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Thermomechanical coupling in materials with memory (*)

W. KOSINSKI (WARSZAWA)

A proPOSAL for thermodynamic theory of a material with memory, the constitutive functionals
of which depend on the summed history of the temperature gradient, the history of the deforma-
tion gradient and the history of the temperature is given. The theory is constructed when the
weakest possible assumptions for the constitutive functionals are employed. It is supposed
that their domain is a subset of a linear topological Hausdorff space of histories. A chain
rule property for the free energy functional and consequencas of the second law of thermody-
namics are demonstrated, together with some properties for the free energy and heat flux in
a state of equilibrium.

Przedstawiono termodynamiczng teori¢ materialu z pamigcia, ktorego funkcjonaty konstytu-
tywne zaleza od zsumowanej historii gradientu temperatury, historii gradientu deformacji
i historii temperatury. Teori¢ zbudowano przy mozliwie najstabszych zalozeniach dotyczacych
funkcjonatéw konstytutywnych. Przyjeto, ze ich dziedzina jest podzbiorem liniowej topolo-
gicznej przestrzeni Hausdorffa. Pokazano prawo rdzniczkowania zlozonego dla energii swo-
bodnej oraz konsekwencje drugiego prawa termodynamiki. Wykazano pewne wlasnosci dla
energii swobodnej i strumienia ciepla w stanie réwnowagi.

TlpencrapyieHa TepMoAMHAMUYECKAs TEOPHA MaTePHAINA C MAMATHIO, ONpeJenAlonHpe PYHKIHO~
HaJIbl KOTOPOT'O 3aBHCAT OT MPOCYMMHPOBAHHOIN MCTODHM TPajJiHEHTAa TEMIIEPATYpPbI, HCTOPHH
rpagueHTa gedopMaiiy M MCTOPHHM TemiepaTypbl. Teopusi MOCTPOEHA IIPH BO3MOMKHO CaMBIX
c1abbIX IPEIOoNOKEHUAX, Kacalolmxes onpeensaoumx Gyukiponanos, [Ipunnmaerca, uto
067acTh HX OIpejeNieHHs ABJIACTCA NOAMHOMKECTBOM JIMHEHHOTO TOMOJIOTHYECKOTo NPOCTPaH-
crea Xaycmopda. Ykasan saxkoH crnoyksoro audrdepeHUMpoBaHHA IUiA CBOBGOAHON IHEPIHH,
a TAKXKe CJIEZICTBUA BTOPOrO Hauana TEPMOAMHAMHMKH. YKa3aHbl HEKOTOphle cBOiicTBa CBO-
GoaHOH SHEPrHHM M NOTOKAa TeIVIA B COCTOAHHH PaBHOBECHA.

1. Introduction

A MAIN problem in the thermodynamics of materials with memory is that of defining the
restrictions which the second law of thermodynamics imposes on constitutive function-
als — i.e. on functions describing the response of a material. For a simple material which
examplifies material with memory, this problem was formulated and solved in 1964 by
B. D. CoLemAN [1-2]. His investigations were based on the strong principle of fading
memory, later however, in 1970, in a joint paper with D. R. OWEN [7] he showed that
a thermodynamic theory of simple materials could be developed without endowing the
domain of the constitutive functionals with the structure of normed space.

The basic theme of the present paper is the thermodynamic theory of a material with
memory, the constitutive functionals of which depend on the summed history of the
temperature gradient, the history of the deformation gradient and the history of the tem-
perature. The summed history of the temperature gradient as one of the independent
variables enables description of thermal disturbances propagating with finite speeds.

The theory presented in this paper is constructed when the weakest possible assump-
tions for the constitutive functionals are employed. It is supposed that their domain is

(*) This work was presented at the XVth International Congress of IUTAM in Moscow, 1972,

4+
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a subset of a linear topological Hausdorff space of histories. The conception of the con-
vergence is introduced into the domain by Moore-Smith sequences. The general assump-
tions concerning functionals enable the existence of a time-derivative of the free energy
to be proved. It is shown that this derivative obeys a chain rule similar to such occurring
in the theories of COLEMAN and OWEN.

It is noticed that the linear topological space containing the domain of functionals
need not be normable or even metrizable.

On the basis of the chain rule property, it is shown that the second law has the follow-
ing implications for constitutive functionals: 1) the functionals for the stress, entropy and
heat flux are completely determined by the functional for the free energy; 2) a part of
the derivative of the free energy obeys an inequality called “the dissipation inequality”.
If a description of a state is given by a constant history of the deformation gradient, the
temperature and the temperature gradient, the dissipation inequality turns into the usual
heat conduction inequality.

