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A shearing crack in a semi-space under plane strain conditions 

R. DMOWSKA and B. V. KOSTROV (WARSZAWA-MOSCOW) 

A TWO-DIMENSIONAL static problem for an arbitrarily situated crack in a half-plane is solved 
by introducing a singular integral equation for displacement jump derivative on the crack line. 
The integral equation is obtained using the solution for a single dislocation in a half-plane 
and is then reduced to a set of simultaneous linear equations. Two cases are distinguished: 
one, when the crack intersects the free boundary, and the other when it does not. As an example, 
stress-intensity factors and the displacement jumps versus a distance along the crack for some 
initial stress conditions are obtained. · 

W pracy zostal rozwillzanY problem statyczny szczeliny scinania w p6lprzestrzeni spr~iystej 
w warunkach piaskiego stanu odksztaicenia. Wprowadzono osobliwe r6wnanie caikowe dla 
pochodnej skoku przemieszczenia na Iinii szczeliny, kt6re uzyskano wykorzystujllc rozwillzanie 
dla pojedynczej dyslokacji w p61plaszczyfnie, a nast~pnie przeksztalcono je w uklad r6wnan 
liniowych. Uklad ten rozwillzano numerycznie. Uwzgl~dniono oba mozliwe polozenia szczeliny, 
tzn. szczelin~, wychodZClCCl na powierzchni~ pod dowolnym kCltem, oraz dowolnie poloi:Ofill 
szczelin~ wewn~trznll. Na zakonczenie pracy wykonano kilka przyklad6w liczbowych, obli
czajllc wsp6lczynniki intensywnosci napr~i:en oraz rozklad przemieszczenia u wzdlui: szczeliny, 
w polu stalych napr~i:en scinajllcych. Obliczenia dotyczyly zar6wno szczelin powierzchniowych, 
jak i wewn~trznych, a ich celem bylo przede wszystkim zbadanie zbiei:nosci uzyskanych roz
willzan, co zostalo w pelni potwierdzone. 

B pa6oTe AaHo pememre nnocKoii 3aAa~m; AIDI Tpe~Hbi cpeaa B ynpyroM nonynpoCTpaHCTBe. 
I1oJib3YHCb peillCHl-J;CM Wlfl CAHHCTBCHHOH AHCJIOKa~IU'l B noJiynpOCTpaHCTBC BBCACHO ClUII'Y· 
JIHpHOe H.HTCI'pa.JibHOe ypaBHCHH.C AJIH npOH.3BOAHOH CKa'IU<a CMC~CHI'lfl Ha J!Hllllil Tpe~l'lHbi, 
KOTOpoe npeo6paaoBaHO B CJ'lCTCMY JiaHCHHbiX ypaBHCHI1;H. 3Ty CJ'lCTCMY pCillCHO HYMCpH
'llCCKH.. 3aAat.Ia peilleHa AJIH o60HX B03MO>KHbiX CJIY'llaeB llOJIO.>KCHH.H Tpe~aHbi, T. e. AIDI 
Tpe~HHhi, BbiXOAH~eii Ha cao6oAHYIO noaepXHOCTb- u AJUI BHyTpeHHoH: Tpe~Imbi. B aa
Kmot.IeHH.I'l pa60Tbl CACJiaHO HCCKOJibKO HyMepH'llCCKI'lX llpH.MCpOB, Bbl'l!HCIDIH K03<l><P~eHTbi 
llHTCHCliBHOCTI'l HanpH.>KCHuH H pacnOJIO>KCHHC CMC~CHI'lfl U Ha Tpe~H;HC llp!'l llOCTOHHHbiX 
HanpmKCHaHX, C ~eJibiO H;CCJICAOB::tHHH CXOAHMOCTH; llOJIY'llCHHOI'O B pa60TC pCillCHHH. 

Introduction 

THE FACT that a great number of crack problems have been solved reflects their importance 
in the field of fracture mechanics (see, e.g., Fracture, 1968; PANASJUK, 1968). Most of 
the solutions are limited to the case of tensile rupture which is of great importance for 
engineering applications. Some problems of longitudinal shear cracks have also been 
solved for reasons of their mathematical simplicity. In geophysical applications (i.e., earth
quake mechanics), however, the shear cracks are of great importance because of the well
known fact that compressive stresses in the earth's interior must be very high. We shall not 
enter into discussion of possible mechanisms of sliding deep in the interior of the earth, but 
we shall mention here that the shear crack with friction may be a very good model for 
faulting in earthquakes sources (AKI, 1971, BURRIDGE and HALLIDAY, 1971). When con
sidering corresponding problems we must take into account surface of the earth which 
is free of tractions. A somewhat usual case is, when the fault is strongly elongated and 
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422 R. DMOWSKA AND B. V. KOSTROV 

parallel to the earth's surface so that the problem may be reduced to the two-dimensional 
one. 

