The plane micropolar strain of orthotropic elastic solids(*)

D. IEȘAN (JASSY)

Abstract

The present paper is concerned with the static theory of plane micropolar strain for a homogeneous and orthotropic elastic solid. The uniqueness theorems, existence theorems and the reduction of the boundary value problems to integral equations for which the Fredholm's basic theorems are valid, are derived.

W pracy zajęto się statyka plaskiego stanu odkształcenia jednorodnego, mikropolarnego, ortotropowego ciała sprężystego. Wyprowadzono twierdzenia o jednoznaczności i istnieniu rozwiązań oraz o sprowadzeniu zagadnień brzegowych do równań calkowych, dla których obowiązuja podstawowe twierdzenia Fredholma.

В работе занимаются статикой плоского деформационного состояния однородного, микрополярного, ортотропного упругого тела. Выведены теоремы однозначности и существования решений, а также о сведении краевых задач к интегральным уравнениям, для которых обязывают основные теоремы Фредгольма.

1. Introduction

The plane problem in the linear theory of micropolar elasticity for isotropic solids has been considered in various papers (see, e.g. [1-17]). Some existence theorems in the static theory of plane micropolar strain were derived in [10]. In [18] were given the constitutive equations for an orthotropic micropolar elastic solid. In the present paper, we consider the static problem of plane micropolar strain for a homogeneous and orthotropic elastic solid. The uniqueness theorems and existence theorems are derived. We give a Galerkin representation and introduce the elastic potentials. By means of the method of potentials [19], we reduce the boundary value problems to singular integral equations for which Fredholm's basic theorems are valid.

2. Basic equations

Throughout this paper a rectangular coordinate system (x_{1}, x_{2}) is employed. The indices denoted by small Greek letters take the values 1,2 .

We consider a finite regular plane region Σ occupied by a micropolar elastic material, whose boundary is L.

The basic equations in the static theory of the plane strain of a homogeneous and orthotropic elastic solid, are:
equilibrium equations

$$
\begin{equation*}
t_{\beta \alpha, \beta}+f_{\alpha}=0, \quad m_{\alpha 3, \alpha}+\epsilon_{\alpha \beta 3} t_{\alpha \beta}+l=0, \tag{2.1}
\end{equation*}
$$

(*) This research was supported by the National Research Council, Italy (C.N.R.).
constitutive equations

$$
\begin{array}{cl}
t_{11}=A_{11} \varepsilon_{11}+A_{12} \varepsilon_{22}, & t_{22}=A_{12} \varepsilon_{11}+A_{22} \varepsilon_{22}, \\
t_{12}=A_{77} \varepsilon_{12}+A_{78} \varepsilon_{21}, & t_{21}=A_{78} \varepsilon_{12}+A_{88} \varepsilon_{21}, \tag{2.2}\\
m_{13}=B_{66} \varphi_{, 1}, & m_{23}=B_{44} \varphi, 2,
\end{array}
$$

geometrical equations

$$
\begin{equation*}
\varepsilon_{\alpha \beta}=u_{\beta, \alpha}+\epsilon_{\beta \alpha 3} \varphi . \tag{2.3}
\end{equation*}
$$

In these relations, we have used the following notations: $t_{\alpha \beta}$ - components of the stress tensor, $m_{\alpha 3}$ - components of the couple stress tensor, f_{α} - components of the body force, l - body couple, $\varepsilon_{\alpha \beta}$ - components of the micropolar strain tensor, u_{α} components of the displacement vector, φ - component of microrotation vector, $\epsilon_{i j k}$ alternating symbol, $A_{\alpha \beta}, A_{77}, A_{78}, A_{88}, B_{44}, B_{66}$ - characteristic constants of the material, the comma denotes partial derivation with respect to the variables x_{α}.

The surface tractions and surface moment acting at a point $x\left(x_{\alpha}\right)$ on the curve L are given by

$$
\begin{equation*}
t_{\alpha}=t_{\beta \alpha} n_{\beta}, \quad m=m_{\alpha 3} n_{\alpha}, \tag{2.4}
\end{equation*}
$$

where $n_{\alpha}=\cos \left(n_{x}, x_{\alpha}\right), n_{x}$ being the unit vector of the outward normal to L at x.
From (2.1)-(2.3), we obtain the field equations of the plane strain for orthotropic solids in the form:

$$
\begin{array}{r}
\left(A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+A_{88} \frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{1}+\left(A_{12}+A_{78}\right) \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}-k_{1} \frac{\partial \varphi}{\partial x_{2}}+f_{1}=0 \\
\left(A_{12}+A_{78}\right) \frac{\partial^{2} u_{1}}{\partial x_{1} \partial x_{2}}+\left(A_{77} \frac{\partial^{2}}{\partial x_{1}^{2}}+A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{2}-k_{2} \frac{\partial \varphi}{\partial x_{1}}+f_{2}=0 \tag{2.5}\\
\left(B_{66} \frac{\partial^{2}}{\partial x_{1}^{2}}+B_{44} \frac{\partial^{2}}{\partial x_{2}^{2}}-\chi\right) \varphi+k_{1} \frac{\partial u_{1}}{\partial x_{2}}+k_{2} \frac{\partial u_{2}}{\partial x_{1}}+l=0
\end{array}
$$

where

$$
\begin{equation*}
k_{1}=A_{78}-A_{88}, \quad k_{2}=A_{77}-A_{78}, \quad x=k_{2}-k_{1} . \tag{2.6}
\end{equation*}
$$

The system (2.5) can be written in a matrix form. The vector $v=\left(v_{1}, \ldots, v_{m}\right)$ will be considered as a column-matrix. Thus, the product of the matrix $A=\left\|a_{i j}\right\|_{m x m}$ and the vector v is an m-dimensional vector. The vector v multiplied by the matrix A will denote the matrix product between the row matrix $v=\left\|v_{1}, \ldots, v_{m}\right\|$ and the matrix A.

We introduce the matrical differential operator:

$$
\begin{equation*}
A\left(\frac{\partial}{\partial x}\right)=-\left\|D_{i j}\left(\frac{\partial}{\partial x}\right)\right\|_{3 \times 3} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{array}{ll}
D_{11}=A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+A_{88} \frac{\partial^{2}}{\partial x_{2}^{2}}, & D_{12}=D_{21}=\left(A_{12}+A_{78}\right) \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}, \\
D_{13}=-D_{31}=-k_{1} \frac{\partial}{\partial x_{2}}, & D_{22}=A_{77} \frac{\partial^{2}}{\partial x_{1}^{2}}+A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}, \tag{2.8}\\
D_{23}=-D_{32}=-k_{2} \frac{\partial}{\partial x_{1}}, & D_{33}=B_{66} \frac{\partial^{2}}{\partial x_{1}^{2}}+B_{44} \frac{\partial^{2}}{\partial x_{2}^{2}}-\varkappa .
\end{array}
$$

We denote

$$
\begin{equation*}
u=\left(u_{1}, u_{2}, \varphi\right), \quad f=\left(f_{1}, f_{2}, l\right), \quad t=\left(t_{1}, t_{2}, m\right) \tag{2.9}
\end{equation*}
$$

The system (2.5) can be written in the form:

$$
\begin{equation*}
A u=f \tag{2.10}
\end{equation*}
$$

In what follows we consider two kinds of boundary conditions: the first boundary value problem

$$
\begin{equation*}
u_{\alpha}=\tilde{u}_{\alpha}, \quad \varphi=\tilde{\varphi} \quad \text { on } \quad L, \tag{2.11}
\end{equation*}
$$

the second boundary value problem

$$
\begin{equation*}
t_{\alpha}=\tilde{t_{\alpha}}, \quad m=\tilde{m} \quad \text { on } \quad L, \tag{2.12}
\end{equation*}
$$

where $\tilde{u}_{\alpha}, \tilde{\varphi}, \tilde{t_{\alpha}}, \tilde{m}$ are prescribed functions. Other boundary value problems might be considered (see, e.g. [20]), but we shall restrict ourselves to the cases considered above.

