begin{aligned} & 0.92833 \mathrm{E} 00 \\ & 0.20499 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.94738 \mathrm{E} 00 \\ & 0.43090 \mathrm{E} 00 \end{aligned}$	0.54413 E 00	0.20000E 01
11	0.17000E 00	$\begin{aligned} & 0.10861 \mathrm{E} 01 \\ & 0.14495 \mathrm{E} 02 \end{aligned}$	$\begin{aligned} & 0.91532 \mathrm{E} 00 \\ & 0.20606 \mathrm{E} \text { 01 } \end{aligned}$	$\begin{aligned} & 0.93865 \mathrm{E} 00 \\ & 0.41890 \mathrm{E} 00 \end{aligned}$	0.55080 E 00	0.20000 E or

Table 1. (Cont'D.)

No.	x	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)
12	0.19000E 00	0.11114 E 01 0.10928 E 02	$\begin{aligned} & 0.88824 \mathrm{E} 00 \\ & 0.20839 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.92124 \mathrm{E} 00 \\ & 0.39449 \mathrm{E} 00 \end{aligned}$	0.56355 E 00	0.20000 E O1
13	0.21000 E 00	0.11371 E 01 0.83788 E 01	$\begin{aligned} & 0.85965 \mathrm{E} 00 \\ & 0.21100 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.90390 \mathrm{E} 00 \\ & 0.36951 \mathrm{E} 00 \end{aligned}$	0.57548 E 00	0.20000E OI
14	0.23000E 00	0.11031 E 01 0.65019 E or	$\begin{aligned} & 0.82939 \mathrm{E} 00 \\ & 0.21389 \mathrm{E} \text { or } \end{aligned}$	$\begin{aligned} & 0.88662 \mathrm{E} 00 \\ & 0.34395 \mathrm{E} 00 \end{aligned}$	0.58657E 00	0.20000E 01
15	0.25000E 00	$\begin{gathered} 0.11895 \mathrm{E} 01 \\ 0.50849 \mathrm{E} 01 \end{gathered}$	$\begin{aligned} & 0.79725 \mathrm{E} 00 \\ & 0.21707 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.86942 \mathrm{E} 00 \\ & 0.31781 \mathrm{E} 00 \end{aligned}$	0.59682 E 00	0.20000E 01
16	0.29000E 00	$\begin{aligned} & 0.12431 \mathrm{E} \text { of } \\ & 0.31362 \mathrm{E} \text { of } \end{aligned}$	$\begin{aligned} & 0.72629 \mathrm{E} 00 \\ & 0.22431 \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.83527 \mathrm{E} 00 \\ & 0.2637 \mathrm{SE} 00 \end{aligned}$	0.61471E 00	0.20000E 01
17	0.33000E 00	$\begin{aligned} & 0.1298 \mathrm{IE} 01 \\ & 0.19033 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.64385 \mathrm{E} 00 \\ & 0.23273 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.80148 \mathrm{E} 00 \\ & 0.20727 \mathrm{E} 00 \end{aligned}$	0.62905 E 00	0.20000E 01
18	0.37000E 00	$\begin{aligned} & 0.13542 \mathrm{E} \text { or } \\ & 0.10832 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.54460 \mathrm{E} 00 \\ & 0.24238 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.76809 \mathrm{E} 00 \\ & 0.14830 \mathrm{E} 00 \end{aligned}$	0.63975E 00	0.20000E 01
19	0.41000E 00	$\begin{aligned} & 0.14116 \mathrm{E} 01 \\ & 0.51533 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.41622 \mathrm{E} 00 \\ & 0.25331 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.73517 \mathrm{E} 00 \\ & 0.86626 \mathrm{E}-01 \end{aligned}$	0.64674 E 00	0.19999E 01
20	0.45000 E 00	$\begin{aligned} & 0.14725 \mathrm{E} 01 \\ & 0.93040 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 0.19415 \mathrm{E} 00 \\ & 0.26638 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.70384 \mathrm{E} 00 \\ & 0.18841 \mathrm{E}-01 \end{aligned}$	0.64992E 00	0.20007E 01
21	0.45500E 00	$\begin{aligned} & 0.14824 \mathrm{E} 01 \\ & 0.48961 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 0.14255 \mathrm{E} 00 \\ & 0.26888 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.70096 \mathrm{E} 00 \\ & 0.10136 \mathrm{E}-01 \end{aligned}$	0.65003 E 00	0.20046 E 01
22	0.46000E 00	$\begin{gathered} 0.14885 \mathrm{E} 01 \\ 0.20448 \mathrm{E}-01 \end{gathered}$	$\begin{aligned} & 0.93135 \mathrm{E}-01 \\ & 0.27006 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.69633 \mathrm{E} 00 \\ & 0.43268 \mathrm{E}-02 \end{aligned}$	0.65012E 00	0.20047E 01
23	0.46500E 00	$\begin{aligned} & 0.14934 \mathrm{E} 01 \\ & 0.66230 \mathrm{E}-02 \end{aligned}$	$\begin{aligned} & 0.53592 \mathrm{E}-01 \\ & 0.27080 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.69115 \mathrm{E} 00 \\ & 0.14321 \mathrm{E}-02 \end{aligned}$	0.65014 E 00	0.20056 E 01
24	0.46531 E 00	$\begin{aligned} & 0.14900 \mathrm{E} 01 \\ & 0.53122 \mathrm{E}-02 \end{aligned}$	$\begin{aligned} & 0.47948 \mathrm{E}-01 \\ & 0.26951 \mathrm{or} \end{aligned}$	$\begin{aligned} & 0.68910 \mathrm{E} 00 \\ & 0.11502 \mathrm{E}-02 \end{aligned}$	0.65013 E 00	0.19988 E 01
25	0.46562 E 00	$\begin{aligned} & 0.14900 \mathrm{E} \text { of } \\ & 0.59134 \mathrm{E}-02 \end{aligned}$	$\begin{gathered} 0.50620 \mathrm{E}-01 \\ 0.26944 \mathrm{E} 01 \end{gathered}$	$\begin{aligned} & 0.68864 \mathrm{E} 00 \\ & 0.12821 \mathrm{E}-02 \end{aligned}$	0.65013 E 00	0.19986E 01

