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Thermomechanical coupling in materials with memory(*) 

W. KOSINSKI (WARSZAWA) 

A PROPOSAL for thermodynamic theory of a material with memory, the constitutive functionals 
of which depend on the summed history of the temperature gradient, the history of the deforma
tion gradient and the history of the temperature is given. The theory is constructed when the 
weakest possible assumptions for the constitutive functionals are employed. It is supposed 
that their domain is a subset of a linear topological Hausdorff space of histories. A chain 
rule property for the free energy functional and consequenc~s of the second law of thermody
namics are demonstrated, together with some properties for the free energy and heat flux in 
a state of equilibrium. 

Przedstawiono termodynamiczn(l teori~ materialu z pami~ci(l, kt6rego funkcjonaly konstytu
tywne zalei:<! od zsumowanej historii gradientu temperatury, historii gradientu deformacji 
i historii temperatury. Teori~ zbudowano przy mozliwie najslabszych zalozeniach dotycZ(lcych 
funkcjonal6w konstytutywnych. Przyj~to, ze ich dziedzina jest podzbiorem liniowej topolo
gicznej przestrzeni Hausdorffa. Pokazano prawo r6i:niczkowania zlozonego dla energii swo
bodnej oraz konsekwencje drugiego prawa termodynamiki. Wykazano pewne wlasnosci dla 
energii swobodnej i strumienia ciepla w stanie r6wnowagi. 

Ilpe,IJ;cTaaneHa TepMo,IJ;JUiaMM:qecKaH TeopM:H MaTepM:ana c naMHTbiO, onpe,IJ;eJIHIOI.QM:e <PYHKI.Um
HaJibi KOTOporo 3aBM;CHT OT npocyMMM:pOBaHHOH M;CTOpllll rpa,ll;lleHTa TeMnepaTYpbi, HCTOPilK 
rpa,ll;lleHTa ,IJ;e$opMai.Ulll M: HCTOPml TeMnepaTypbi. TeopM:H nocTpoeHa npM: B03MO)f{HO CaMbiX 
CJia6biX npe,IJ;nOJlO)f(eHJ.lHX, KaCaiOI.QHXCH onpe,D;eJIHIOI.QilX cPYHHlUf.OHaJIOB . IlpM:HM;MaeTCH, qTO 
o6naCTb llX onpe,IJ;eJieHM:H HBJIHeTCH no,IJ;MHO)f{ecTBOM JlllHeii:Horo Tononon-lqecKoro npocTpaH
CTBa Xayc,D;op$a. YKa3aH 3aKOH cJio)f(Horo ,ll;llcPcPepeHimpoBaHHH ,IJ;JlH cso6oAHOH 3Heprllll:. 
a TaK)f{e CJle,IJ;CTBM;H BTOporo Haqana TepMO)l;M;HaMHKM;. YKa3aHbl HeKOTOpbie CBOlfcTBa CB0-
60AHOH 3Hepr1Ul ll flOTOKa Tenna B COCTOHHM;H paBHOBeCM;H. 

1. Introduction 

A MAIN problem in the thermodynamics of material5 with memory is that of defining the 
restrictions which the second law of thermodynamics imposes on constitutive function
als- i.e. on functions describing the response of a material. For a simple material which 
examplifies material with memory, this problem was formulated and solved in 1964 by 
B. D. CoLEMAN [1-2]. His investigations were based on the strong principle of fading 
memory, later however, in 1970, in a joint paper with D. R. OwEN [7] he ~howed that 
a thermodynamic theory of simple materials could be developed without endowing the 
domain of the constitutive functionals with the structure of normed space. 

The basic theme of the present paper is the thermodynamic theory of a material with 
memory, the constitutive functionals of which depend on the summed history of the 
temperature gradient, tht: history of the deformation gradient and the history of the tem
perature. The summed history of the temperature gradient as one of the independent 
variables enables description of thermal disturbances propagating with finite speeds. 

The theory presented in this paper is constructed when the weakest possible assump
tions for the constitutive functionals are employed. It is supposed that th~ir domain is 

(*) This work was presented at the XVth International Congress of IUTAM in Moscow, 1972. 
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a subset of a linear topological Hausdorff space of hi~tories. The conception of the con
vergence is introduced into the domain by Moore-Smith sequences. The general assump
tions concerning functionals enable the existence of a time-derivative of the free energy 
to be proved. It is shown that this derivative obeys a chain rule similar to such occurring 
in the theories of CoLEMAN and OWEN. 

It is noticed that the linear topological space containing the domain of functionals 
need not be normable or even metrizable. 