3. Uniqueness theorems

We introduce the notations:

$$
\begin{equation*}
2 e_{\alpha \beta}=u_{\alpha, \beta}+u_{\beta, \alpha}, \quad 2 r=u_{2,1}-u_{1,2} . \tag{3.1}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\varepsilon_{11}=e_{11}, \varepsilon_{22}=e_{22}, \varepsilon_{12}=e_{12}+r-\varphi, \varepsilon_{21}=e_{12}-(r-\varphi) . \tag{3.2}
\end{equation*}
$$

If $\varphi=r$, we obtain the theory of couple stress with constrained rotation. In what follows we assume $\varphi \neq r$.

Let us establish the uniqueness theorems for the boundary value problems (2.10), (2.11) and (2.10), (2.12). We assume that the internal energy density

$$
\begin{align*}
2 U=t_{\alpha \beta} \varepsilon_{\alpha \beta}+m_{\alpha 3} \varphi_{, \alpha}=A_{11} \varepsilon_{11}^{2}+ & 2 A_{12} \varepsilon_{11} \varepsilon_{22}+A_{22} \varepsilon_{22}^{2}+A_{77} \varepsilon_{12}^{2} \tag{3.3}\\
& +2 A_{78} \varepsilon_{12} \varepsilon_{21}+A_{88} \varepsilon_{21}^{2}+B_{66}\left(\varphi_{, 1}\right)^{2}+B_{44}(\varphi, 2)^{2},
\end{align*}
$$

is a positive definite quadratic form. It is easy to show that

$$
\begin{gathered}
2 U=\frac{1}{A_{11}}\left(A_{11} e_{11}+A_{12} e_{22}\right)^{2}+\frac{1}{A_{11}}\left(A_{11} A_{22}-A_{12}^{2}\right) e_{22}^{2}+\frac{1}{x}[\chi(r-\varphi) \\
\left.+\left(A_{77}-A_{78}\right) e_{12}\right]^{2}+\left[A_{77}+A_{88}+2 A_{78}-\frac{1}{x}\left(A_{77}-A_{88}\right)^{2}\right] e_{12}^{2}+B_{66}\left(\varphi_{1}\right)^{2}+B_{44}(\varphi, 2)^{2} .
\end{gathered}
$$

The necessary and sufficient conditions for the internal energy to be positive definite are

$$
\begin{gather*}
A_{11}>0, \quad A_{11} A_{22}-A_{12}^{2}>0, \quad x=A_{77}+A_{88}-2 A_{78}>0, \\
A_{88} A_{77}-A_{78}^{2}>0, \quad B_{66}>0, \quad B_{44}>0 . \tag{3.4}
\end{gather*}
$$

Taking into account the relations (2.1), (2.3), (2.4) and using the Green-Gauss theorem, we obtain

$$
\begin{equation*}
\int_{\Sigma}\left(t_{\alpha} u_{\alpha}+m \varphi\right) d s+\int_{\Sigma}\left(f_{\alpha} u_{\alpha}+l \varphi\right) d \sigma=2 \int_{\Sigma} U d \sigma . \tag{3.5}
\end{equation*}
$$

Let $u_{\alpha}^{(e)}, \varphi^{(e)}$ be two solutions of the boundary value problems considered. We denote

$$
\begin{equation*}
u_{\alpha}^{*}=u_{\alpha}^{(1)}-u_{\alpha}^{(2)}, \quad \varphi^{*}=\varphi^{(1)}-\varphi^{(2)} . \tag{3.6}
\end{equation*}
$$

According to the linearity of the problem, the differences considered satisfy the basic equations and boundary conditions in their homogeneous form, and from (3.5), we obtain:

$$
\int_{\Sigma} U^{*} d \sigma=0
$$

where U^{*} is the internal energy density corresponding to the system (3.6). Because U^{*} is a positive definite quadratic form, it follows that $\varepsilon_{\alpha \beta}^{*}=\varphi_{, \alpha}^{*}=0$ and using (3.2), we obtain

$$
\begin{equation*}
e_{\alpha \beta}^{*}=0, \quad r^{*}=\varphi^{*}, \quad \varphi_{, \alpha}^{*}=0 . \tag{3.7}
\end{equation*}
$$

From (3.7) it follows that

$$
\begin{equation*}
u_{\alpha}^{*}=a \epsilon_{\alpha \beta 3} x_{\beta}+b_{\alpha}, \quad \varphi^{*}=-a, \tag{3.8}
\end{equation*}
$$

where a and b_{α} are arbitrary constants.
In the case of the boundary conditions (2.11), we obtain:

$$
\begin{equation*}
u_{\alpha}^{*}=0, \quad \varphi^{*}=0 \tag{3.9}
\end{equation*}
$$

Thus we have:
Theorem 3.1. The boundary value problem (2.10), (2.11) admits at most one solution.
Theorem 3.2. The solution of the boundary value problem (2.10), (2.12) is determined to within an additive rigid-displacement of the form (3.8).

In the case of isotropic solids, the uniqueness theorems were derived in [5].

4. Existence theorems

Let us consider a body subjected to two different systems of elastic loadings and the two corresponding elastic configurations $u_{\alpha}^{(\rho)}, \varphi^{(\rho)}$. Using (2.1)-(2.4) and the GreenGauss theorem, we obtain:

$$
\begin{equation*}
\int_{L}\left(t_{\alpha}^{(1)} u_{\alpha}^{(2)}+m^{(1)} \varphi^{(2)}\right) d s+\int_{\Sigma}\left(f_{\alpha}^{(1)} u_{\alpha}^{(2)}+l^{(1)} \varphi^{(2)}\right) d \sigma=2 \int_{\Sigma} U_{12} d \sigma, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 U_{12}=t_{\alpha \beta}^{(1)} \varepsilon_{\alpha \beta}^{(2)}+m_{\alpha 3}^{(1)} \varphi_{, \alpha}^{(2)}=A_{11} \varepsilon_{11}^{(1)} \varepsilon_{11}^{(2)}+A_{12}\left(\varepsilon_{11}^{(1)} \varepsilon_{22}^{(2)}+\varepsilon_{11}^{(2)} \varepsilon_{22}^{(1)}\right)+A_{22} \varepsilon_{22}^{(1)} \varepsilon_{22}^{(2)} \tag{4.2}\\
& \quad+A_{77} \varepsilon_{12}^{(1)} \varepsilon_{12}^{(2)}+A_{78}\left(\varepsilon_{12}^{(1)} \varepsilon_{21}^{(2)}+\varepsilon_{12}^{(2)} \varepsilon_{21}^{(1)}\right)+A_{88} \varepsilon_{21}^{(1)} \varepsilon_{21}^{(2)}+B_{66} \varphi_{1}^{(1)} \varphi_{1}^{(2)}+B_{44} \varphi_{22}^{(1)} \varphi_{2}^{(2)} .
\end{align*}
$$