In the final part of the paper are proved some properties of the free energy and heat
flux in a state of equilibrium, such as are obtained in the case of a material with fading
memory.

The main aim of these investigations is to formulate a thermodynamic theory of
material with memory within the framework of which plastic materials may be described.
The smoothness assumptions of theories based on the principle of fading memory are
too strong to enable plastic materials to be considered.

2. Definitions of state and process. Choice of a method of preparation

Let us consider a body B with particles X and a fixed reference configuration ». We
assume that this body can deform and conduct heat. We identifly each of the particles
X of Bwith the place { it occupies in ». We introduce the deformation gradient (*) F(X, t)

= F(x(X), 1) = —a% y(¢, t), where y is the motion, with x = ¥(C, 1) as the place at time ¢
of the particle x='(£). To describe thermal effects, we introduce the absolute temperature
H(X,t) > 0 and the temperature gradient g(X,t) = Tiﬁ(y“(x, 1), 1).

For fixed time ¢ and particle X, we can define the history F* of the deformation gra-
dient, the history &' of the temperature and the history g' of the temperature gradient by

(21) F'(X,s)=FX,t-s), PX,5)=9X,t-s5), g'X,5)
=g(X,1-5), sel0,00].
We further define the summed history g* of the temperature gradient(?):

Q2.2 g, s = [ £, i
0

(1) We assume that det F# 0.
(?) For the existence of this integral we assume that g!(X, -) is a measurable function on [0, 00).
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If fis a function of ¢, we denote by f the left-hand derivative of f: f{(f) = Iim—I-{f(t}—
o0 O
—ft—0)}.

The following definitions and two constitutive postulates form the logical structure
of the thermodynamic theory developed.

This structure is based on the general structure of the thermodynamic local theory
of material proposed by P. PERzZYNA in 1971(3).

DerNITION 1. The ordered pair (F(X, 1), #(X, 1)) = A(X, t) is called the actual de-
formation-temperature configuration of a particle X of a body B at time .

DEFINITION 2. A local thermodynamic process (f,, 1) at particle X of a body B is
a collection of functions given for every f € (¢, #)

2.3) Px = {AX, 1), g(X, 1), n(X, 1)},

which satisfies the thermodynamic inequality

(2.4) —r})+tr(TF"T)-—m.9—e%q-g; 0,

at all times at which the derivatives F, # and y exist, where 7(X, ) = {p(X,0),T(X, 1),
7(X, £),9(X, t)} represents specific free energy per unit mass y(X, ), the first Piola-Kirchhoff
stress tensor T(X, t), the specific entropy n(X, ¢) and the heat flux vector g(X, f) per unit
surface in the actual configuration y.

It is implicitly assumed that the body forces and the rate of heat supply are determined
by the requirement that the process obeys the laws of balance of momentum and energy.
A symbol g denotes the mass density in the actual configuration.

DEeFINITION 3. A thermo-mechanical state of a particle X in time 7 is a collection of
values which take the functions 2 for particular time ¢ € (1, ).

DEFINITION 4. A description of a thermo-mechanical state of a particle X in the time ¢
consists of the actual deformation-temperature configuration A(X, t), the temperature
gradient g(X, t) and of the method of preparation of this configuration.

To determine the actual thermo-mechanical state of a particle during an irreversible
thermodynamic procces, it does not suffice to have the actual deformation-temperature
configuration of a particle X but we additionally need the method of preparation of this
configuration.

A method of preparation of the configuration is a primitive concept in our theory.
To give the rule of interpretation for this concept (and to be in agreement with require-
ments which are formulated for each physical theory(*)) we give a few examples of the
method of preparation. The history of the terms appearing in the actual thermo-mechanical
configuration of the particle X can form the method of preparation. The thermodynamic
theory of a simple material can be developed when this method of preparation is assumed(*).
Another example of the method of preparation is by introducing internal parameters

(*) In the present theory a definition of the actual configuration different from that introduced by
PErRZYNA [16] is assumed.

(%) Cf. GiLes [9] and PERZYNA [16].

(%) Cf. CoLeMAN [1-2], CoLeMAN and OWEN [7]. See also [11].
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and initial-value problems for the differential equations. The theory of rheological materials
with internal structural changes can be constructed by suitable interpretations of the
parameters(®).