On the basis of the chain rule property, it is shown that the second law has the follow
ing implications for constitutive functionals: 1) the functionals for the stress, entropy and 
heat flux are completely determined by the functional for the free energy; 2) a part of 
the derivative of the free energy obeys an inequality called "the dissipation inequality". 
If a description of a state is given by a constant history of the deformation gradient, the 
temperature and the temperature gradient, the dissipation inequality turns into the usual 
heat conduction inequality. 

In the final part of the paper are proved some propertie~ of the free energy and heat 
flux in a state of equilibrium, such as are obtained in the case of a material with fading 
memory. 

The main aim of these investigations is to formulate a thermodynamic theory of 
material with memory within the framework of which plastic materials may be described. 
The smoothness assumptions of theories based on the principle of fading memory are 
too strong to enable plastic materials to be considered. 

2. Definitions of state and process. Choice of a method of preparation 

Let us consider a body B with particles X and a fixed reference configuration x. We 
assume that this body can deform and conduct heat. We identifty each of the particles 
X of B with the place ~it occupies in x. We introduce the deformation gradient et) F(X, t) 

= F(x(X), t) = a~ y(~, t), where y is the motion, with x = y(~, t) as the place at timet 

of the particle x- 1 (~). To describe thermal effects, we introduce the absolute temperature 

{}(X, t) > 0 and the temperature gradient g(X, t) = a~ D(y-1 (x, t), t). 

For fixed time t and particle X, we can define the history pt of the deformation gra
dient, the history fY of the temperature and the history gt of the temperature gradient by 

(2.1) pt(X, s) = F(X, t-s), {Jf(X, s) = {}(X, t-s), g'(X, s) 

= g(X, t-s), sE [0, oo]. 

We further define the summed history gt of the temperature gradient e): 

s 

(2.2) gt(X, s) = f gt(X, )..)d)... 
0 

l' > We assume that det F =F 0. 
e) For the existence of this integral we assume that gt(X, ·)is a measurable function on [0, oo). 
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THERMOMECHANICAL COUPLING IN MATERIALS WfiH MEMORY 443 

If fis a function oft, we denote by fthe left-hand derivative off: j(t) = Jim _!_{/(t)-
a~o a 

- f(t- a)}. 
The following definitions and two constitutive postulates form the logical structure 

of the thermodynamic theory developed. 
This structure is based on the general structure of the thermodynamic local theory 

of material proposed by P. PERZYNA in 1971 (3). 
DEFINITION 1. The ordered pair (F(X, t), {}(X, t)) = A(X, t) is called the actual de

formation-temperature configuration of a particle X of a body B at time t. 
DEFINITION 2. A local thermodynamic process (tp, tk) at particle X of a body B is 

a collection of functions given for every t E (tp, tk) 

(2.3) &x = {A( X, t), g(X, t), n(X, t)}, 

which satisfies the thermodynamic inequality 

(2.4) 
.T • I 

-?jl+tr(TF )-'Y]{}- efJ q· g ~ 0, 

at all times at which the derivatives F, D and ?jJ exist, where n(X, t) = {1p(X, t),T(X, t), 
n(X, t),q(X, t)} represents specific free energy per unit mass 1p(X, t), the first Piola-Kirchhoff 
stress tensor T(X, t), the specific entropy 'Y](X, t) and the heat flux vector q(X, t) per unit 
surface in the actual configuration y. 

It is implicitly assumed that the body forces and the rate of heat supply are determined 
by the requirement that the process obeys the laws of balance of momentum and energy. 
A symbol e denotes the mass density in the actual configuration. 

DEFINITION 3. A thermo-mechanical state of a particle X in time t is a collection of 
values which take the functions &x for particular time t E (tp, tk). 

DEFINITION 4. A description of a thermo-mechanical state of a particle X in the time t 
consists of the actual deformation-temperature configuration A(X, t), the temperature 
gradient g(X, t) and of the method of preparation of this configuration. 

To determine the actual thermo-mechanical state of a particle during an irreversible 
thermodynamic procces, it does not suffice to have the actual deformation-temperature 
configuration of a particle X but we additionally need the method of preparation of this 
configuration. 

A method of preparation of the configuration is a primitive concept in our theory. 
To give the rule of interpretation for this concept (and to be in agreement with require
ments which are formulated for each physical theory(4

)) we give a few examples of the 
method of preparation. The history of the terms appearing in the actual thermo-mechanical 
configuration of the particle X can form the method of preparation. The thermodynamic 
theory of a simple material can be developed when this method of preparation is assumed(5). 

Another example of the method of preparation is by introducing internal parameters 

C) In the present theory a definition of the actual configuration different from that introduced by 
PERZYNA [ 16) is assumed. 

e) Cf. GILES [9] and PERZYNA [16). 
( 5 ) Cf. CoLEMAN [1-2), CoLEMAN and OWEN [7]. See also [11). 
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and initial-value problems for the differential equations. The theory ofrheological materials 
with internal structural changes can be constructed by suitable interpretations of the 
parameters(6

). 