If we introduce the notations

$$
\begin{gather*}
u=\left(u_{1}^{(1)}, u_{2}^{(1)}, \varphi^{(1)}\right), \quad v=\left(u_{1}^{(2)}, u_{2}^{(2)}, \varphi^{(2)}\right), \quad U_{12}=U(u, v), \tag{4.3}\\
t(u)=\left(t_{1}^{(1)}, t_{2}^{(1)}, m^{(1)}\right), \quad t(v)=\left(t_{1}^{(2)}, t_{2}^{(2)}, m^{(2)}\right),
\end{gather*}
$$

the relation (4.1) can be written in the form:

$$
\begin{equation*}
\int_{\Sigma} v t(u) d s+\int_{\Sigma} v A u d \sigma=2 \int_{\Sigma} U(u, v) d \sigma . \tag{4.4}
\end{equation*}
$$

From (4.2) it follows that $U(u, v)=U(v, u), U(u, u)=U$, so that from (4.4), we obtain:

$$
\begin{gather*}
\int_{\Sigma}(v A u-u A v) d \sigma=\int_{L}[u t(v)-v t(u)] d s, \\
\int_{\Sigma} u A u d \sigma=-\int_{L} u t(u) d s+2 \int_{\Sigma} U(u, u) d \sigma . \tag{4.5}
\end{gather*}
$$

In what follows, we establish certain existence theorems using the results from [21]. We consider homogeneous boundary conditions and assume that Σ is C^{∞}-smooth [21, p. 61]. We have the equation

$$
\begin{equation*}
A u=f \tag{4.6}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u=0 \quad \text { on } \quad L \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
t(u)=0 \text { on } L \tag{4.8}
\end{equation*}
$$

Taking into account the conditions (4.7), (4.8), from (4.5), we obtain:

$$
\begin{equation*}
\int_{\Sigma} u A u d \sigma=2 \int_{\Sigma} U(u, u) d \sigma . \tag{4.9}
\end{equation*}
$$

In order to prove the existence of the solution of the boundary value problem (4.6) (4.7) we need to prove that [21, p. 62]

$$
\begin{equation*}
2 \int_{\Sigma} U(u, u) d \sigma \geqslant c_{0}\|u\|_{1}^{2} \tag{4.10}
\end{equation*}
$$

for any $u=\left(u_{1}, u_{2}, \varphi\right) \in \stackrel{\circ}{H}_{1}(\Sigma), c_{0}$ being a positive constant. By $\stackrel{\circ}{H}_{1}(\Sigma)$ is denoted [21, p. 17] the Hilbert function space obtained by functional completion of $\dot{C}^{1}(\Sigma)$ with respect to the scalar product

$$
(u, v)_{1}=\int_{\Sigma} D^{s} u D^{s} v d \sigma, \quad 0 \leqslant|s| \leqslant 1 .
$$

The form (3.3) is a positive definite quadratic form - i.e., there exists a positive constant c such that

$$
\begin{equation*}
2 U(u, u) \geqslant c \sum_{\alpha, \beta=1}^{2}\left[\varepsilon_{\alpha \beta}^{2}+(\varphi, \alpha)^{2}\right] \tag{4.11}
\end{equation*}
$$

Taking into account (3.2), we can write

$$
\sum_{\alpha, \beta=1}^{2} \varepsilon_{\alpha \beta}^{2}=\sum_{\alpha \cdot \beta=1}^{2}\left[e_{\alpha \beta}^{2}+2(r-\varphi)^{2}\right],
$$

so that

$$
\begin{equation*}
2 U(u, u) \geqslant c \sum_{\alpha, \beta=1}^{2}\left[e_{\alpha \beta}^{2}+\left(\varphi_{, \alpha}\right)^{2}\right] . \tag{4.12}
\end{equation*}
$$

If we use the first Korn's inequality

$$
\int_{\Sigma} \sum_{\alpha, \beta=1}^{2} e_{\alpha \beta}^{2} d \sigma \geqslant c_{1}\left\|u^{(1)}\right\|_{1}^{2}, \quad c_{1}>0
$$

where $u^{(1)}=\left(u_{1}, u_{2}, 0\right)$, and the Poincaré inequality [21, p. 19]

$$
\left\|u^{(2)}\right\|_{1}^{2} \leqslant c_{2} \sum_{\alpha=1}^{2} \int_{\Sigma}(\varphi, \alpha)^{2} d \sigma, \quad c_{2}>0
$$

where $u^{(2)}=(0,0, \varphi)$, from (4.12) we arrive at:

$$
\begin{equation*}
2 \int_{\Sigma} U(u, u) d \sigma \geqslant c_{0}\left(\left\|u^{(1)}\right\|_{1}^{2}+\left\|u^{(2)}\right\|_{1}^{2}\right)=c_{0}\|u\|_{1}^{2} \tag{4.13}
\end{equation*}
$$

Thus we have:
Theorem 4.1. Given $f \in C^{\infty}(\bar{\Sigma})$, there exists one and only one solution of the boundary value problem (4.6), (4.7) which belongs to $C^{\infty}(\bar{\Sigma})$.

To prove the existence theorem for the boundary value problem (4.6), (4.8), as in [21, p. 91], we consider the system

$$
\begin{equation*}
A u+p_{0} u=f \tag{4.14}
\end{equation*}
$$

where p_{0} is any positive constant. First, we consider the boundary value problem (4.14), (4.8). The inequality to be proved in this case is

$$
\begin{equation*}
\int_{\Sigma} \sum_{\alpha, \beta=1}^{2}\left[e_{\alpha \beta}^{2}+\left(\varphi_{, \alpha}\right)^{2}\right] d \sigma+\int_{\Sigma} u^{2} d \sigma \geqslant c_{3}\|u\|_{1}^{2}, \quad c_{3}>0 \tag{4.15}
\end{equation*}
$$

for any $u \in H_{1}(\Sigma)$.
Using the second Korn's inequality

$$
\int_{\Sigma} \sum_{\alpha, \beta=1}^{2} e_{\alpha \beta}^{2} d \sigma+\int_{\Sigma}\left(u^{(1)}\right)^{2} d \sigma \geqslant c_{4}\left\|u^{(1)}\right\|_{1}^{2}, \quad c_{4}>0
$$

and the relation

$$
\sum_{\alpha=1}^{2} \int_{\Sigma}(\varphi, \alpha)^{2} d \sigma+\int_{\Sigma} \varphi^{2} d \sigma=\left\|u^{(2)}\right\|_{1}^{2}
$$

it is easy to derive (4.15). It follows that (4.14), (4.8) has only one solution which is C^{∞} in $\bar{\Sigma}$. The system considered is formally self adjoint, so that a C^{∞} solution of the following system

$$
\begin{equation*}
A u+p_{0} u-\lambda u=f \tag{4.16}
\end{equation*}
$$

with the boundary condition (4.8) exists when and only when

$$
\begin{equation*}
\int_{\Sigma} f \stackrel{\circ}{u} d \sigma=0 \tag{4.17}
\end{equation*}
$$

where $\dot{u}=\left(\dot{u}_{1}, \dot{u}_{2}, \stackrel{\varphi}{\varphi}\right)$ is any C^{∞} solution of the problem (4.16), (4.8) with $f=0$.
In the case $\lambda=p_{0}$, the only C^{∞} solution of the homogeneous system is

$$
\begin{equation*}
\dot{u}_{\alpha}=a \epsilon_{\alpha \beta 3} x_{\beta}+b_{\alpha}, \quad \stackrel{\varphi}{\varphi}=-a, \tag{4.18}
\end{equation*}
$$

where a, b_{α} are arbitrary constants. Thus we have:

Theorem 4.2. The boundary value problem (4.6), (4.8) has solutions belonging to $C^{\infty}(\bar{\Sigma})$ if and only if the C^{∞} vector $f=\left(f_{1}, f_{2}, l\right)$ satisfies the condtitions

$$
\begin{equation*}
\int_{\Sigma} f_{\alpha} d \sigma=0, \quad \int_{\Sigma}\left(x_{1} f_{2}-x_{2} f_{1}+l\right) d \sigma=0 . \tag{4.19}
\end{equation*}
$$

The above results are valid for inhomogeneous bodies [21] and can be extended under more general hypotheses on f and Σ [21,22].