Table 1. (cont'D.)

No.	x	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)
41	0.48437E 00	$\begin{aligned} & 0.14927 \mathrm{E} 01 \\ & 0.68489 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 0.17920 \mathrm{E} 00 \\ & 0.26664 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.66195 \mathrm{E} 00 \\ & 0.16069 \mathrm{E}-01 \end{aligned}$	0.64924 E 00	0.19985E 01
42	0.48937 E 00	$\begin{aligned} & 0.14933 \mathrm{E} 01 \\ & 0.84357 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 0.20092 \mathrm{E} 00 \\ & 0.26586 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.65476 \mathrm{E} 00 \\ & 0.20202 \mathrm{E}-01 \end{aligned}$	0.64875E 00	0.19982E 01
43	0.49437E 00	$\begin{aligned} & 0.14941 \mathrm{E} 01 \\ & 0.99020 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 0.21991 \mathrm{E} 00 \\ & 0.26518 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.64769 \mathrm{E} 00 \\ & 0.24201 \mathrm{E}-01 \end{aligned}$	0.64816 E 00	0.19982 E 01
44	0.49937E 00	$\begin{aligned} & 0.14949 \mathrm{E} 01 \\ & 0.11299 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.23728 \mathrm{E} 00 \\ & 0.26452 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.64064 \mathrm{E} 00 \\ & 0.28176 \mathrm{E}-01 \end{aligned}$	0.64747E 00	0.19982E 01
45	0.50437E 00	$\begin{aligned} & 0.14958 \mathrm{E} 01 \\ & 0.12634 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.25342 \mathrm{E} 00 \\ & 0.26389 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.63361 \mathrm{E} 00 \\ & 0.32140 \mathrm{E}-01 \end{aligned}$	0.64667E 00	0.19982E 01
46	0.51437E 00	$\begin{aligned} & 0.14976 \mathrm{E} 01 \\ & 0.15183 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.28332 \mathrm{E} 00 \\ & 0.26266 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.61953 \mathrm{E} 00 \\ & 0.40173 \mathrm{E}-01 \end{aligned}$	0.64476 E 00	0.19982E 01
47	0.52437 E 00	$\begin{aligned} & 0.14995 \mathrm{E} 01 \\ & 0.17506 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.31013 \mathrm{E} 00 \\ & 0.26153 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.60556 \mathrm{E} 00 \\ & 0.48136 \mathrm{E}-01 \end{aligned}$	0.64244 E 00	0.19982E 01
48	0.53437E 00	$\begin{aligned} & 0.15016 \mathrm{E} 01 \\ & 0.19659 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.33492 \mathrm{E} 00 \\ & 0.3697 \mathrm{E} 0 \end{aligned}$	$\begin{aligned} & 0.59163 \mathrm{E} 00 \\ & 0.56138 \mathrm{E}-01 \end{aligned}$	0.63971E 00	0.19982E 01
49	0.54437E 00	$\begin{aligned} & 0.15037 \mathrm{E} 01 \\ & 0.21643 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.35799 \mathrm{E} 00 \\ & 0.25950 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.57777 \mathrm{E} 00 \\ & 0.64136 \mathrm{E}-01 \end{aligned}$	0.63658 E 00	0.19982 E 01
50	0.56437 E 00	$\begin{aligned} & 0.15085 \mathrm{E} 01 \\ & 0.25112 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.39979 \mathrm{E} 00 \\ & 0.25784 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.55028 \mathrm{E} 00 \\ & 0.79987 \mathrm{E}-01 \end{aligned}$	0.62913 E 00	0.19982E 01
51	0.58437E 00	$\begin{aligned} & 0.15136 \mathrm{E} 01 \\ & 0.28126 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.43809 \mathrm{E} 00 \\ & 0.25643 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.52296 \mathrm{E} 00 \\ & 0.96049 \mathrm{E}-01 \end{aligned}$	0.62008E 00	0.19982 E 01
52	0.60437E 00	$\begin{aligned} & 0.15190 \mathrm{E} 01 \\ & 0.30706 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.4734 \mathrm{IE} 00 \\ & 0.25533 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.49589 \mathrm{E} 00 \\ & 0.11216 \mathrm{E} 00 \end{aligned}$	0.60948E 00	0.19982E 01
53	0.62437 E 00	$\begin{aligned} & 0.15249 \mathrm{E} 01 \\ & 0.32923 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & 0.50643 \mathrm{E} 00 \\ & 0.25452 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 0.46905 \mathrm{E} 00 \\ & 0.12835 \mathrm{E} 00 \end{aligned}$	0.59733 E 00	0.19982 E 01

Appendix

The idea of the association of ordinary and partial differential equations with the group theory and algebra is not a new one and was originated a long time ago. The present century has demonstrated some concrete approaches in this direction. Thus L. E. Dickson (1924) [A. 3] showed how some differential equations could be integrated with the aid of group theory. G. Birkhoff [A. 1] in 1949 suggested that the reduction of independent variables in systems of partial differential equations could be attacked by algebraic methods. Perhaps the most significant achievement obtained by the use of this technique was the first solution of the boundary layer equations proposed by L. PrandtL (1904) and used by Blasius (1908) [A. 2].Recently, some continuations to this technique were done by Michal [A. 5], Morgan [A. 6], Krzywoblocki [4. A] and others. In the eastern part of the world, significant results in that respect were obtained by the Soviet and Polish schools of mathematics. The method of reduction of the number of dimensions by a transformation from one space into another does not appear amenable to the standard methods of the theory of functions, since the Jacobian determinant associated with such a transformation vanishes, whereas the algebraic methods do not break down under these conditions. The main problem in question is the following one: "Given a differential system in the space A of n dimensions, transform this system into the space B of ($n-r$) dimensions $(1 \leqslant r)$ such that a solution of the system in B determines a solution of it in A. The transformations involved in these operations are not to be one-to-one". The resulting theorems involve the use of the theory of Banach spaces and some elements of the theory of continuous transformation groups.