In the present theory, we choose a different method of preparation. 
POSTULATE K I. The method of preparation of the actual deformation-temperature 

configuration is the history At(X, t), sE (0, oo) and the summed history of the tempera
ture gradient gt(X, s), sE [0, oo ). 

To specify the material structure in a body B, we shall introduce. 
POSTULATE K2. The thermo-mechanical principle of determinism for the material is 

expressed by the functional relations 

(2.5) n(X, t) = Bl(At(X, ·),gt(X, ·) ), 

where 9l = {~, 9, ~' q} represents the constitutive functionals for the free energy~' stress 9, 

entropy ~ and heat flux q. 

DE:INITION 5. A local thermodynamic process described by 9x is said to be admissible 
in B if it is compatible with Postulate K2 at each particle X. 

If the constitutive functionals in (2.5) are chosen arbitrarily, it cannot be expected 
that the thermodynamic inequality (2.4) will hold. Indeed, the present paper will be con
cern~d mainly with the problem of finding the restrictions which the thermodynamic 
inequality (2.4) places on constitutive functionals. We shall treat the problem for a broad 
class of materials, defined by postulates of regularity for ~. 9, ~. q and their domain. 

For future considerations, it will be useful to introduce two linear (vector) spaces: 
V10 = {F:F = (L, A.), L-a tensor of order two, A.- a real number}, 
V3 = {k: k- a vector of three-dimensional Euclidean space}. 

In the space V10 rules are defined by 

rxF1 +fJF2 = (rxL1 +fJL2, rx.A.t +fJ.A.2), 
1 

F1 · F2 = tr(LtLD+.A.t .?.2, IFito = (F· ryr 
for rl = (Ll' At) E v10' r2 = (L2 . .?.2) E Vlo' rx, fJ- real numbers. 

In the space V3 addition, scalar multiplication, inner product and norm are defined 
pointwise, as usual. 

Introduce a cone Vt0 c V10 by 

Vt0 = {FE V10 :F = (F, fJ), F-an invertible tensor, {} > 0}. 

In a local thermodynamic process, for each time t E (tp, tk), the total history up to t 
of deformation gradient and temperature, is a function C) (At = (Ft, {}t)) mapping [0, oo) 
into Vt0 • The summed history of the temperature gradient is a function 

g: [0, oo) ~ V3 such that there exists a measurable function 
s 

g: [0, oo) ~ V3 such that g(s) = f g(.A.)d.A. fors E [0, oo). 
0 

(
6

) See PERZYNA [16], where was developed a thermodynamic theory of this material, taking into 
account highergradients of the deformation and temperature. Cf. also PERZYNA [14-15]. 

C) We assume that the elements of the set Vt 0 are the same as pairs of deformation gradient-tempe
rature. 
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(2.6) 

then (2.4) can be written 

(2.7) where 

Let us introduce the new functionals 

(/,.8) 

Then we can write (2.5) in the form(9) 

(2.9) 
E(t) = n(A1

, g'}, 
VJ(I) = ~(At, gt). 

3. Properties of constitutive functionals and their domain 

445 

We suppose that there are given two topological linear (vector) Hausdorff spaces 
<l.30 and <l3 1 • The space <l3 0 is formed from functions mapping [0, eo) into V10 and <l3 1 

is formed from functions mapping [0, eo) into V3 • In both spaces, addition and scalar 
multiplication are defined naturally. 

We take the domain of definition of constitutive functionals in (2.9) to be the subset 
!?) = c X ea. with the topology induced on !?) by ea = <l3o X ea •. Here 8 is the set of 
functions from [0, eo) into Vt0 belonging to <l30 • 

For our considerations we need to introduce a fundamental definition concerning 
the functions vanishing rapidly with ~. This definition is different from that introduced 
by COLEMAN and 0WEN [7]. 

DEFINITION 6. Let a > 0. A one-parameter family of pairs of functions (f!>,, h,), where 
<P,: [0, eo)-+ V10 , h6 : [0, eo)-+ V3 for ~ e (0, a) is a regular family of functions vani
shing rapidly with ~if: 

a) 1\ f!>,, h, are continuous functions on [0, oo) and furthermore f!>, is a piecewise 
c5e{O,a) 

continuously differentiable functions on [0, eo); 

b) V V V A 1\ lf!>,(s)lto ~ Kx[o,,1(s) ~ 1\ I dd f!>,(s)l ~ Nx[o,,J(s) 1\ 
K> 0 M> 0 N> 0 c5e(O,a) se[O,oo] S 10 

lh(s)IJ ~ Mx[o,,1(s)~. 