5. Galerkin representation

Using the associated matrices method [23], as in [24], we obtain the following representation of Galerkin type:

$$
\begin{align*}
\begin{aligned}
u_{1}=\left(D_{22} D_{33}+k_{2}^{2} \frac{\partial^{2}}{\partial x_{1}^{2}}\right) & \Gamma_{1}-\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left[\left(A_{12}+A_{78}\right) D_{33}+k_{1} k_{2}\right] \Gamma_{2}+ \\
& +\frac{\partial}{\partial x_{2}}\left\{\left[k_{1} A_{77}-k_{2}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{1}^{2}}+k_{1} A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Gamma_{3} \\
u_{2}=- & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left[\left(A_{12}+A_{78}\right) D_{33}+k_{1} k_{2}\right] \Gamma_{1}+\left(D_{11} D_{33}+k_{1}^{2} \frac{\partial^{2}}{\partial x_{2}^{2}}\right) \Gamma_{2} \\
& +\frac{\partial}{\partial x_{1}}\left\{k_{2} A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+\left[k_{2} A_{88}-k_{1}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Gamma_{3}
\end{aligned} \\
\begin{aligned}
& \varphi=-\frac{\partial}{\partial x_{2}}\left\{\left[k_{1} A_{77}-k_{2}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{1}^{2}}+k_{1} A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Gamma_{1} \\
&- \frac{\partial}{\partial x_{1}}\left\{k_{2} A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+\left[k_{2} A_{78}-k_{1}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Gamma_{2}+\left\{A_{11} A_{77} \frac{\partial^{4}}{\partial x_{1}^{4}}\right. \\
&\left.+\left[A_{11} A_{22}+A_{77} A_{88}-\left(A_{12}+A_{78}\right)^{2}\right] \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}}+A_{22} A_{88} \frac{\partial^{4}}{\partial x_{2}^{4}}\right\} \Gamma_{3}
\end{aligned}
\end{align*}
$$

where $D_{i j}$ are defined in (2.8).
The functions $\Gamma_{i}\left(x_{1}, x_{2}\right),(i=1,2,3)$, satisfy the equations

$$
\begin{equation*}
\mathfrak{M} I_{\alpha}=-f_{\alpha}, \quad \mathfrak{M} \Gamma_{3}=-l, \tag{5.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathfrak{M}=\left\{A_{11} A_{77} \frac{\partial^{4}}{\partial x_{1}^{4}}+\right. {\left[A_{11} A_{22}+A_{77} A_{88}-\left(A_{12}+A_{78}\right)^{2}\right] \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}} } \tag{5.3}\\
&\left.+A_{22} A_{88} \frac{\partial^{4}}{\partial x_{2}^{4}}\right\}\left(B_{66} \frac{\partial^{2}}{\partial x_{1}^{2}}+B_{44} \frac{\partial^{2}}{\partial x_{2}^{2}}\right)+A_{11}\left(A_{78}^{2}-A_{77} A_{88}\right) \frac{\partial^{4}}{\partial x_{1}^{4}} \\
&+\left[k_{1}^{2} A_{77}+k_{2}^{2} A_{88}-x\left(A_{11} A_{22}+A_{77} A_{88}\right)+x\left(A_{12}+A_{78}\right)^{2}\right. \\
&\left.-2 k_{1} k_{2}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}}+A_{22}\left(A_{78}^{2}-A_{77} A_{88}\right) \frac{\partial^{4}}{\partial x_{2}^{4}}
\end{align*}
$$

6. Fundamental solutions

To obtain the fundamental solutions of the system (2.5), we use the representation (5.1) and the fundamental solution $\Phi(x, y)$ of the equation

$$
\begin{equation*}
\mathfrak{R} \omega=0 . \tag{6.1}
\end{equation*}
$$

If we know the fundamental solution $\Phi(x, y)$, then from (5.1), for $\Gamma_{1}=\Phi, \Gamma_{2}=\Gamma_{3}=0$, we obtain:

$$
\begin{align*}
& u_{1}^{(1)}(x, y)=\left(D_{22} D_{33}+k_{2}^{2} \frac{\partial^{2}}{\partial x_{1}^{2}}\right) \Phi \\
& u_{2}^{(2)}(x, y)=-\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left[\left(A_{12}+A_{78}\right) D_{33}+k_{1} k_{2}\right] \Phi \tag{6.2}\\
& \varphi^{(1)}(x, y)=-\frac{\partial}{\partial x_{2}}\left\{\left[k_{1} A_{77}-k_{2}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{1}^{2}}+k_{1} A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Phi .
\end{align*}
$$

For $\Gamma_{1}=\Gamma_{3}=0, \quad \Gamma_{2}=\Phi$, we obtain:

$$
\begin{align*}
& u_{1}^{(2)}(x, y)=-\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left[\left(A_{12}+A_{78}\right) D_{33}+k_{1} k_{2}\right] \Phi \\
& u_{2}^{(2)}(x, y)=\left(D_{11} D_{33}+k_{1}^{2} \frac{\partial^{2}}{\partial x_{2}^{2}}\right) \Phi \tag{6.3}\\
& \varphi^{(2)}(x, y)=-\frac{\partial}{\partial x_{1}}\left\{k_{2} A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+\left[k_{2} A_{88}-k_{1}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Phi,
\end{align*}
$$

and for $\Gamma_{1}=\Gamma_{2}=0, \quad \Gamma_{3}=\Phi:$

$$
\begin{align*}
& u_{1}^{(3)}(x, y)= \frac{\partial}{\partial x_{2}}\left\{\left[k_{1} A_{77}-k_{2}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{1}^{2}}+k_{1} A_{22} \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Phi \\
& u_{2}^{(3)}(x, y)= \frac{\partial}{\partial x_{1}}\left\{k_{2} A_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+\left[k_{2} A_{88}-k_{1}\left(A_{12}+A_{78}\right)\right] \frac{\partial^{2}}{\partial x_{2}^{2}}\right\} \Phi \tag{6.4}\\
& \varphi^{(3)}(x, y)=\left\{A_{11} A_{77} \frac{\partial^{4}}{\partial x_{1}^{4}}+\left[A_{11} A_{22}+A_{77} A_{88}-\left(A_{12}+A_{78}\right)^{2}\right] \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}}\right. \\
&\left.+A_{22} A_{88} \frac{\partial^{4}}{\partial x_{2}^{4}}\right\} \Phi
\end{align*}
$$

The matrix of the fundamental solutions is

$$
\Gamma(x, y)=\left[\begin{array}{lll}
u_{1}^{(1)} & u_{1}^{(2)} & u_{1}^{(3)} \tag{6.5}\\
u_{2}^{(1)} & u_{2}^{(2)} & u_{2}^{(3)} \\
\varphi^{(1)} & \varphi^{(2)} & \varphi^{(3)}
\end{array}\right] .
$$

