Applications of a ray reflection model in the problem of highly rarefied gas flow past bodies

E. V. ALEKSEYEVA, R. G. BARANTSEV, A. V. KOPYLOVA and V. M. FJEDOROVA (LENINGRAD)

RAREFIED hypersonic gas flow past a convex body is studied within the framework of the single collision approximation. Gas-surface interaction is described by the ray reflection model. In the case of a sphere, detailed results are given for gasdynamic fields and fluxes on the surface for different interaction parameters.

Zbadano hipersoniczny opływ gazu rozrzedzonego ciała wypukłego w ramach założeń aproksymacji pojedynczych zderzeń. Powierzchnia oddziaływania gazu jest opisana modelem odbicia promieni. W przypadku powierzchni kulistej podano szczegółowe rezultaty dla pól i strumieni gazodynamiki na powierzchni dla różnych parametrów oddziaływania.

Изучается гиперзвуковое обтекание выпуклого тела сильно разреженным газом. Задача рассматривается в рамках приближения однократными столкновениями, причем взаимодействие газа с поверхностью описано лучевой моделью отражения. Для случая сферической поверхности подробно излагаются рещения для газодинамических полей н потоков на поверхности при различных значениях параметров взаимодействия.

WE CONSIDER axisymmetric steady hypersonic $(M_{\infty} = \infty)$ highly rarefied $(Kn \ge 1)$ gas flow past a strictly convex body. Gas-surface interaction is described by the ray model of the scattering function

(1)
$$V(\overline{u}_1, \overline{u}) = \delta(\overline{u} - \overline{u}_m(\overline{u}_1)),$$

 \overline{u}_m being a given function of the incidence velocity \overline{u}_1 . Interaction between atoms is described by the normalized differential scattering cross-section

(2)
$$T_{\omega}(\vartheta) = (1 + \beta \cos \vartheta)/(4\pi), \quad 0 \le \beta \le 1,$$

and the total cross-section

(3)
$$\sigma(v_0) = \sigma_0 v_0^{-\gamma}, \quad 0 \leq \gamma < 4,$$

 v_0 being the impact velocity, ϑ the scattering angle. Parameter β defines the scattering anisotropy, γ — interaction potential U(r) hardness. For small β , the function (2) corresponds to a potential barrier of inclination

$$(dU/dr)_{r=r_{max}} = -4/\beta.$$

In the present paper, exact expressions are obtained for the first terms of asymptotic expansions of aerodynamic quantities in inverse Knudsen number powers. Such a problem was solved in [1] for hard atoms ($\beta = 0, \gamma = 0$). In the case of a sphere with reflection

along the normal $(\overline{u}_m = u_m \overline{n})$ mass, momentum and energy fluxes on the surface were calculated. Here, the solution is generalized in three aspects:

1. Atom pliancy ($\beta \neq 0$) and its radius dependence on the impact velocity ($\gamma \neq 0$) are taken into account;

2. In addition to the one-parametric ray model

(4)
$$u_m(\overline{u}_1) = u_m, \quad \theta_m(\overline{u}_1) = 0$$

the two-parametric model (see [2])

(5)
$$u_m(\bar{u}_1) = u_0 \left[1 - \frac{4\cos\theta_0\cos\theta_1}{1 + 4\cos^2\theta_0} \right]^{1/2}, \quad \theta_m(\bar{u}_1) = \arctan\frac{\sin\theta_1}{2\cos\theta_0 - \cos\theta_1}$$

is used, u_0 being a maximum value of the reflection velocity reached for $\theta_1 = \pi/2$ and $\theta_0 \in (0, 60^\circ)$ — an angle for which the reflection changes from underspecular into overspecular.

Parameters u_m , θ_m are the average magnitude and direction of scattered atoms.

3. The quantities calculated are not only fluxes on the surface but also gas-dynamic fields in front of the sphere.

Owing to $M_{\infty} = \infty$, the incident distribution function is $f_{\infty}(\bar{u}) = \delta(\bar{u} - \bar{u}_{\infty})$, $\bar{u}_{\infty} = \{0, 0, -1\}$. The part of the space \bar{r} filled by the rays passing from points \bar{r}'_s of the front part of the body surface in directions \bar{u}_m will be designated by Λ . In the free molecule limit we have

(6)
$$f_0(\bar{r},\bar{u}) = \delta(\bar{u}-\bar{u}_{\infty}) + \frac{\cos\theta_1}{|J|} \delta(\bar{u}-\bar{u}_m),$$

 $\theta_1 = \langle (\bar{n}, -\bar{u}_{\infty}) \rangle$, and |J| connected with the ray divergence has been found in [1]. In the rest of the space, the second term is absent; in the wake, both are absent.