Consider an elementary example. Given a Laplace equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad u=(x, y), \quad L[u]=0 \tag{A.1}
\end{equation*}
$$

and a group of transformations:

$$
\begin{equation*}
\bar{x}=f_{1}(x, y ; a), \quad \bar{y}=f_{2}(x, y ; a), \quad \bar{u}=f_{3}(u ; a) \tag{A.2}
\end{equation*}
$$

a being a parameter, one then obtains

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial \bar{y}}=F\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} ; a\right) \frac{\partial u}{\partial y} . \tag{A.3}
\end{equation*}
$$

A continuation of this procedure and the introduction of new variables

$$
\begin{equation*}
\eta=x^{2}+y^{2}, \quad u=v(\eta) \tag{A.4}
\end{equation*}
$$

leads to the form:

$$
\begin{equation*}
L[u]=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=4 \frac{d v}{d \eta}+4 \eta \frac{d^{2} v}{d \eta^{2}}=0 \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v=C_{1} \ln \eta+C_{2}, \quad u=C_{1} \ln \left(x^{2}+y^{2}\right)+C_{2} . \tag{A.6}
\end{equation*}
$$

The group of transformations chosen (or sometimes guessed by the intuition) should be selected so that a solution satisfies the boundary conditions proposed in the original
physical space and has the appropriate physical meaning. Technically, this may imply that some correspondence with test experiments should confirm the analytical results. This item may be considered a disadvantage of this technique which is otherwise very interesting and often very powerful. Note that the famous Prandtl-Blasius [A.2] transformation involved the function $\eta \approx y x^{-1 / 2}$.

References

1. Naum I. Akhiezer, The calculus of variations, Blaisdell Publishing Co., New York 1962.
2. P. S. Alexandroff, Einführung in die Gruppentheorie, Deutscher Verlag der Wissenschaften, Berlin 1954.
3. G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech., 12, Part 2, 177-190, 1956.
4. T. B. Benjamin, Significance of the vortex breakdown phenomenon, Transactions of the ASME, 518-524, June 1965.
5. R.T. Bichara and P. A. Orner, Analysis and modelling of the vortex amplifier, ASME Publication, 69-FLCS-20, 1969.
6. Garrett Birkhoff, Hydrodynamics, Second Edition, Princeton University Press, Princeton 1960.
7. J. M. Bookston and D. D. McKeachie, Notes on the numerical solution of differential equations, General Motors Corporation Research Laboratories Report GMR 161, July 1958.
8. Brice Luther H. A. Carnahan and James O. Wilkes, Applied numerical methods, John Wiley and Sons, Inc., New York 1969.
9. Chuen-Yen Chow, Swirling flow in tubes of non-uniform cross-sections, J. Fluid Mech., 38, Part 4, 843-854, October 1969.
10. Robert G. Deissler and Morris Perlmutter, An analysis of the energy separation in laminar and turbulent compressible vortex flows, Proc. Heat Transfer and Fluid Mech. Inst., 1958.
11. L. E. Dickson, Differential equations from the group standpoint, Annals of Mathematics, Second Series, 25, 4, 287-378, June 1924.
12. P. Donaldson Coleman and Roger D. Sullivan, Behaviour of solutions of the Navier-Stokes equations for a complete class of three-dimensional viscous vortices, 1960 Proc. Heat Transfer and Fluid Mech. Inst. Stanford University Press, pp. 16-30.
13. J. L. Dussourd and G. P. Schivley, An analytical and experimental study of a vortex pump, ASME Publication, 70-FE-32, 1970.
14. E. R. G. Eckert and J. P. Hartnett, Experimental study of the velocity and temperature distribution in a high velocity vortex type flow, University of Minnesota Heat Transfer Laboratory Technical Report No. 6, September 1955.