Let us consider the characteristic equation corresponding to the elliptic equation (6.1):

$$
\begin{equation*}
\left\{A_{22} A_{88} \alpha^{4}+\left[A_{11} A_{22}+A_{77} A_{88}-\left(A_{12}+A_{78}\right)^{2}\right] \alpha^{2}+A_{11} A_{77}\right\}\left(B_{44} \alpha^{2}+B_{66}\right)=0 \tag{6.6}
\end{equation*}
$$

The roots of the first factor of the Eq. (6.6) have one of the following forms:
(a) $\quad \alpha_{k}=i b_{k}, \quad \bar{\alpha}_{k}=-i b_{k}, \quad b_{k}>0$,
(b) $\quad \alpha_{k}=(-1)^{k-1} a+i b, \quad \bar{\alpha}_{k}=(-1)^{k-1} a-i b, \quad b>0$,
(c) $\quad \alpha_{k}=i b, \quad \quad \alpha_{k}=-i b, \quad b>0, \quad k=1,2$.

In what follows we consider the case (a). The other cases can be treated in a similar way. Therefore, the roots of the Eq. (6.6) have the form:

$$
\begin{gather*}
\alpha_{k}=i b_{k}, \quad \bar{\alpha}_{k}=-i b_{k}, \quad b_{k}>0, \quad k=1,2,3 ; \tag{6.7}\\
b_{3}=\sqrt{\frac{B_{66}}{B_{44}}}, \quad b_{3} \neq b_{1}, b_{2} .
\end{gather*}
$$

Let us consider the function [25]

$$
\begin{equation*}
\Psi(x, y)=a \operatorname{Im} \sum_{k=1}^{3} d_{k} \sigma_{k}^{4} \ln \sigma_{k}, \tag{6.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{k}=\left(x_{1}-y_{1}\right)+\alpha_{k}\left(x_{2}-y_{2}\right), \quad a=-\frac{1}{12 B_{44} A_{22} A_{88}}, \tag{6.9}
\end{equation*}
$$

and d_{k} is cofactor of α_{k}^{5} from the determinant

$$
d=\left|\begin{array}{cccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \alpha_{1}^{3} & \alpha_{1}^{4} & \alpha_{1}^{5} \\
1 & \bar{\alpha}_{1} & \bar{\alpha}_{1}^{2} & \bar{\alpha}_{1}^{3} & \bar{\alpha}_{1}^{4} & \bar{\alpha}_{1}^{5} \\
1 & \alpha_{2} & \alpha_{2}^{2} \cdot & \alpha_{2}^{3} & \alpha_{2}^{4} & \alpha_{2}^{5} \\
\cdots & \cdots & \cdots & \cdots & \bar{x}^{\prime} & \cdots \\
1 & \bar{\alpha}_{3} & \bar{\alpha}_{3}^{2} & \bar{\alpha}_{3}^{3} & \bar{\alpha}_{3}^{4} & \bar{\alpha}_{3}^{5}
\end{array}\right|,
$$

divided by d.
The fundamental solution of the Eq. (6.1) has the form [25]:

$$
\begin{equation*}
\Phi(x, y)=\Psi(x, y)+\Omega(x, y) \tag{6.10}
\end{equation*}
$$

where the function $\Omega(x, y)$ and its derivatives, for $x=y$, have a singularity of a lower order than the function $\Psi(x, y)$ and the corresponding derivatives. The explicit form of the function $\Phi(x, y)$ can be obtained using the method from [26].

We have

$$
d=8 i b_{1} b_{2} b_{3}\left(b_{1}^{2}-b_{2}^{2}\right)\left(b_{2}^{2}-b_{3}^{2}\right)\left(b_{3}^{2}-b_{1}^{2}\right),
$$

$$
\begin{gather*}
d_{1}=-\frac{i}{2 b_{1}\left(b_{2}^{2}-b_{1}^{2}\right)\left(b_{3}^{2}-b_{1}^{2}\right)}, \quad d_{2}=-\frac{i}{2 b_{2}\left(b_{1}^{2}-b_{2}^{2}\right)\left(b_{3}^{2}-b_{2}^{2}\right)}, \tag{6.11}\\
d_{3}=-\frac{i}{2 b_{3}\left(b_{1}^{2}-b_{3}^{2}\right)\left(b_{2}^{2}-b_{3}^{2}\right)} .
\end{gather*}
$$

In what follows, we shall use the relations:

$$
\begin{equation*}
\sum_{k=1}^{3} d_{k}=-\frac{i\left(b_{1}+b_{2}+b_{3}\right)}{2 b_{1} b_{2} b_{3}\left(b_{1}+b_{2}\right)\left(b_{2}+b_{3}\right)\left(b_{3}+b_{1}\right)}, \quad \sum_{k=1}^{3} \alpha_{k} d_{k}=0 \tag{6.12}
\end{equation*}
$$

[cont.]

$$
\begin{array}{ll}
\sum_{k=1}^{3} \alpha_{k}^{2} d_{k}^{2}=-\frac{i}{2\left(b_{1}+b_{2}\right)\left(b_{2}+b_{3}\right)\left(b_{3}+b_{1}\right)}, & \sum_{k=1}^{3} \alpha_{k}^{3} d_{k}=0, \tag{6.12}\\
\sum_{k=1}^{3} \alpha_{k}^{4} d_{k}=-\frac{i\left(b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}\right)}{2\left(b_{1}+b_{2}\right)\left(b_{2}+b_{3}\right)\left(b_{3}+b_{1}\right)}, & \sum_{k=1}^{3} \alpha_{k}^{5} d_{k}=\frac{1}{2} .
\end{array}
$$

Using (6.2)-(6.4), (6.8), (6.10), the matrix $\Gamma(x, y)$ can be written in the form:

$$
\Gamma(x, y)=\operatorname{Im} \sum_{k=1}^{3}\left[\begin{array}{ccc}
A_{k} & B_{k} & 0 \tag{6.13}\\
B_{k} & C_{k} & 0 \\
0 & 0 & D_{k}
\end{array}\right] \ln \sigma_{k}+\Lambda(x, y)
$$

in which we have pointed out the terms with singularities and used the following notations

$$
\begin{align*}
& A_{k}=24 a\left(A_{77}+A_{22} \alpha_{k}^{2}\right)\left(B_{66}+B_{44} \alpha_{k}^{2}\right) d_{k}, \\
& B_{k}=-24 a\left(A_{12}+A_{78}\right)\left(B_{66}+B_{44} \alpha_{k}^{2}\right) \alpha_{k} d_{k}, \tag{6.14}\\
& C_{k}=24 a\left(A_{11}+A_{88} \alpha_{k}^{2}\right)\left(B_{66}+B_{44} \alpha_{k}^{2}\right) d_{k} \\
& D_{k}=24 a\left\{A_{11} A_{77}+\left[A_{11} A_{22}+A_{77} A_{88}-\left(A_{12}+A_{78}\right)^{2}\right] \alpha_{k}^{2}+A_{22} A_{88} \alpha_{k}^{4}\right\} d_{k}
\end{align*}
$$

Obviously, $A_{3}=B_{3}=C_{3}=D_{1}=D_{2}=0$.
We have

$$
\begin{equation*}
\Gamma(x, y)=\Gamma^{*}(x, y) \tag{6.15}
\end{equation*}
$$

where Γ^{*} is the transposed matrix of Γ. We denote by $\Gamma^{(k)}(k=1,2,3)$ the columns of the matrix $\Gamma(x, y)$.