In the present theory, we choose a different method of preparation.

PostuLATE K1. The method of preparation of the actual deformation-temperature
configuration is the history A'(X, ), s € (0, c0) and the summed history of the tempera-
ture gradient g'(X, 5), s € [0, o).

To specify the material structure in a body B, we shall introduce.

PostuLATE K2. The thermo-mechanical principle of determinism for the material is
expressed by the functional relations
2.5 n(X, 1) = R(AX, ).g'(X, ),
where # = {p, 8, b, q} represents the constitutive functionals for the free energy p, stress 8,
entropy b and heat flux q.

DEcINITION 5. A local thermodynamic process described by 2y is said to be admissible
in B if it is compatible with Postulate K2 at each particle X.

If the constitutive functionals in (2.5) are chosen arbitrarily, it cannot be expected
that the thermodynamic inequality (2.4) will hold. Indeed, the present paper will be con-
cerned mainly with the problem of finding the restrictions which the thermodynamic
inequality (2.4) places on constitutive functionals. We shall treat the problem for a broad
class of materials, defined by postulates of regularity for p, 8, b, g and their domain.

For future considerations, it will be useful to introduce two linear (vector) spaces:
Vio = {I:I' = (L, 4), L —a tensor of order two, A — a real number},

V3 = {k: k — a vector of three-dimensional Euclidean space}.

In the space V,, rules are defined by

al'y+pI'; = (aLy+BL,, ady+f4,),

1
Iy Ty = to(L LD+ 4, 2y, IT)yo = (- 1)2

for I'y = (Ly, A4) € Vo, I'; = (Ly. 4;) € Vyo, @, B — real numbers.

In the space V; addition, scalar multiplication, inner product and norm are defined
pointwise, as usual.

Introduce a cone Vi = V,o by

Vio = {I"'e Vyo:I' = (F, ¥), F— an invertible tensor, ¢ > 0}.

In a local thermodynamic process, for each time ¢ € (¢, #;), the total history up to ¢
of deformation gradient and temperature, is a function(”) (4" = (F*, #)) mapping [0, c0)
into V. The summed history of the temperature gradient is a function

Z: [0, ) — F; such that there exists a measurable function

g: [0, o0) = V; such that g(s) = f g(A)dA for s € [0, o0).
0

(%) See PerzyNA [16], where was developed a thermodynamic theory of this material, taking into
account highergradients of the deformation and temperature, Cf. also PERzyNA [14-15].

(") We assume that the elements of the set ¥}, are the same as pairs of deformation gradient-tempe-
rature.
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Let us put (8)

(2.6) >

I

1 N ]
(T’ "‘7?;‘9—3‘?), x = (Fr "9! g)s
then (2.4) can be written

2.7) —9+2-4>0, where X-a&=tr(TFT)— "ﬂ_‘?

Let us introduce the new functionals

- e, L
(?8) G:(G,—!}), n-_-(C,g#q)

Then we can write (2.5) in the form(®)
2() = n(4, 2,

@ »(®) = (4%, ).

3. Properties of constitutive functionals and their domain

We suppose that there are given two topological linear (vector) Hausdorff spaces
B, and B,. The space B, is formed from functions mapping [0, co) into V;, and B,
1s formed from functions mapping [0, c0) into V5. In both spaces, addition and scalar
multiplication are defined naturally.

We take the domain of definition of constitutive functionals in (2.9) to be the subset
9 = & x B, with the topology induced on Z by B = B, xB,. Here & is the set of
functions from [0, c0) into V{, belonging to B,.

For our considerations we need to introduce a fundamental definition concerning
the functions vanishing rapidly with 4. This definition is different from that introduced
by CoLEMAN and OWEN [7].