Here X[o,,1 is the characteristic function of the interval [0, ~] and ! f/>6 is the right-hand 

derivative of l/J6 : 

{
8

) 1: and ~ are elements of V1 0 x VJ • 
(

9
) To simplify notations, we shall omit consequently a particle X in all formulae. 
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Given a number a~ 0 and functions ('l', g) E <n, we may define new functions: 

(3.1) {
'l'( a) for s E [0, a], 

L'l's= 
d ()- 'l'(s) fors E (a, oo); 

_ {g(a) for sE [0, a], 
lug(s) = g(s) for sE (a, oo ); 

Su'l'(s) = 'l'(s+a) for SE [0, oo); sug(s) = J g(A+a)d). for SE [0, oo). 
0 

The pairs (Lu, lu) and (Su, su) are for fixed a operators (transformations) of space \8. 
They are helpful is formulating the following postulates. These postulates are similar 
in a part to those introduced by CoLEMAN and OwEN [7]. 

PosTULATE PI. The constitutive functionals l:> and n are continuous functions on !!) . 

PosTULATE P2. If (tJ>~, h6) is a regular family of functions vanishing rapidly with b, 
then (tP~, h~) is a Moore-Smith convergent sequence (1°) in <n ·on (0, a) with the limit 
ot E <n, where Of: [0, oo)-+ 0 E Vlo X v3. 

PosTULATE P3. There exists a subset ~ c !!) , which is dense in !!) . Furthermore, if 
('l', g) E ~ then 'l' is continuously differentiable and g is continuous (11

) both on some 
interval [0, ,8], ,8 > 0 .. 

PosTULATE P4. If ('l', g) E p) and (tJ>d, hd) is a regular family of functions vanishing 
rapidly with ~. then for sufficiently small ~. the pair ('l'+tP~, g+h~) is in p) and there 
exist Drl:>: ~-+ V10 and D9 l:>: p)-+ V3 such that (1 2

) 

(3.2) l:>('l'+lJ>d, g+hd) = l:>('l', g)+ Drl:>('l', g)· tP6(0)+ D9 l:>('l', g)· hcJ(O)+o(~). 
POSTULATE P5. If ('JI, g) E g}, then (L~'JI, fug) E ~ and (Sd'JI, sug) E ~ for all a;;:::: 0, 

and the limit (1 3
) 

(3.3) 

exists. 
PosTULATE P6. The functionals Dr\', D9 \', dr l:> and d9 \',when regarded as functions 

on ~ are smooth in the following sense. Let f stand for Drl:>, D9 ~, dr\' or d.,l:>. If 

('l', g) E ~, then for each regular family of functions (tJ>d, h~) vanishing rapidly with ~. 

(3.4) lim f('l'+lJ>cJ, g+hd) = f('l',g). 
6--+0+ 

The functionals appearing in Postulate P6 (as in P4 and P5) have a certain type of 
interpretation. Roughly speaking Dr\'('l', g) and D9 l:>('l', g) measure the rate of change 
\'in consequence of the present rates of change of 'l' and g- i.e., ins= 0, and drl:>('P, g) 
and d11 l:>('l', g) measure the rate at which l:> would be changed if it is possible to ignore 
the present rates of change of 'l' and g. 

(1°) Cf. ENGEKLING (8]. 
(

11
) Bear in mind that g is linked with g by (2.2). 

1 
(1 2

) The sign o(£5) denotes a term which satisfies the condition lim (fo(b) = 0. 
6--+0+ 

(1 3
) The notation of this limit means that: if Lu'P = Su 'P for a e [0, oo), then drH'P, g)= 0, and 

if lai = 3uC for a e [0, oo), then c9 p('P, g)= 0. 
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We wish to find an expression for the derivative of the free energy. 
In an admissible thermodynamic process, the left-hand derivative 1p(t) is defined by 

(3.5) 1p(t) = lim_!_{1p(t)-1p(t-a)}. 
a~O+ (1 

If it exists, is given by the formulae 

(3.6) 

where was used (3.1 ), for a, s ~ 0, 

.tlt-a(s) = A(t-a-s) = A'(s+a) = SaL'l'(s), 

s s 

g'-a(s) = J g~-a().)dA. = J g'(a+ A.)dA. = 3ag'(s). 
0 0 

The following theorem demonstrates a property of chain rule for V'· 
THEOREM 1. If an admissible local thermodynamic process is such that (At, g') E ~ 

for t E (tp, tk), then for that process ?jl(t) exists and obeys the formula: 

(3.7) 1f(t) = Dr\'(A', gt) · A(t)- D9 \'(At, gt) · g(t)+dr\'(A', g1
) +d9 \)(A', g'). 