Let us introduce the matricial differential operator

$$
\begin{equation*}
H\left(\frac{\partial}{\partial x}, n\right)=\left\|H_{i j}\left(\frac{\partial}{\partial x}, n_{x}\right)\right\|_{3 \times 3}, \tag{6.16}
\end{equation*}
$$

where

$$
\begin{gather*}
H_{11}=A_{11} n_{1} \frac{\partial}{\partial x_{1}}+A_{88} n_{2} \frac{\partial}{\partial x_{2}}, \quad H_{12}=A_{12} n_{1} \frac{\partial}{\partial x_{2}}+A_{78} n_{2} \frac{\partial}{\partial x_{1}}, \\
H_{13}=\left(A_{88}-A_{78}\right) n_{2}, \\
H_{21}=A_{12} n_{2} \frac{\partial}{\partial x_{1}}+A_{78} n_{1} \frac{\partial}{\partial x_{2}}, \quad H_{22}=A_{77} n_{1} \frac{\partial}{\partial x_{1}}+A_{22} n_{2} \frac{\partial}{\partial x_{2}}, \tag{6.17}\\
H_{23}=\left(A_{78}-A_{77}\right) n_{1}, \\
H_{13}=H_{23}=0, \quad H_{33}=B_{66} n_{1} \frac{\partial}{\partial x_{1}}+B_{44} n_{2} \frac{\partial}{\partial x_{2}} .
\end{gather*}
$$

Using the notations (2.9), the relations (2.4) can be written in the form:

$$
\begin{equation*}
t=H\left(\frac{\partial}{\partial x}, n_{x}\right) u . \tag{6.18}
\end{equation*}
$$

Let $H_{i}\left(\frac{\partial}{\partial x}, n_{x}\right)$ be the row-matrix with the elements $H_{i j}\left(\frac{\partial}{\partial x}, n_{x}\right)$.

We introduce the operators

$$
\begin{equation*}
T_{\alpha}^{(x)} u=H_{\alpha}\left(\frac{\partial}{\partial x}, n_{x}\right) u, \quad M^{(x)} u=H_{3}\left(\frac{\partial}{\partial x}, n_{x}\right) u \tag{6.19}
\end{equation*}
$$

and the matrix

$$
\begin{equation*}
\mathscr{T}_{y} \Gamma(x, y)=H\left(\frac{\partial}{\partial y}, n_{y}\right) \Gamma^{*}(x, y) \tag{6.20}
\end{equation*}
$$

From (6.2)-(6.4), (6.8)-(6.10), (6.19), we obtain:

$$
\begin{align*}
& T_{1}^{(y)} \Gamma^{(1)}=-\operatorname{Im} \sum_{k=1}^{3}\left[\left(A_{11} A_{k}+A_{12} B_{k} \alpha_{k}\right) n_{1}+\left(A_{78} B_{k}+A_{88} A_{k} \alpha_{k}\right) n_{2}\right] \frac{1}{\sigma_{k}}+\pi_{11}, \\
& T_{2}^{(y)} \Gamma^{(1)}=-\operatorname{Im} \sum_{k=1}^{3}\left[\left(A_{77} B_{k}+A_{78} A_{k} \alpha_{k}\right) n_{1}+\left(A_{12} A_{k}+A_{22} B_{k} \alpha_{k}\right) n_{2}\right] \frac{1}{\sigma_{k}}+\pi_{12}, \\
& T_{1}^{(y)} \Gamma^{(2)}=-\operatorname{Im} \sum_{k=1}^{3}\left[\left(A_{11} B_{k}+A_{12} \alpha_{k} C_{k}\right) n_{1}+\left(A_{78} C_{k}+A_{88} B_{k} \alpha_{k}\right) n_{2}\right] \frac{1}{\sigma_{k}}+\pi_{21}, \tag{6.21}\\
& T_{2}^{(y)} \Gamma^{(2)}=-\operatorname{Im} \sum_{k=1}^{3}\left[\left(A_{77} C_{k}+A_{78} B_{k} \alpha_{k}\right) n_{1}+\left(A_{12} B_{k}+A_{22} C_{k} \alpha_{k}\right) n_{2}\right] \frac{1}{\sigma_{k}}+\pi_{22}, \\
& M^{(y)} \Gamma^{(3)}=-\operatorname{Im} \sum_{k=1}^{3}\left[B_{66} D_{k} n_{1}+B_{44} D_{k} \alpha_{k} n_{2}\right] \frac{1}{\sigma_{k}}+\pi_{33}, \\
& T_{\alpha}^{(y)} \Gamma^{(3)}=\pi_{3 \alpha}, \quad M^{(y)} \Gamma^{(\alpha)}=\pi_{\alpha 3},
\end{align*}
$$

where the terms $\pi_{i j}$ have "weak" singularities (by comparison with the main one). Using the relations

$$
\begin{align*}
A_{11} A_{k}+A_{12} B_{k} \alpha_{k} & =-\alpha_{k}\left(A_{78} B_{k}+A_{88} A_{k} \alpha_{k}\right), \\
A_{77} B_{k}+A_{78} A_{k} \alpha_{k} & =-\alpha_{k}\left(A_{12} A_{k}+A_{22} B_{k} \alpha_{k}\right), \tag{6.22}\\
A_{11} B_{k}+A_{12} C_{k} \alpha_{k} & =-\alpha_{k}\left(A_{78} C_{k}+A_{88} B_{k} \alpha_{k}\right), \\
A_{77} C_{k}+A_{78} B_{k} \alpha_{k} & =-\alpha_{k}\left(A_{12} B_{k}+A_{22} C_{k} \alpha_{k}\right), \quad B_{66} D_{k}=-B_{44} D_{k} \alpha_{k}^{2}, \\
\frac{\partial}{\partial s_{y}} \ln \sigma_{k} & =\frac{1}{\sigma_{k}}\left[\cos \left(n_{y}, x_{2}\right)-\alpha_{k} \cos \left(n_{y}, x_{1}\right)\right],
\end{align*}
$$

we obtain:

$$
\begin{align*}
& T_{1}^{(y)} \Gamma^{(1)}=\operatorname{Im} \sum_{k=1}^{3} L_{k} \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi_{11}, \quad T_{2}^{(y)} \Gamma^{(1)}=\operatorname{Im} \sum_{k=1}^{3} M_{k} \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi_{12}, \\
& T_{1}^{(y)} \Gamma^{(2)}=\operatorname{Im} \sum_{k=1}^{3} N_{k} \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi_{21}, \quad T_{2}^{(y)} \Gamma^{(2)}=\operatorname{Im} \sum_{k=1}^{3} P_{k} \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi_{22}, \tag{6.23}\\
& M^{(y)} \Gamma^{(3)}=\operatorname{Im} \sum_{k=1}^{3} R_{k} \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi_{33},
\end{align*}
$$

where

$$
\begin{array}{ll}
L_{k}=-\left(A_{78} B_{k}+A_{88} A_{k} \alpha_{k}\right), & M_{k}=-\left(A_{12} A_{k}+A_{22} B_{k} \alpha_{k}\right), \\
N_{k}=-\left(A_{78} C_{k}+A_{88} B_{k} \alpha_{k}\right), & P_{k}=-\left(A_{12} B_{k}+A_{22} C_{k} \alpha_{k}\right), \tag{6.24}\\
R_{k}=-B_{44} D_{k} \alpha_{k} . &
\end{array}
$$