DEFINITION 6. Let a > 0. A one-parameter family of pairs of functions (®,, h,), where
D,: [0, 0) = Vo, hs: [0, 0) = V, for d € (0, a) is a regular family of functions vani-
shing rapidly with § if:

a)‘j {O\(Pd, hs are continuous functions on [0, c0) and furthermore @, is a piecewise

el a
continuously differentiable functions on [0, o0);

) VV V A A 190 < Kxiosn(s)d A

K>0 M>0 N>0 8¢(0,a) 5e[0,00]

—ij,(s) { N X[o,a](s) /\

[A(s)ls < Mx[o.a](s) g.

i @, is the right-hand

Here yp0,5) is the characteristic function of the interval [0, 6] and p

derivative of @,:

7 Qi,, (s) = —{qja (s+0)—Dy(s)} -

(®)Z and « are elements of Vyo % V.
(°) To simplify notations, we shall omit consequently a particle X in all formulae.
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Given a number ¢ = 0 and functions (¥, g) € B, we may define new functions:
¥(o) for se[0,d], B g(o) for se [0, o],

6y  L¥9=| o ={ .
¥(s) for s e (o, ); 2(s) for s e (o, 0);

S,%(s) = ¥(s+0) for s€ [0, ); 3,2() = | g(A+0)dA for s€ [0, ).
0

The pairs (L,, I,) and (S,, 3,) are for fixed o operators (transformations) of space B.
They are helpful is formulating the following postulates. These postulates are similar
in a part to those introduced by CoLEMAN and OWEN [7].

PosTULATE P1. The constitutive functionals p and n are continuous functions on 2.

PosTULATE P2. If (D,, hy) is a regular family of functions vanishing rapidly with 4§,
then (P, h;) is a Moore-Smith convergent sequence (1°) in B on (0, @) with the limit
0f € B, where 01: [0, 0) > 0 € Vyox V5.

PosTULATE P3. There exists a subset & < @, which is dense in &. Furthermore, if
W,g)e 9 then ¥ is continuously differentiable and g is continuous (*!) both on some
interval [0, 8], § > O..

PostuLaTE P4. If (¥, 2) € 9 and (D, hy) is a regular family of functions vanishing
rapidly wrth d, then for sufﬁcmntly small &, the pair (F+ P, g+hy) is in 9 and there
exist Dpp: D - Vio and Dgp: D~ V5 such that (*?)

(32) »(F+Py,g+hy) = »(¥,8)+Drp(¥,8) Ds(0)+Dgp(¥, 8) - hs(0)+0(d).

POSTULATE PS. If (¥, %) € 9, then (L%, [g) €2 and (S,¥, 3,8) € 2 for all 0> 0,
and the limit (*3)

(.3 4rp(P, ) +4,p(7, B) = lim (L, D) -5(S, Y, 3D}

exists.
PostuLATE P6. The functionals D,.p, D,;p,drp and dgp, when regarded as functions

on 9 are smooth in the following sense. Let f stand for Dpp, Dyp, dpp or d,p. If
F,2) e .53, then for each regular family of functions (@,, h,) vanishing rapidly with &,

(3.4 ilj;l f(¥+Ps, g+h) = F(¥, 8).

The functionals appearing in Postulate P6 (as in P4 and P5) have a certain type of
interpretation. Roughly speaking D,p(¥, g) and D,p(¥, g) measure the rate of change
p in consequence of the present rates of change of ¥ and g —i.e., in s = 0, and d-p(¥, g)
and d,p(¥, g) measure the rate at which p would be changed if it is possible to ignore
the present rates of change of ¥ and g.

(*°) Cf. ENGEKLING [8].
(*') Bear in mind that g is linked with g by (2.2).
1
(*?) The sign o(d) denotes a term which satisfies the condition lim Fo(d) =
530+

(**) The notation of this limit means that: if L,% = S, ¥ for oe[0, c0), then drt(¥,g) = 0, and
if I,g = 3,2 for o [0, c0), then dyp(¥,g) =0
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We wish to find an expression for the derivative of the free energy.
In an admissible thermodynamic process, the left-hand derivative (t) is defined by

(3.5) #(0) = lim—{p(0)-y(-)}.

If it exists, is given by the formulae
. | _ _ .1 _ _
(36) ‘!P(!) = lim — {P(A', gt)_p(Ar—a, g'_d)} = lim — {p(At! g‘)_'p(su‘d" 3 t)}’
a0t O a0t O

where was used (3.1), for 0,5 2 0,
A=(s) = A(t—o—s) = A'(s+0) = S,A'(s),

70) = [ g (i = [ g'(o+Nd = 3,8'(s).
0 0

The following theorem demonstrates a property of chain rule for . .
THEOREM 1. If an admissible local thermodynamic process is such that (A',g')e D
for t € (1,, 1), then for that process {(t) exists and obeys the formula:

(37)  §(t) = Dpp(A', 8 - A(t)—Dyp(A", 3) - g(t) +dpp(A’, §)+d p(A', 8).
P roof. We can write:

(8 {p(O-p(t-0)} = — (b, ) ~v(S,4,8)

1 - s
= —(I—{n(Lg/l’, 1,8")—»(S, 4", 3,80} + {p(4', g)—p(L, A", 1,8)}.
By Postulate P5, we have

.1 ot e _ ¥
(39) lm?{p(LoA‘, Iag!)_p(SoA‘s 3d'g'.)} . d)“'p(Al: g')+dsp(1t3 gt)
Let us define (%)

(3.10)  D,(s) = L, A'(s)—A'(s) = (A'(0)— A*(5) )x10,e1(5)-

Since, by Postulate P3, A" is continuously differentiable on the interval [0, g] with §# > 0,
for each ¢ in this interval,
a

A (@)~ A ($)]10 < [ ——A*

<aeK, for s5€e]0,0),

where K = max -—~A’ < 0.

Hence, we have_

|Dy(s)]10 < KX{ON](S)U
By the definition of @, and K

Kxo.51(5)-

d
o) <

(*#) A part of the proof concerning of @, is the same as in [7].
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If we put

(3.11) ho(s) = 1,g'()—8'(s) = (8'(0)—&'(5))x10,1(5)>
then

h(s) = ([ @Wdi— [ gMdi)gronls) = [ gD digo.n)-
0 ]

(1]
For each g € [0, f], by Postulate P3, we have

Ih()ls < [ 18W)sd2 < Mygo,(s)o,

where M = max |g'(1)|; < co.
2[0,8)

Thus (D,, h,), with @_ given by (3.10) and A, by (3.11), is a regular family of functions
vanishing rapidly with o, and by Postulate P4

G1D) (', B (Lo, LB} = ~ oA+ B, o h) (4, B}

= Dpp(A, 8)- (M)—D,»(A‘, §‘)°% f g‘(ﬂ)dl—%ow.

The function A' is differentiable on [0, §], hence
fim %{A’(O)-—A‘(a)} = fim % (AW -A(t-a)}) = 4@).
a0+ a0+

The function g is continuous on [0, ] and

1
lim — [ g(Nd = g0) = g(1)-
o=+ T 0
Thus, in the limit, the expression (3.12) yields
g, 3 ~ ;
(3.13) lﬁ;{v(d‘,g')—b(%d’,fg?)} = Dpp(4', &) A()—Dgp(4', g) - 2(0).

It follows immediately from (3.13), (3.9) and (3.8) that p(¢) exists and obeys (3.7).

4. Consequences of the thermodynamic postulate

Let us take a particle X of material for a time # € (¢,, 7). Let us choose arbitrarily

I*g)e 9. We may be certain that there exist several admissible processes correspond-
ing to this choice. But, for each of these processes, in the state in the time ¢ the actual
deformation-temperature configuration A(X, ¢) is the value of I(s) in s = 0, and = is
given by the constitutive relations (2.5). It should be borne in mind that in this state the
inequality (2.4) ought to hold. X

Let 2y be an admissible local process with (A, g') € 2 for ¢ € (1,, #). It follows from
Theorem 1 that (t) exists in the process and is given by (3.7). The thermodynamic ine-
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quality (2.4) should hold in every state ¢ from the interval (1,, #,). We may use (2.6), (2.9)
and (3.7) to write (2.7) in the form (*%)
@1 [n(4', 8)—Dp(', 8] a—dpp(d’, g)—dyp(4', &) > 0.

Let us form the basic theorem:

THEOREM 2. It follows from the thermodynamic inequality and Postuldtes P1-P6 that:
1. the functional n is completely determined by the functional p through the relation

“.2) n(4', ) = Dp(A', g) for (4, 3)eD;
2. the functionals dpp and d,p obey the following inequality, called the dissipation ine-
quality (19),
(4.3) dpp(d’, 2)+dgp(4', 8) < 0.
Proof. Let us define functions (*7)
5

é
(4.4) ¢°(S) = 6 er[{],a](s)
for an arbitrary vector I'e V,, and each d € (0,a),a > 0. They are continuous and
piecewise smooth functions of s for each ¢ fulfilling the following bounds:
[Dy() 10 < 10 210,8:(5) 0,

25— ¢
3 T'yro,(5)