Recently, such a problem was studied for the case of strike-slip fault- i.e., for a lon
gitudinal shear model [5, 14, 15, 16]. For dip-slip fault, when displacements are in the 
vertical plane, the corresponding problem refers to the plane strain. Although methods for 
solving plane crack problems in a half-space have been developed (BowiE, SAVIN, SIH, 
PARIS, ERDOGAN), they are useful only for tensile cracks because they are based on the con
formal mapping, and for shear crack the normal components of displacement and stress 
vectors must be continuous across the crack surface, which after the mapping cannot be 
reformulated as a local condition. Owing to the lack of a proper mathematical technique, 
some simplified models were considered - that of a single dislocation line within a half
space or some prescribed distribution of dislocations on plane of the fault (CHINNERY 
and PETRAK, 1968). 

This suggests the following approach to the crack problem: 
(a) introduce an initially unknown distribution of edge dislocations, slip planes of 

which coincide with the crack plane; 
(b) solve the problem of a given distribution of dislocations for the shear stress on 

the crack plane; 
(c) requiring the stress to be the prescribed stress on the crack, obtain an integral 

equation for the dislocation density; 
(d) then, solving the equation numerically, obtain the solution of the crack problem. 
Such an approach is realized below. 

1. Mathematical formulation 

Consider a homogeneous elastic half-space having Lame's constants A and fl and 
containing a strip-line crack which reaches the surface (surface crack, Fig. la) or is em
bedded into the half-sp:2ce (internal crack, Fig. lb). 

a 

FIG.l. 

b 
------------~,---------~--~ 

I 
I 

I 

I 
I 

I 

Denote by rx the angle between the surface of the half-space, and normal to the crack. 
Let us assume that external loads would create in a half-space without a crack a stress 
field a~, which would not depend on the coordinate along the crack edge (x3). Then we 
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FIG. 2. 

obtain a plane strain problem, when no quantities depend of x 3 (Fig. 2a and 2b), and 
the crack surface is given by 

(1.1) x 1 = -ssina, x 2 = scosa, 0 ~ s ~ b 

for .surface crack, or 

(1.1') x 1 = -ssina, x 2 = scosa, a~ s ~ b 

for internal crack. 
Our objective is to find the stress perturbation which is connected with introduction of 

the crack into the half-space. The corresponding displacement vector (u1 , u2) will be con
nected with the stress field perturbed by the crack formation as follows: 

(1.2) 

where the comma denotes partial differentiation with respect to the Cartesian coordinates 
and the summation convention is assumed. Equation (1.2) may be rewritten in the form: 

(1.2') 1:11 = l.u~c,1c+ 2p,ui.h i,j, k = 1, 2, 

where iiJ = (]iJ- a8 is the stress disturbance created by the crack. 
We suggest that the external forces do not change during the crack formation. 
Then -r11 will satisfy the homogeneous equilibrium equations 

(1.3) iij,j = 0 

and, independently from external tractions applied to the surface x 2 = 0, disturbance Tu 
must satisfy the following boundary condition: 

(1.4) -r12 = 0 for x2 = 0, i = 1; 2. 

Let us assume, that the confining pressure corresponding to the initial stress ttd is 
sufficiently high to prevent any opening of the crack - i.e., the crack is a purely shear 
one. Consequently, we obtain the following. condition on the crack line: 

(1.5) u;i - u; = 0 on the · crack surface, 

3 Arch. Mech. Stos. nr 3/73 
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424 R. DMOWSKA AND B. V. KOSTROV 

where u,. = uini = u 1 cos !X+ u2 sin 11, and "plus" and "minus" superscripts denote here 
and hereinafter quantities on different sides of the crack, as in Fig. 2. 

Also, the normal component of the stress must be continuous on the crack, which 
gives 

(1.6) -c:--c; = 0, 

because all components of the initial stress u8 are continuous. Here 

T11 = 'fijninj = T11 COS2!X+T22 sin2~X+2T12 COS!XSin!X. 

For the sake of simplicity, we assume that there is no friction between the crack sides. 
Then shear stress on the crack line must be zero, or 

(1.7) -c, = -u? = f(s), 

where 

(1.8) 

is a given function on a crack line [Eq. (1.1) or (1.1')]. 
Since the displacement ui must be singlevalued, one has the following conditions at 

infinity: 

(1.9) ui --. 0 as r --. oo , 

where r = y xf +xi. Then, for stress components, it follows that 

(1.9') TjJ = O(r- 2) as r--. oo. 

For a surface crack [Eq. (1.1)] an additional condition must be stated at the point 
r = 0 which provides the uniqueness of the solution: 

(1.10) T11 = O(r;.) as r--. 0, A > -I. 

Equations (1.2'), (1.3), together with the boundary conditions (1.4) to (1. 7) and the 
additional conditions (1.9) to (I. 10), constitute complete mathematical formulation of 
the problem under consideration. 