We denote by $\Lambda(x, y)$ the matrix obtained from (6.20) by interchanging the rows and columns. Using (6.15) we can write:

$$
\begin{equation*}
\Lambda(x, y)=\left[H\left(\frac{\partial}{\partial y}, n_{y}\right) \Gamma^{*}(x, y)\right]^{*}=\left[H\left(\frac{\partial}{\partial y}, n_{y}\right) \Gamma(y, x)\right]^{*} . \tag{6.25}
\end{equation*}
$$

Taking into account (6.23), we have:

$$
\Lambda(x, y)=\operatorname{Im} \sum_{k=1}^{3}\left[\begin{array}{ccc}
L_{k} & M_{k} & 0 \tag{6.26}\\
N_{k} & P_{k} & 0 \\
0 & 0 & R_{k}
\end{array}\right] \frac{\partial \ln \sigma_{k}}{\partial s_{y}}+\pi(x, y)
$$

where $\pi(x, y)$ is the matrix with the elements $\pi_{i j}$.
From (6.9), (6.12), (6.14), we obtain:

$$
\begin{gathered}
\sum_{k=1}^{3} L_{k}=\sum_{k=1}^{3} P_{k}=\sum_{k=1}^{3} R_{k}=1, \quad \sum_{k=1}^{3} M_{k}=i M, \quad \sum_{k=1}^{3} N_{k}=-i N, \\
M=\frac{p}{\left(b_{1}+b_{2}\right)\left(b_{2}+b_{3}\right)\left(b_{3}+b_{1}\right)}, \quad N=\frac{q}{\left(b_{1}+b_{2}\right)\left(b_{2}+b_{3}\right)\left(b_{3}+b_{1}\right)}, \\
p=\left(b_{1} b_{2}+b_{1} b_{3}+b_{2} b_{3}\right) \frac{A_{78}}{A_{88}}-\left(\frac{A_{12} A_{77}}{A_{22} A_{88}}-\frac{A_{78} B_{66}}{A_{88} B_{44}}\right)-\frac{A_{12} A_{77} B_{66}\left(b_{1}+b_{2}+b_{3}\right)}{A_{22} A_{88} B_{44} b_{1} b_{2} b_{3}}, \\
q=\frac{A_{11} A_{78} B_{66}\left(b_{1}+b_{2}+b_{3}\right)}{A_{22} A_{88} B_{44} b_{1} b_{2} b_{3}}+\frac{A_{11} A_{78}}{A_{22} A_{88}}-\frac{A_{12} B_{66}}{A_{22} B_{44}}-\frac{A_{12}}{A_{22}}\left(b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}\right) .
\end{gathered}
$$

It is easy to verify that the columns of the matrix $\Lambda(x, y)$ satisfy the homogeneous system (2.10) at the point x.

7. Reduction of the boundary value problems to integral equations

Let Σ_{i} be a finite domain bounded by a closed Liapunov curve L, and Σ_{e} the complementary of $\Sigma_{i}+L$ to the entire plane. The reciprocity relation (4.5) for the region Σ_{i} can be written in the form:

$$
\begin{equation*}
\int_{\Sigma_{i}}(v A u-u A v) d \sigma=\int_{L}\left[u H\left(\frac{\partial}{\partial x}, n_{x}\right) v-v H\left(\frac{\partial}{\partial x}, n_{x}\right) u\right] d s \tag{7.1}
\end{equation*}
$$

Let $\sigma(y, \varepsilon)$ be a circle with centre in y and with radius ε. Let $y \in \Sigma_{i}$ and let ε be so small that σ be entirely contained in Σ_{i}. Then the formula (7.1) can be applied in $\Sigma_{i}-\sigma$ to some regular vector $u(x)$ and to vector $v(x)=\Gamma^{(k)}(x, y),(k=1,2,3)$. As in [19, 27], we obtain:

$$
\begin{align*}
& 2 \pi u_{k}(y)=\int_{L}\left[u(x) H\left(\frac{\partial}{\partial x}, n_{x}\right) \Gamma^{(k)}(x, y)-\Gamma^{(k)}(x, y) H\left(\frac{\partial}{\partial x}, n_{x}\right) u(x)\right] d s_{x} \tag{7.2}\\
&-\int_{\Sigma_{i}} \Gamma^{(k)}(x, y) A u d \sigma_{x}
\end{align*}
$$

where by u_{k} we have indicated the components of the vector u.
The relation (7.2) can be written in the form:

$$
\begin{align*}
& 2 \pi u(y)=\int_{L}\left\{\left[H\left(\frac{\partial}{\partial x}, n_{x}\right) \Gamma(x, y)\right]^{*} u(x)-\Gamma^{*}(x, y) H\left(\frac{\partial}{\partial x}, n_{x}\right) u(x)\right\} d s_{x} \tag{7.3}\\
&-\int_{\Sigma_{i}} \Gamma^{*}(x, y) A u d \sigma_{x} .
\end{align*}
$$

Taking into account (6.15), (6.25), from (7.3) we obtain:

$$
\begin{equation*}
2 \pi u(x)=\int_{L}\left[\Lambda(x, y) u(y)-\Gamma(x, y) H\left(\frac{\partial}{\partial y}, n_{y}\right) u(y)\right] d s_{y}-\int_{\Sigma_{i}} \Gamma(x, y) A u(y) d \sigma_{y} \tag{7.4}
\end{equation*}
$$

Let $\psi(x)$ be a vector satisfying Holder's condition. We introduce the potential of a single layer:

$$
\begin{equation*}
V(x ; \psi)=\frac{1}{\pi} \int_{L} \Gamma(x, y) \psi(y) d s_{y} \tag{7.5}
\end{equation*}
$$

and the potential of a double layer:

$$
\begin{equation*}
W(x ; \psi)=\frac{1}{\pi} \int_{L} \Lambda(x, y) \psi(y) d s_{y} . \tag{7.6}
\end{equation*}
$$

As in [27-29], we can prove:
Theorem 7.1. The potential of a single layer is continuous throughout.
Theorem 7.2. The potential of a double layer tends to finite limits when the point x tends to $z \in L$, both from within and from without, and these limits are respectively equal to

$$
\begin{aligned}
& W_{i}(z ; \psi)=\psi(z)+\frac{1}{\pi} \int_{L} \Lambda(z, y) \psi(y) d s_{y}, \\
& W_{e}(z ; \psi)=-\psi(z)+\frac{1}{\pi}-\int_{L} \Lambda(z, y) \psi(y) d s_{y} .
\end{aligned}
$$

Theorem 7.3. The $H\left(\frac{\partial}{\partial x}, n_{x}\right)$ operator of the single-layer potential $V(x ; \psi)$ tends to finite limits, when the point x tends to the boundary point $z \in L$ from within or from without and these limits are respectively equal to

$$
\begin{aligned}
& {\left[H\left(\frac{\partial}{\partial z}, n_{z}\right) V(z ; \psi)\right]_{i}=-\psi(z)+\frac{1}{\pi} \int_{L}\left[H\left(\frac{\partial}{\partial z}, n_{z}\right) \Gamma(z, y)\right] \psi(y) d s_{y},} \\
& {\left[H\left(\frac{\partial}{\partial z}, n_{z}\right) V(z ; \psi)\right]_{e}=\psi(z)+\frac{1}{\pi} \int_{L}\left[H\left(\frac{\partial}{\partial z}, n_{z}\right) \Gamma(z, y)\right] \psi(y) d s_{y} .}
\end{aligned}
$$