15. Hans Albert Einstein and Huon Li, Steady vortex flow in a real fluid, Heat Transfer and Fluid Mech. Proc., Stanford University Press, 1951.
16. I. S. Gartshore, Recent work in swirling incompressible flow, Nat. Research Council of Canada Aeronautical Report LR-343, June 1962.
17. Donald Greenspan, Numerical studies of prototype cavity flow problems, The Computer J., 12, 1, 89-94, February 1969.
18. Donald Greenspan, Numerical studies of viscous, incompressible flow for arbitrary Reynold number, University of Wisconsin Computer Sciences Technical Report No. 11, January 1968.
19. Donald Greenspan, Numerical studies of two-dimensional, steady state Navier-Stokes equations for arbitrary Reynolds number, University of Wisconsin Computer Sciences Technical Report No. 9, October 1967.
20. H. P. Greenspan, The theory of rotating fluids, Cambridge University Press, London 1968.
21. G. G. Hall, Applied group theory, American Elsevier Publishing Co., New York 1967.
22. R. Hilsch, The use of the expansion of gases in a centrifugal field as cooling process, The Review of Scientific Instruments, 18, 2, 108-113, February 1947.
23. M. Kawaguti, Numerical solutions of the Navier-Stokes equations for the flow in a two-dimensional cavity, J. Phys. Soc. of Japan, 16, 2307-2318, April 1961.
24. R. C. Kolf, Vortex flow from horizontal thin-plate orifices, Ph. D. Thesis, University of Wisconsin, Madison, Wisconsin 1956.
25. C. C. K. Kwor, A theoretical study of vortex flow in a thin cylindrical chamber, Bendix Technical J., 1, 4, 1969.
26. Hans J. Lugt and Ernst W. Schwiderski, Birth and decay of vortices, Physics of Fluids, 9, 5, 851-859, May 1966.
27. Leslie M. MACK, The compressible, viscous, heat-conducting vortex, Cal. Tech. Jet Propulsion Laboratory Progress Report No. 20-382, 1959.
28. Paul Maker and Endre A. Mayer, Control characteristics of vortex valves, Proc. of the Fluid Amplification Symposium, 2, U.S. Army Material Command, 61-83, May 1964.
29. Endre A. MAYER, Large-signal vortex valve analysis, Advances in Fluidics, Proc. of the 1967 ASME Fluidics Symposium, ASME Publication, 233-249, May 1967.
30. G. L. Mellor, P. J. Chapple and V. K. Stokes, On the flow between a rotating and stationary disk, J. Fluid Mech., 31, Part 1, 95-112, January 1968.
31. A. D. Michal, Differential invariants and invariant partial differential equations in normed linear spaces, Proc. of the National Academy of Sciences, 37, 9, 623-627, September 1952.
32. Angelo Miele, Theory of optimum aerodynamic shapes, Academic Press, New York 1965.
33. A. J. A. Morgan, The reduction by one of the number of independent variables in some systems of partial differential equations, Quart. J. of Math., Oxford Second Series, 3, 12, 250-259, Dec. 1952.
34. Carl E. Pearson, A computational method for viscous flow problems, J. Fluid Mech., 21, Part 4, 611-622, 1965.
35. Desmond C. Pengelley, Flow in a viscous vortex, J. Appl. Phys., 28, 1, 86-92, January 1957.
36. Kent E. Springer and F. M. Patterson, Experimental investigation of critical submergence for vortexing in a vertical cylindrical tank, ASME Publication, 69-FE-49, 1969.
37. T. P. Torda and Urmila Agarwal, Numerical investigation of unsteady laminar incompressible boundary layer flows with cylindrical symmetry, ASME Publication, 69-FE-47, 1969.
38. Herbert S. Wilf and Anthony Ralston, Mathematical methods for digital computers, John Wiley and Sons, Inc., New York 1960.