Proof. We can write: 

(3.8) 

By Postulate P5, we have 

(3.9) 

Let us define (1 4 ) 

(3.10) cJ>aCs) = LaAt(s)-A'(s) = (A'(a)-A'(s))X£O,a](s). 

Since, by Postulate P3, At is continuously differentiable on the interval [0, /1] with p > 0, 
for each a in this interval, 

jA'(a)-At(s)j 10 ~ Ja I ~ A'(A.)I dA. ~ aK, for sE [0, a), 
s 10 

where K = maxi d~ A'( A.) I < oo. 
Ae[O,p] 11. 10 

Hence, we hav~ 

By the definition of (/)a and K 

I ! <P.(s)l, • .;; Kz[o .• 1(s). 

(1 4 ) A part of the proof concerning of tPa is the same as in [7]. 
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If we put 

(3.11) 

then 
a s a 

his) = (J g'().)d}.- J gt().)d). )xro.aj(s) = J gt().)dJ.xro.a1(s). 
0 0 s 

For each a e [0, ,8], by Postulate P3, we have 

a 

lha(s)b ~ J lt(A)I3d). ~ MX£O,a](s)a, 
s 

where M = max 11().)13 < oo. 
Ae(O,fl) 

W. KOSINSKI 

Thus ($("ha), with (/)a given by (3.10) and ha by (3.11), is a regular family of functions 
vanishing rapidly with a, and by Postulate P4 

(3.12) __!__ {p(At, gt)-p(LaAt, /agt)} = - _!__ {p(A,+$a, gt+ha) -p(At, gt)} 
(J (J 

= Drp(At, :gr). ( At(O)-At(a) )- D,p(Ats gt). _!__ ( g'().)d}.- _!__o(a). 
a ao a 

The function At is differentiable on [0, ,8], hence 

lim_!_{At(O)-A'(a)} = lim_!__{A(t)-A(t-a)} = A(t). 
a -tO+ (J a-+O+ (J 

The function g is continuous on [0, ,8] and 

a 

lim _!__ J g'().)d). = g'(O) = g(t) . 
a--+0+ (J 0 

Thus, in the limit, the expression (3.12) yields 

(3.13) lim __!__ { p(A', g')- p(LaAt, lagt)} = D rP(A', g') · A(t)- D,p(A', gt) · g(t). 
a--+0+ (J 

It follows immediately from (3.13), (3.9) and (3.8) that ,P(t) exists and obeys (3.7). 

4. Consequences of the thermodynamic postulate 

Let us take a particle X of material for a time t e (tp, tk). Let us choose arbitrarily 

err, g') E ~. We may be certain that there exist several admissible processes correspond
ing to this choice. But, for each of these processes, in the state in the time t the actual 
deformation-temperature configuration A(X, t) is the value of Ft(s) in s = 0, and n is 
given by the constitutive relations (2.5). It should be borne in mind that in this state the 
inequality (2.4) ought to hold. 

Let 9x be an admissible local process with (A', gt) e ~ for t e (tp, tk). It follows from 
Theorem I that tjJ(t) exists in the process and is given by (3.7). The thermodynamic ine-

http://rcin.org.pl



THERMOMECHANICAL COUPLING IN MATERIALS WITH MEMORY 449 

quality (2.4) should hold in every state t from the interval (tp, tk). We may use (2.6), (2.9) 
and (3. 7) to write (2. 7) in the form e 5) 

(4.1) [n(At, gt)- Dp(At , gt)}· a-drp(At, gt)-d
9

p(At, gt) ~ 0. 

Let us form the basic theorem: 
THEOREM 2. It follows from the thermodynamic inequality and Postulates P 1-P6 that: 

1. the functional n is completely determined by the functionall' through the relation 

(4.2) 

2. the functionals drP and d9 p obey the following inequality, called the dissipation ine

quality (1 6
), 

(4.3) 

p r 0 0 f. Let us define functions e 7) 

s- (J 
{4.4) <P,(s) = -Tsrx[o, 8j(s) 

for an arbitrary vector rE V1 0 and each lJ e (0, a), a > 0. They are continuous and 
piecewise smooth functions of s for each lJ fulfilling the following bounds: 

I<P.,(s)lto ~ 1FitoX[o,8J(s)lJ, 

.I d r 12s- (J I -d (/).,(s) = -.i.-Fx[o,c51(s) ~ 1FitoX[o,tJ1(s). 
s lto u 10 

Let us take an arbitrary vector k E V3 and for each lJ E (0, a) define 

(4.5) 
s 

htJ(s) := f kdAX[o,tJ1(s). 
0 

For each lJ in an interval (0, a), we have 

lh.,(s)l3 ~ lkbx[o,.,1(s)lJ. 