< 10 %10, 5(5)-

10

i 3 ’
—Dy(s =
0l

Let us take an arbitrary vector k € V5 and for each é € (0, a) define

4.5) ho(s) = [ kdigpo,(5).
0

For each 4 in an interval (0, a), we have
[Bs(s)l3 < |kl3x10,8y(5) 6.
Thus the one-parameter family of functions (@,, hy) is a regular family of functions
vanishing rapidly with 4. Since (A%, g') is in 9?, it follows from Postulate P4 that, for
sufficiently small 4, the pair (4,, d;) is in 9, where
(4.6) (44, ds) = (A'+ D5, 8" +hy).
Thus for small 6, the inequality (4.1) must hold with (A, g°) replaced by (4, dy),
4.7)  [n(ds, d)—Dp(ds, dp)] - (A@W)+T', —g(t)—k)—drp(ds, dy)—dgp(4s, dy) > 0,

where was used
. S :
A450) = lim — {4,(0)—44(0)} = A@)+T.
a0t O

(*%) It was assumed (Drb, Dgp) = Dp.
(*%) Cf. GurTIN and PrekiN [10].
(*") Cf. CoLEMAN and OWEN [7].
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Since (D, h,) forms a regular family of functions vanishing rapidly with 4, it follows from
(4.6) and Postulates P1, P2 and P6 that, if we let § go to zero in (4.7), we obtain

@438)  [n(4',8)—Dp(A', 8- (A)+T, —g(t)—k)—drp(A', §)—dgp(A', 8) = 0

Clearly, (4.8) can hold for all (I', k) € ¥, x V; only if the coefficient of A+, —g(t)—k)
vanishes, and the sum of the remaining terms is not negative. Thus (4.2) and (4.3) are
true. Let us note that the functionals D, p and Dyp were defined only for histories (', g')
belonging to 9. Hence the relation (4.2) is here meamngful only for functions in 9. How-
ever, since n is assumed continuous on 2 and 2 is dense in 2, n is determined by its

restriction to 9. Thus n is completely determined by the functional p, through (4.2),
although Dyp(A°, g*) in (4.2) has been defined only for (A%, g') € 2.

In the present theory, an interesting fact is that, in contrast to the results obtained by
CoLEMAN [1] and CoLEMAN and OWEN [7] and in agreement with the recent works of
GURTIN and PipkiN [10] and Mc CARTHY [12], the heat flux is determined by the func-
tional for the free energy. There is the property of the constitutive relation under consid-
eration. Let us consider a characteristic state of a material, namely a state which is
described by a constant history of the deformation gradient, the temperature and the
temperature gradient. For this state, we prove two theorems.

THEOREM 3. If a description of a state is given by a constant history (A%, goi) e 9 )
where go = g(t) = g'(s) for all s € [0, w0), and i(s) = s and At(s) = A(¢) for all s € [0, w0),
then

4.9) dgp(Atf, goi) = Dyp(At, goi) * go.

Proof. IfA* = Atandz'(s) = goi(s) = gos = [ godA,then L At = A, S, At = At
0
for 0 > 0, and

goo for s€[0,0],

l,(go0s) = gos for se[o,®);

3(805) = [ godA = gos.
0

If we put
(4'10) ha(s) = lo'(gﬂs) —&oS = gof'(o'—f)x[o,a](-’") fOl’ gE (0: a)! a> O’

then it is easy to prove that pairs (0%, i) form a regular family of functions vanishing
rapidly with o, and by Postulate P4, for sufficiently small o, we have

p(/-”‘; Ia(gﬂ I))_p(Afs 8o I) i Dgp(Ats 8o ’l) ' (go U)-{-O(U).
Hence

.k > ; 3
(411) l!‘t'r)]*-&_{p(‘/ﬂ, Ia(go I))_v(/l?: gol)} = DJ‘:’(A*’ 801) *8o-
On the other hand, Postulate P5 yields:
.1 . . oo ;
(4‘12) h:m ey {p(LaAt Ia‘(go I))_”(SnA‘r: Sd(gﬂ'l))} = lim _{p(/“; Ia(gol))
o0+ O a0t T

_p(/]*: gO‘))} = dap([lts gl}f)°
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It follows immediately from (4.11) and (4.12) that the equality (4.9) holds.

A consequence of Theorem 3 is

THEOREM 4. If the assumptions of Theorem 3 are satisfied, then the dissipation inequal-
ity (4.3) becomes the usual heat conduction inequality:

1
; — 518 >0.
4.13) AL 0
Proof. In our case, Theorem 2 and (4.12) yield
4.14) dyp(At, goi) < 0 and -g%q = D,p(At, goi).