In the near-free-molecule regime at any distance r < O(Kn), the asymptotic expansion (see [3])

(7)
$$f = f_0 - \frac{1}{Kn} f_1 + \dots$$

is valid, $Kn = (n_{\infty}\sigma_0 \mathscr{L})^{-1}$, n_{∞} being the numerical density of oncoming flow, \mathscr{L} a characteristic measure of the body. An exact expression of the coefficient at Kn^{-1} is

(8)
$$f_1(\bar{r},\bar{u}) = \int_{\Lambda_1(\bar{r},\bar{u})} \left\{ f_0\left(\bar{r}-\frac{\bar{u}}{u}\lambda,\bar{u}\right) Q_0\left(\bar{r}-\frac{\bar{u}}{u}\lambda,\bar{u}\right) - \frac{\Phi_0\left(\bar{r}-\frac{\bar{u}}{u}\lambda,\bar{u}\right)}{\left|1-\frac{\lambda}{u}\frac{du}{d\lambda}\right|} \right\} \frac{d\lambda}{u},$$

 $\left|1-\frac{\lambda}{u}\frac{du}{d\lambda}\right|$ being a divergence factor (see [1]). The integration domain Λ_1 depends on the form of the body. The collision and creation functions can be written as

(9)
$$Q_0(\bar{r},\bar{u}) = |\bar{u}-\bar{u}_{\infty}|^{1-\gamma} + \frac{\cos\theta_1}{|J|} |\bar{u}-\bar{u}_m|^{1-\gamma},$$

(10)
$$\Phi_0(\bar{r},\bar{u}) = -\frac{2\cos\theta_1}{|J|}|\bar{u}_{\infty} - \bar{u}_m|^{1-\gamma}T(\bar{u}_{\infty},\bar{u}_m,\bar{u}),$$

http://rcin.org.pl

where

(11)
$$T = \frac{2}{|\bar{u}_{\infty} - \bar{u}_{m}|^{2}} \left[T_{\omega}(\vartheta) + T_{\omega}(\pi - \vartheta) \right] \delta \left\{ \left| \bar{u} - \frac{\bar{u}_{\infty} + \bar{u}_{m}}{2} \right| - \frac{|\bar{u}_{\infty} - \bar{u}_{m}|}{2} \right\},$$

(12)
$$\vartheta = \langle \left(\overline{u} - \frac{\overline{u}_{\infty} + \overline{u}_m}{2}, \overline{u}_m - \overline{u}_{\infty}\right).$$

It is clear from (11) that in the case (2), f_1 does not in fact depend on β . Designating

(13)
$$g_1(\overline{r}) = \int_{u_n < 0} f_1(\overline{r}, \overline{u}) G(\overline{r}, \overline{u}) d\overline{u},$$

with proper $G(\bar{r}, \bar{u})$, we can find coefficients at Kn^{-1} corresponding to (7) expansions of gasdynamic quantities.

At surface points \bar{r}_s , for $G = |u_n| \{1, \bar{u} - \bar{u}_m(\bar{r}_s, \bar{u}), u^2 - u_m^2(\bar{r}_s, \bar{u})\}$, we have the particle flux and the momentum and energy exchange coefficients $g_1(\bar{r}_s) = \{\bar{\nu}_1(\bar{r}_s), \bar{p}_1(\bar{r}_s), q(\bar{r}_s)\}$.

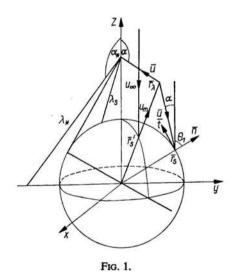
At any point \overline{r} , for $G = \{1, \overline{u}, \frac{1}{2}(\overline{u} - \overline{U})^2\}$, we have the mean density, velocity and energy

$$g_1(\bar{r}) = \{n_1, (nU)_1, (nE)_1\}.$$

In accordance with (8), we can write

$$g_1 = g_0 \zeta - g_{\star}.$$

The dislodging factor ζ is calculated as a single integral over λ owing to (6). The creation factor g_* is calculated as a triple integral over λ and a solid angle owing to the δ -function in (11). On the symmetry axis, this integral reduces to a double one.