Thus the one-parameter family of functions ((/)6 , h8) is a regular family of functions 

vanishing rapidly with lJ. Since (At, gt) is in ~, it follows from Postulate P4 that, for 

sufficiently small lJ, the pair (Ll.,, d!J) is in ~' where 

(4.6) 

Thus for small lJ, the inequality (4.1) must hold with (At, g') replaced by (.16 , d8), 

(4.7) [n(L1.,, d.,)- Dl'(L16 , d8)] • (A(t)+F, -g(t)-k)-drl'(L16 , d6)-d9 l'(LlcJ, d6) ~ o, 
where was used 

(1 5
) It was assumed (Dr~. 09~) = D~. 

(1 6
) Cf. GURTIN and PIPKIN [10]. 

e 7 ) Cf. COLEMAN and OWEN [7]. 
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Since (f/J~, h~) forms a regular family of functions vanishing rapidly with d, it foJiows from 
(4.6) and Postulates PI, P2 and P6 that, if we let o go to zero in (4.7), we obtain 

(4.8) [n(At,gt)-Dp(At,gt)]· (A(t)+F, -g(t)-k)-drt>(At,gt)-d9 p(At,gt) ~ 0. 

Clearly, (4.8) can hold for all (F, k) E V10 x V3 only if the coefficient of (A(t)+F, - g(t) -k) 
vanishes, and the sum of the remaining terms is not negative. Thus ( 4.2) and ( 4.3) are 
true. Let us note that the functionals Drt> and D9 p were defined only for histories (At, gt) 
belonging to~. Hence the relation (4.2) is here meaningful only for functions in~. How
ever, since n is assumed continuous on {J) and ~ is dense in !l}, n is determined by its 

restriction to ~. Thus n is completely determined by the functional p, through (4.2)~ 
although Dp(At, gt) in (4.2) has been defined only for (At, gt) E ~. 

In the present theory, an interesting fact is that, in contrast to the results obtained by 
CoLEMAN [I] and CoLEMAN and 0WEN [7] and in agreement with the recent works of 
GURTIN and PIPKIN [10] and Me CARTHY [12], the heat flux is determined by the func
tional for the free energy. There is the property of the constitutive relation under consid
eration. Let us consider a characteristic state of a material, namely a state which is 
described by a constant history of the deformation gradient, the temperature and the 
temperature gradient. For this state, we prove two theorems. 

THEOREM 3. If a description of a state is given by a constant history (At, g0 i) E ~, 
where g0 = g(t) = gt(s)for all sE [0, oo), and i(s) =sand At(s) = A(t) for all sE [0, oo), 
then 

(4.9) 
s 

Proof. If A'= At andg'(s) = g0 i(s) = g0 s = J g0 dJ.., then LaAt =At, Sa~H =At 
0 

for u ~ 0, and 

If we put 

for sE [0, u], 

for sE[u,oo); 

s 

311(gos) = J god). = gos. 
0 

(4.10) ha(s) = la{g0 s)-g0 s = g0 i(u-s)x£o,a1(s) for u E (0, a), a> 0, 

then it is easy to prove that pairs (Ot, h11) form a regular family of functions vanishing 
rapidly with u, and by Postulate P4, for sufficiently small u, we have 

p(At,/a(g0 i))-p(At,g0 i) = D9 p(At,g0 i)· (g0 u)+o(u). 

Hence 

(4.11) 

On the other hand, Postulate P5 yields: 

(4.12) lim _!_{t>(LaAt, la(g0 i))-p(SaAt, 3a{g0 i))} = lim _!_{p(At, la(g0 i)) 
a--+-0+ 0: a--+-0+ (1 

-p(At,g0 i))} = d9 t;>(.t1t,goi). 
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It follows immediately from (4.11) and (4.12) that the equality (4.9) holds. 
A consequence of Theorem 3 is 

451 

THEOREM 4. If the assumptions of Theorem 3 are satisfied, then the dissipation inequal
ity ( 4.3) becomes the usual heat conduction inequality: 

(4.13) 
1 

- (!{} q ·go ~ 0. 

Proof. In our case, Theorem 2 and (4.12) yield 

(4.14) d9 l>(At,g0 i) ~ 0 and (!~ q = D9 l>(At,g0 i). 

Comparison of these results with Theorem 3 gives 

1 . 
(!{} q · g0 = D9 l>(At, g0 z) · g0 = d9 l>(At, g0 ) ~ 0. 

5. State of equilibrium and memory restrictions 

In this general topological structure, we cannot prove such properties for the free 
energy in a state of an equilibrium as have been obtained in the case of a material with 
fading memory. To do this, we should provide our structure with a relaxation property e8). 