Comparison of these results with Theorem 3 gives

1 ;
QT?Q'go = D, p(At, go1) * go = dgp(4t, go) < 0.

5. State of equilibrium and memory restrictions

In this general topological structure, we cannot prove such properties for the free
energy in a state of an equilibrium as have been obtained in the case of a material with
fading memory. To do this, we should provide our structure with a relaxation property (*%).
This property will be given in Postulate Al.

Now, we introduce a definition of a state of equilibrium of a material.

DEFINITION 7. We say that the deformation-temperature configuration /1 corresponds
to a state of equilibrium if the description of this state is given by (At, 0f), where At(s) = 4
and Of(s) = 0 for all s € [0, o).

Note that for a state of equilibrium L At = At, S,.4 = At, [ 0t = 0f, 3,0t = OF
for o > 0. If we substitute this functions into (3.3), we arrive at the proof of the theorem.

THEOREM 5. In a state of equilibrium the dissipation dpp+d,p vanishes.

Given a number o > 0 and functions (¥, g) €®B, we may define new functions (*9).

¥(0) for se€]0,0],

C(o)yf(s) = HW(S_G) for se (U, G'J),

(.1)

for s€[0,d,

cg(s) = {0

g(s—0) for se€ (o, ).

The function ¢g we shall call the homothermal continuation of g by the amount o.

The operators (C®, ¢®) introduced will be helpful in formulating the relaxation property.
For further investigations, it is necessary to define a set

5

(52) %o ={geB,: ()= [ e(Mding0) = 0}.
0

Elements of the set 4, we denote by g.

(*#) CoLEMAN and MizeL [4-6] introduced a relaxation property for the domain of functionals in the
Banach space. CoLEMAN and OwEN [7] assumed a relaxation property for the topological space.

(**) C'% is called the static continuation of ¥ by the amount . Cf. [7].
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We add to the six Postulates ?1—?6 the following . .

PosTULATE Al. If (¥, 8) e 2, then (*°) (P(O)Y,0H) e P and (COV, )g)e P for
all o € [0, ), and (C@Y, ¢9g) is a Moore-Smith convergent sequence in B on [0, 0)
with the limit (¥(0)t, O). Furthermore, for each (¥, g) € 9, the function (CO | cMg):
[0, ©) = B is continuous. 5

PosTULATE A2. The set %, is dense in 2, (*!).

Since the constitutive functionals are continuous, it follows from Postulate Al that
we may define new functions, called equilibrium functions,

lim p(C@Y, cg) = p(P(0)t, Of) = p¥(¥(0)),

(5.3) lim&(COY cg) = S(P(0)t, 0t) = S#(¥(0)),
imb(COP, c@§) = H(F(O)F, 0) = q#(¥(0)).
g=300

Let us note that p#, S# and q¥ are defined on a set
(5.4) g ={TeVy, I,0Me}c Vio.

Let (4,%) = (¥,2) € 9. Then histories (A'+e, g9 = (CO¥, ¢@g), for o> 0,
define a process. For this process A(t+0) =0 and g(t+0) =0 for o > 0. Thus
Theorem 1, the dissipation inequality (4.3) and Postulate Al yield

(5.5)  p(t+0) =dpp(Atte, g +d,p(A e, gt <0 for o> 0.

That is, for all ¢ > 0, the left-hand derivative p(C@W¥, ¢(”g) with respect to o exists,
and is not positive. It is clear from Postulate Al and P1 that p(C@¥, ¢(®)g) is a continuous
function of ¢ for all & = 0, and it follows, by (5.5), that p(C@Y¥, c(9g) is a non-increasing
function of ¢ forall ¢ > 0O i.e.:

(5.6) p(¥, 8) = p(CO¥,cg) for o= 0.
In view of (5.3),, we have:
(5.7) »(7, 8) > pH(¥(0)).

The last 1nequallty is true for each W,2)e 9. 1t follows by Postulate A2 that the set
{(¥, g) €9: g € %,} is dense in 9. Hence the inequality (5.7) is true for each element
from 9 and we obtain

THEOREM 6. If (¥, 8) € D, then
(5.8) p(¥, 8) = p*(¥(0)).

This theorem expresses the well known the extremum property for the free energy
for a broad class of materials, including materials with fading memory, and for a rigid

conductor has been obtained by GURTIN and PipkIN [10] (22).
Now, we prove the following

%) 'P(O)’r denotes a constant hlstory with the value ¥(0).