In the case of a sphere with reflection along the normal (Fig. 1), $\bar{u}_m = u_m \bar{n}$, $J = r^2 u_m$.

http://rcin.org.pl

From $\bar{r}_{\lambda} = \bar{r} - \frac{\bar{u}}{u} \lambda$ we have

(15)
$$z_{\lambda} = z + \lambda \cos \alpha, \quad \alpha = \langle (z, -\overline{u}) \rangle$$

For sphere surface points $\bar{r} = \bar{r}_s$, the integration domain Λ_1 in (8) is determined by

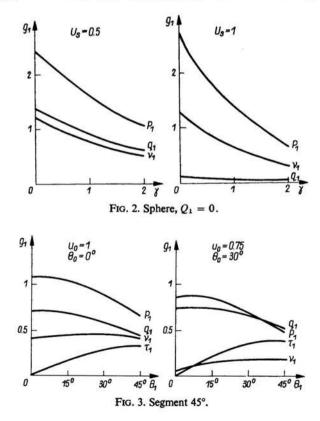
$$0 \leq \lambda < \infty$$
 if $\cos \theta_1 > 0$, $\cos \alpha > 0$,

(16)
$$0 \le \lambda \le -\frac{\cos\theta_1}{\cos\alpha}$$
 if $\cos\theta_1 > 0, \cos\alpha < 0,$
 $-\frac{\cos\theta_1}{\cos\alpha} \le \lambda < \infty$ if $\cos\theta_1 < 0, \cos\alpha > 0.$

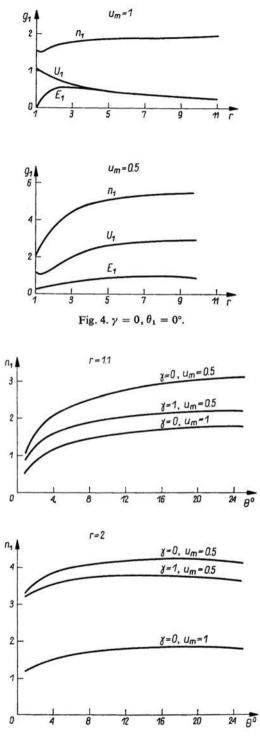
For symmetry axis points in front of the sphere, the domain Λ_1 is determined by

(17)
$$0 \leq \lambda < \infty \quad \text{if} \quad 0 \leq \alpha \leq \pi/2,$$
$$0 \leq \lambda \leq \lambda_{*} = -\frac{z}{\cos \alpha} \quad \text{if} \quad \frac{\pi}{2} < \alpha \leq \alpha_{*} = \pi - \arctan \frac{1}{\sqrt{z^{2} - 1}},$$
$$0 \leq \lambda \leq \lambda_{s} = -z \cos \alpha - \sqrt{1 - z \sin^{2} \alpha} \quad \text{if} \quad \alpha_{*} < \alpha \leq \pi.$$

The functions $v_1(\theta_1)$, $\bar{p}_1(\theta_1) = -\tau_1(\theta_1)\bar{z} - p_1(\theta_1)\bar{n}$, $q_1(\theta_1)$ on the sphere surface and $n_1(z)$, $U_1(z)$, $E_1(z)$ on the axis were calculated for three values of $u_m = 0.1$; 0.5; 1 for



http://rcin.org.pl



9 Arch. Mech. Stos. nr 2/73

[231]

http://rcin.org.pl

 $\gamma = 0$ and $\gamma = 1$. In the case of (5), the flow past a spherical segment was considered, and mass, momentum and energy fluxes on the body surface were calculated. Some of the results are shown in Figs. 2-5.

References

- R. G. BARANTSEV, V. M. FJEDOROVA, Ray model for atom reflection from a surface, Arch. Mech. Stos., 21, 3, 383-388, 1969. Applications of a ray reflection model to near-free-molecule gas flow calculations [in Russian]. Aerodynamics of rarefied gases, coll. V, Leningrad University, 91-106, 1970.
- 2. R. G. BARANTSEV, Modelling of gas-surface interaction and the problem of highly rarefied gas flow past bodies, Proc. 7th. Int. Symp. Rarefied Gas Dynamics, 1972.
- 3. A. V. KOPYLOVA, Highly rarefied gas on the symmetry axis in front of a sphere for the ray reflection along the normal [in Russian], Vestnik of Leningrad University, No. 19, 104-108, 1971.

UNIVERSITY OF LENINGRAD.

Received December 3, 1971.