This property will be given in Postulate Al. 
Now, we introduce a definition of a state of equilibrium of a material. 
DEFINITION 7. We say that the deformation-temperature configuration A corresponds 

to a state of equilibrium if the description of this state is given by (At, Ot), where At(s) = A 
and Ot(s) = 0 for all sE [0, oo). 

Note that for a state of equilibrium LaAt = At, Sa A = At, laOt = Ot, 3aOt = Ot 
for a ~ 0. If we substitute this functions into (3.3), we arrive at the proof of the theorem. 

THEOREM 5. In a state of equilibrium the dissipation d r l' + d9 l' vanishes. 
Given a number a~ 0 and functions (P, g)e<:a, we may define new functions e9

). 

(5.1) 

c<a>IJI(s) = fP(O) 
\IJ'(s-a) 

for sE [0, a], 

for 

for 

for 

sE (a, oo); 

sE [0, a], 

se(a,oo). 

The function c<a>g we shall call the homothermal continuation of g by the amount a. 
The operators (c<a>, c<a>) introduced will be helpful in formulating the relaxation property. 

For further investigations, it is necessary to define a set 

s 

(5.2) rio :: {g E C81 : g(s) = f g().)d). A g(O) = 0}. 
0 

Elements of the set ri0 we denote by g. 

(1 8 )COLEMAN and MrzEL [4-6] introduced a relaxation property for the domain of functionals in the 
Banach space. COLEMAN and OWEN [7) assumed a relaxation property for the topological space. 

(1 9
) c<ahp is called the static continuation of tp by the amount a. Cf. [7]. 
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We add to the six Postulates PI-P6 the following 
POSTULATE Al. If (lJI, g) E!?}, then (2°) (lJ'(O)t, Ot) E ~ and (C<a>lJI, c<a>g) E qi for 

all f1 E [0, oo), and (c<a>lJI, c<a>g) is a Moore-Smith convergent sequence in <n on [0, oo) 
with the limit {lJ'(O)t, Ot). Furthermore, for each (lJ', g) E !?}, the function (c<·>lJI, c<·>g): 
[0, oo) -+ <n is continuous. 

PosTULATE A2. The set f§ 0 is dense in ~1 (2 1
). 

Since the constitutive functionals are continuous, it follows from Postulate AI that 
we may define new functions, called equilibrium functions, 

lim v(c<a>lJI, c<a>g) = v(lJ'(O)t, Ot) = p#(lJ'(O)), 
a-+oo 

(5.3) lim G(c<a>lJI,c<a>g) = G(P(O)t, Ot) = S#(lJ'(O)), 
a-too 

lim~(c<a>lJI, c<a>g) = ~(lJ'(O)t, Ot) = q#(lJ'(O)). 
a-+oo 

Let us note that p#, S# and q# are defined on a set 

(5.4) .91 = {FE V10 : (Tt, Ot) E ~} c Vt~. 

Let (At, gt) = (lJ', g) E ~- Then histories (At+a, gt+a) = (c<a>tp, c<a>g), for a~ 0, 

define a process. For this process A(t+ a) = 0 and g(t+ f1) = 0 for a > 0. Thus 
Theorem 1, the dissipation inequality (4.3) and Postulate AI yield 

(5.5) ip(t+f1) = drv(At+a, gt+a)+d9 v(At+a, gt+a) ~ 0 for f1 > 0 . 

That is, for all f1 > 0, the left-hand derivative v(c<a>lJI, c<a>g) with respect to f1 exists, 
and is not positive. It is clear from Postulate AI and PI that v(c<a>lJI, c<a>g) is a continuous 
function of f1 for all f1 ~ 0, and it follows, by (5.5), that v(c<a>lJI, c<a>g) is a non-increasing 
function of f1 for all f1 ~ 0 i.e.: 

(5.6) 

In view of (5.3)1 , we have: 

(5.7) v(lJI, g)~ p#(lJ'(O)). 

The last inequality is true for each (lJ', g) E !!}. It follows by Postulate A2 that the set 
{(lJI, g) E ~: g E rJ0 } is dense in!?} . Hence the inequality (5.7) is true for each element 
from ~ and we obtain 

THEOREM 6. If (lJI, g) E ~, then 

(5.8) v(lJI, g)~ p#(lJ'(O)). 

This theorem expresses the well known the extremum property for the free energy 
for a broad class of materials, including materials with fading memory, and for a rigid 
conductor has been obtained by GuRTIN and PIPKIN [10] (2 2

). 

Now, we prove the following 

(2°) 'l'(O)t, denotes a constant history with the value 'l'(O). 