(0] @1 denotes the image of 9 under the projection of B on B, .
(?%) Cf. CoLeMAN [1], CoLEMAN and GURTIN [3], CoLEMAN and OWEN [7],
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Remark. If (33) A e o, then for each 2 € V,, there exists an interval (0, 5), 5 > 0
such that (A+6Q) e o for 6 (0, b).
Proof. Let 2€V,,and A e &. For every 6 > 0 put

A+(6—-52 for s€]0,d],
A[6, 21(s) = {A ]

DD = A[8, Q- A,

It is clear that since o varies an interval (0, @), @ > 0, the functions (®§?, 0f) form a re-
gular family of functions vanishing rapidly with &. Therefore, since (A, 01 e 2, it is
a consequence of Postulate P4 that (A[8, 2], 01) €9 for all &in some non-empty interval
(0, b). Hence, by Postulate Al, (C@A[8,2],01) e Q?, for each e (0,b) and ¢ = 0,
and also

(5.10)  1lim (C@A[8, 2], 0t) = (A[3, QIO)t, 0) = ((A+Q)t,0) e D.

T—¥00

for s€(d, ©);
(59

The following assumption of differentiability for p¥# on & seems natural.
PosTuLATE A3. There exists a function Vp#:a/ — ¥V, such that for each /1 es/:

(5.1 lim %{p#(/l +aQ)—pH#(A)} = Vp#(V)- 2 for ReV,,.
a—0t

Note that we here assume only that the gradient Vp#(A) exists for A in . This is
similar to our earlier assumptions concerning Dpp, Dyp, dpp and d,p.

The last postulate gives (*4):

THEOREM 7. If /| € o4, then

(5.12) Dpp(At, 0f) = Vpi(A).
Proof. Let .1es. From the proof of Remark, we know that (4[4, £2],0) is in

2 for all & in some interval (0, b) and for arbitrary 2 € V,,. Moreover, (/1+0Q2) € o.
By Theorem 6, we have

(5.13) p(A[8, Q],01) > p¥(A+0Q).
Let us define two expressions

F4l9] = 5 {pH(A+8Q)~ pH(),
(5.14)

K410 = - {p(A[5,2], 0 —p(At, 0N}

In view of Theorem 6 and (5.3,), we have:

(5.15) Fsl2] < #,[2] for b€ (0,b).

Note that by Postulate P4

(5.16) lims#5[2] = Dpp(¥AL, 0N - 2,
840

(**) The set .o/ was defined by (5.4). A similar remark was proved in [7].
(**) Cf. CoLemaN [1], CoLeMAN and MizzL [5], CoLEMAN and OWEN [7],
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because the functions (9§, O1), defined by (5.9), form a regular family of functions
vanishing rapidly with 4. On the other hand, Postulate A3 yields

(5.17) EQ‘}[.Q] = Vp#(A)- Q.

It is clear from (5.15)-(5.17) that
(5.18) {Drp(4t, 0f)—Vp#(4)} - 2 > 0,

and since this relation must hold for every 2 € ¥, (5.12) follows directly.
Since Dpp(A4t, 0f) = S(At, 0f) = S#(A), therefore a consequence of Theorem 7 is
THEOREM 8. The equilibrium functions p¥ and S# obey the classifical formula (*°)

(5.19) S#(A) = Vp#(A). for each A e o.
We shall prove an interesting theorem(*¢).
THEOREM 9. In a state of equilibrium, D,p = 0 and therefore q# = 0.
Proof. Let (A1, 0f) describe a state of equilibrium. We define a regular family
]
of functions vanishing rapidly with & as (Of, 4;), where his(s) = [ kdAyo,5(s) for ar-

bitrary ke V5, ée€(0,8), 5 > 0.
It follows from Postulate P4 that

(5.20)  p(At, Ot +h))—p(At, Of) = D,p(At, 0t)- kd+0(8) for e (0,d).a< p.

But from Theorem 6, we have

(5.21) p(At, Ot+hy) = p(At, 0.  for each 6 € (0, B).

Since

(5.22) lim%{p(/[?, Ot + hy) —p(At, 0)} = D,p(At, 01) - &,
d—0

then, by (5.21)
(5.23) D,p(At, 0f) - k > 0,

and since this relation must hold for every k € ¥, D,p(A*t, 0f) = 0. Hence, by Theorem 2
and (5.3);, we obtain q¥# = 0.
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