We consider the homogeneous system (2.10) and the boundary conditions (2.11) or (2.12), written in the form

$$
\begin{gather*}
\lim _{x \rightarrow z} u(x)=\tilde{u}(z) \tag{I}\\
\lim _{x \rightarrow z} H\left(\frac{\partial}{\partial x}, n_{x}\right) u(x)=\tilde{t}(z)
\end{gather*}
$$

where $x \in \Sigma_{i}, z \in L$ and \tilde{u}, \tilde{t} are given vectors satisfying Holder's condition.
We seek the solution of the first boundary value problem in the form of a double-layer potential and the solution of the second boundary value problem in the form of a singlelayer potential. Using Theorems 7.2, 7.3 and the relation (6.25), we obtain for the unknown density, the following singular integral equations:

$$
\begin{align*}
& \psi(z)+\frac{1}{\pi} \int_{L} \Lambda(z, y) \psi(y) d s_{y}=\tilde{u}(z) \tag{I}\\
& -\psi(z)+\frac{1}{\pi} \int_{L} \Lambda^{*}(y, z) \psi(y) d s_{y}=\tilde{t}(z) \tag{II}
\end{align*}
$$

Taking into account the relations

$$
\begin{gathered}
r^{2}=\left(z_{1}-y_{1}\right)^{2}+\left(z_{2}-y_{2}\right)^{2}, \quad \sigma=\left(z_{1}-y_{1}\right)+i\left(z_{2}-y_{2}\right), \quad \frac{\partial \ln r}{\partial s_{y}} d s_{y}=\frac{d r}{r}=\frac{d t}{t-t_{0}}-i d \theta . \\
\frac{\partial \ln \sigma_{k}}{\partial s_{y}}=\frac{\partial}{\partial s_{y}} \ln \frac{\sigma_{k}}{r}+\frac{\partial \ln r}{\partial s_{y}}=\frac{\partial \ln r}{\partial s_{y}}+\frac{i-\alpha_{k}}{\sigma \sigma_{k}} r \cos \left(r, n_{y}\right)-\frac{i \cos \left(r, n_{y}\right)}{r},
\end{gathered}
$$

where t and t_{0} are the affixes of the points y and z, and pointing out the characteristic part of the singular operator, the system (I) can be written in the form:

$$
\psi\left(t_{0}\right)+\frac{1}{\pi}\left|\begin{array}{rrr}
1 & M & 0 \\
-N & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \int_{i} \frac{\psi(t) d t}{t-t_{0}}+K \psi=\tilde{u}\left(t_{0}\right)
$$

For a general micropolar elastic solid, the index [19] of the system (I) is zero, so that this system is a system of singular integral equations of the normal type for which Fredholm's basic theorems are valid. It can be proved, in a similar way, that for the system (II) the Fredholm's basic theorems are valid.

References

1. H. Schaefer, Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuum, Misz. Angew. Math. Festschrift Tollmien, Akademie Vlg., 227, Berlin 1962.
2. R. D. Mindlin, Influence of couple stresses on stresses-concentrations, Exp. Mech. 3, 1, 1963.
3. В. А. ПАльмов [V. A. Palmov], Плоская задача теории несимметрической упруzости [Plane problem of non-symmetric elasticity, in Russian], Прикл. Мат. Mex. [Prikl. Math. Mekh.], 28, 1117, 1964.
4. Г. Н. Савин и А. Н. Гузь [G. N. Savin and A. N. Guz], Плоская задача моментной теории упругости для бесконечной плоскости, ослабленной конечным числож круговых отверстий [Plane
problem of elasticity with couple-stresses for an infinite plane weakind by a finite number of circular holes, in Russian], Прикл. Мat. Mex. [Prikl. Math. Mekh.], 30, 121967.
5. A. C. Eringen, Theory of micropolar plates, Z. angew. Math. Phys., 18, 12, 1967.
6. P. P. Teodorescu, N. Sandru, Sur l'action des charges concentrées en élasticité asymetrique plane, Rev. Roum. Math. Pures et Appl., 12, 1399, 1967.
7. D. Ieşan, On plane coupled micropolar thermoelasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 16, 379, 1968.
8. W. Nowacki, The plane problem of micropolar thermoelasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 18, 89, 1970.
9. W. Nowacki, The plane problem of micropolar thermoelasticity, Arch. Mech. Stos., 22, 3, 1970.
10. D. Ieşan, Existence theorems in the theory of micropolar elasticity, Int. J. Eng. Sci., 8, 777, 1970.
11. D. IȨ̧an, On thermal stresses in plane strain of isotropic micropolar elastic solids, Acta Mechanica, 11, 141, 1971.
12. W. Nowacki, Plane problems of micropolar elasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 14, 237, 1971.
13. W. Nowacki, The "second" plane problem of micropolar elasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 18, 525, 1971.
14. W. Nowacki, Plane problems of micropolar elasticity, Arch. Mech. Stos., 23, 587, 1971.
15. J. Dyszlewicz, The plane problem of asymmetric elasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 19, 385, 1971.
16. K. L. Chowdhury, Thermal stresses in a micropolar hollow cylinder, Bull. Acad. Polon. Sci., Série Sci. Techn., 19, 355, 1971.
17. H. K. Parhi, A. K. Das, Effect of couple-stresses in a diametrically compressed circular plate, Bull. Acad. Polon. Sci., Série Sci. Techn., 19, 131, 1971.
18. D. Ieşan, Bending of orthotropic micropolar elastic beams by terminal couples, Int. J. Eng. Sci. (to appear).
19. В. Д. Купградзе [V. D. Kupradze], Методы nотенииала в теории ynpyzocmu [Potential methods in elasticity, in Russian], Москва [Moscow], 1963.
20. D. IEşan, On the linear theory of micropolar elasticity, Int. J. Eng. Sci., 7, 1213, 1969.
21. G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, Springer-Verlag, 1965.
22. G. Duvaut, J. L. Lions, Les inéquations en mécanique et physique, Dunod, Paris 1972.
23. Gr. C. Mossil, Teoria preliminara a sistemelor de ecuatii cu derivate partiale lineare cu coeficienti constanti, Bul. St. Acad. R.P.R., 4, 319, 1952.
24. A. C. Eringen, Theory of micropolar elasticity, Fracture, 2, 621, 1968.
25. E. E. Levi, Sulle equazioni lineari totalmente ellitiche alle derivati parziali, Rend. Circ. Mat. Palermo, 24, 275, 1907.
26. F. JOHN, The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure Appl. Math., 3, 271, 1950.
27. M. О. БАщЕлейщвили [M. О. Basheleishvili], Решение плоских граничных зад̀ач статики анизотропного ynpyzozo тела [Solution of plane boundary-value problems of statics of anisotropic elastic solids, in Russian], Труды Вычисл. Центра A.H. Груз. C.C.P. [Trudy Vychisl. Tsentra A. N. Gruz. S.S.R.], 3, 91, 1963.
28. D. IȨ̧AN, Asupra deformării plane generalizate, Studii Cerc. Mat., 21, 595, 1969.
29. D. Ieşan, Existence theorems in micropolar elastostatics, Int. J. Eng. Sci., 9, 59, 1971.
```
DEPARTMENT OF MATHEMATICS AND MECHANICS
UNIVERSITY OF JASSY
JASSY, ROMANIA
```

Received May 31, 1972