(21
) ~ 1 denotes the image of~ under the projection of ~ on ~ 1 • 

(22
) Cf. COLEMAN [1), COLEMAN and GURTIN [3), COLEMAN and 0WEN [7) . 
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Re mark. If e3
) A E d, then for each Q E Vlo there exists an interval (0, b), b > 0 

such that (~1 + 6Q) e d for a e (0, b). 
Proof. Let Q e V10 and A E d. For every 6 > 0 put 

(5.9) 

{
A+(6-s)Q 

"1[6, Q](s) = A 
for se[0,6], 

for se(o,oo); 

It is clear that since 6 varies an interval (0, a), a > 0, the functions (<J>~il), Ot) form a re
gular family of functions vanishing rapidly with a. Therefore, since (At, Ot) e fi}, it is 
a consequence of Postulate P4 that (A [a, Q], Ot) e q} for all a in some non-empty interval 
(0, b). Hence, by Postulate AI, (c<a)A[o, Q], Ot) e ~' for each a e (0, b) and a~ 0, 
and also 

(5.10) lim (c<a>A [o, Q], Ot) = (A[6, Q](O)t, Ot) = ((A+ 6Q)t, Ot) e.@. 
a-too 

The following assumption of differentiability for p# on d seems naturaL 
PosTULATE A3. There exists a function Vp# :d -+ V1 0 such that for each /1 ed: 

(5.11) lim _!_{p#(A+a!J)-p#(A)} = Vp#(V) · Q for Q e V10 • 
G-10+ (] 

Note that we here assume only that the gradient Vp#(A) exists for A in srl. This is 
similar to our earlier assumptions concerning DrP, D9 p, dr\' and d9 p. 

The last postulate gives e4
): 

THEOREM 7. If A E d, then 

(5.12) Drp(.t1t, Ot) = Vp#(A). 

P r o o f. Let .11 e d. From the proof of Remark, we know that (A [a, Q], Ot) is in 

~ for all a in some interval (0, b) and for arbitrary Q e V10 • Moreover, (A+ o!J) e d. 
By Theorem 6, we have 

(5.13) p(A[o, Q], Ot) ~ p#(A+o!J). 

Let us define two expressions 

(5.14) 

1 
§"15 [!J] = -r {p#(1l + a.Q)- p#(A)}, 

Yf6 [Q] = {- {p(A[o,!J], Ot)- p(At, Ot)}. 

In view of Theorem 6 and (5.3 1), we have: 

(5.15) 

Note that by Postulate P4 

(5.16) limYf~[Q] = Drp(PAt, Ot) · Q, 
c5-!0 

(2 3
) The set d was defined by (5.4). A similar remark was proved in [7]. 

(24
) Cf. COLEMAN [1], CoLEMAN and MIZEL [5], COLEMAN and OWEN [7]. 
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because the functions ({/>~0>, Ot), defined by (5.9), form a regular family of functions 

vani&hing rapidly with b. On the other hand, Postulate A3 yields 

(5.17) lim.F~[.Q] = V p*(A) · .Q. 
~-+0 

It is clear from (5.15)-(5.17) that 

(5.18) {Dr~(A!, Ot)-Vp*(A)} · .Q ~ 0, 

and since this relation must hold for every .Q E V10 , (5.12) follows directly. 

Since Dr~(At, Ot) = 6(At, Ot) = S*(A), therefore a consequence of Theorem 7 is 
THEOREM 8. The equilibrium functions p# and S# obey the c/assifica/ formula (2 5) 

(5.19) S*(A) = Vp#(A). for each A E d. 

We shall prove an interesting theorem(2 6
). 

THEOREM 9. In a state of equilibrium, D9 ~ = 0 and therefore q# = 0. 
Proof. Let (At, Ot) describe a state of equilibrium. We define a regular family 

c5 

of functions vanishing rapidly with b as (Ot, h~), where h6(s) = J kdJ.xro, 61 (s) for ar-
s 

bitrary k E V3, bE (0, {3), {J > 0. 
It follows from Postulate P4 that 

(5.20) ~(At, Ot+h~)-~(At, Ot) = D11 ~(At, Ot) · kb+o(b) for bE (0, a). a~ {3. 

But from Theorem 6, we have 

(5.21) 

Since 

(5.22) 

then, by (5.21) 

(5.23) 

lim~{\>(At, Ot+h~)-~(At, Ot)} = D11 ~(At, Ot) · k, 
c5-+0 u 

D11 ~(At, Ot) · k ~ 0, 

and since this relation must hold for every k E V3 , D11 ~(L1t, Ot) = 0. Hence, by Theorem 2 

and (5.3)J, we obtain q# = 0. 
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