List of references to Appendix

A.1. G. Birkhoff, Hydrodynamics, 1st Edition, Princeton University Press, 1950.
A.2. H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Phys., 56, 11908.
A.3. L. E. Dickson, Differential equations from the group standpoint, Annals of Mathematics, Second Series, 25, 4, 287-378, June 1924.
A.4. M. Z. Krzywoblocki, On the generalized theory of the laminar, two-dimensional boundary layer along a flat plate in continuum and slip flow regimes, Part II, On the Fundamental Existence Theorems for Partial Differential Systems of the First Order, Bulletin de la Société Math. de Greece, 29, Parts 1, 2, 3, 43-73, April 1954.
A.5. A. D. Michal, Differential invariants and invariant partial differential equations in normal linear spaces, Proc. Nat. Acad. Sci., 37, 9, 623-627, September 1952.
A.6. A. J. A. Morgan, The reduction by one of the number of independent variables in some systems of partial differential equations, Quart. J. Math., Oxford Second Series, 3, 12, 250-259, December 1952.

GENERAL MOTORS INSTITUTE
FLINT (MICHIGAN)
and
MICHIGAN STATE UNIVERSITY
EAST LANSING (MICHIGAN).

[^0]: $\left.{ }^{(}{ }^{1}\right)$ Mathematical fundamentals are given in the Appendix.