Unfortunately, there does not exist any straightforward analytical approach to the 
problem. There exists, however, a closely related problem, solution of which may be 
obtained very easily- namely, the problem of Somigliana's dislocation. This problem 
differs from that just formulated in that the condition (1. 7) is relaxed to 

(l.Il) T,+ - -c; = 0 on the crack line, 

and an additional condition which specifies the tangential displacement jump is formul
ated: 

(1.12) ut-u; = u(s) on the crack line. 

Here u, = -u1 sin~X+u2 cos!X, and the function u(s) is assumed to be known. Suppose 
that the analytical solution for the last problem is constructed for an arbitrary function 
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A SHEARING CRACK IN A SEMI-SPACE UNDER PLANE STRAIN CONDITIONS 425· 

u(s ). Then, if we were able to find such a function u(s) that the corresponding shear stress 
distribution would be f(s), our main problem would be solved. Next, the problem of 
Somigliana dislocation may be reduced to the Volterra one, which is characterized by 
the specific function u(s): 

{
1 for s<s1 , 

(1.13) u(s) = uv(s, st) = 
0 for s > s1 . 

In fact, if r1J> (x 1 , x 2 , s1) is the stress solution for the function (1.13), then, from the 
linearity of the problem, the stress solution for the arbitrary function u(s) will be given by 

(1.14) 

00 

rii(x1, x2) = - J u'(st) rff>(xl, X2, s1)ds1 , 

0 

where the prime denotes the derivative with respect to s1 • 

Now observe, that in our crack problem the displacement jump and its derivative 
outside the crack equal zero. Then, using the condition (I. 7), we obtain the following 
equation for u'(s1): 

a 

(1.15) J r!Y>(s, s1)u'(sl)ds1 = -f(s), 
b 

where r~Y>(s, s1) is the shear stress on the crack line corresponding to the Volterra dis
location situated at s = s1 (or, more precisely, at the point x1 = -s1 sin oc, x2 = s1 cos oc). 

Since the Eq. (1.15) contains only the displacement jump derivative u'(s1), in the case 
of an internal crack the following condition ensuring displacement continuity outside 
the crack line must be added to the equation: 

(1.16a) u(a)-u(b) = 0 

or 
b 

(1. 16b) J u'(s)ds = 0. 
a 

In the next section, we obtain a convenient expression for r~Y>(s, s1). 

2. Solution for a single dislocation 

We start from the general solution of the Eqs. (1.2') and (1.3) in the Kolosov-Musk
helishvili form {MUSKHELISHVILI [10]): 

(2.1) 

(2.2) 

Tu +r22 = 2((P(z)+(P(z)), 

r 22- r 11 + 2ir 12 = 2 (Z(P'(z) + P'(z)}; 

2p,(u1 +iu2 ) = x<p(z)-z(P(z)-1p(z), 

where z = x 1 + ix2 , the prime means derivative with respect to z, the bar denotes complex 
conjugation, and 

(2.3) 
A.+ 3p, 

X=---. 
A.+p, 

3* 

http://rcin.org.pl



426 R. DMOWSKA AND B. V. KOSTROV 

The function (/>, 'P and cp, "Pare related by 

(2.4) {/>(z) = cp'(z); 'P(z) = "P'(z), 

and all the functions must be holomorphic whereever the medium is assumed to be con
tinuous. 

Therefore, in our problem of single dislocation (/> and 'P must be holomorphic every
where in the half-plane lm z > 0, excluding the point z = z 1 , 

(2.5) 

where the dislocation must be situated. In the vicinity of this point, the stress components 
may have singularity of the first order. From the Eq. (2.1) it follows then that {/>(z) may 
have at z = z 1 a simple pole, whereas 'P may have a pole of second order. The corres
ponding representation for {/>(z) and 'P(z) would have the form 

a 
(/>(z) = -- +{/>1(z), 

z-z1 
{2.6) 

b az1 
'P(z) = -- + ( )2 +'P1(z), z-z1 z-z1 

where (/>1 (z) and 'P1 (z) are holomorphic in the half-plane, and a and bare complex num

bers. 
The functions cp and 'IJJ, and consequently the displacement components, will not be 

singlevalued within the half-space, but if we make a cut from z = z 1 to z = 0, then the 
displacements will be single-valued and will have a jump across the cut. 

From the conditions (1.5) and (1.13) it follows that the complex displacement jump 
must be equal to ieirt.. Then from (2.2), (2.4) and (2.6), we have: 

(2.7) 

From the condition that no external force is applied on the dislocation point we obtain 

(MUSKHELISHVILI, 1966): 

(2.8) 2ni(a-b) = 0. 

It follows then that 

(2.9) 
f-le-ia. 

b= -~--
n(x+l) 

It now remains only to calculate the functions (/> 1 and 'P1 , holomorphic everywhere 
within the half-space. To this end, we use the boundary conditions on the half-space surface 

(1.4) or 

(2.10) r22 +ir12 =0 for x2=0. 

Using the Eqs. (2.1) and (2.6), we obtain: 

T22+iT12 = {/>1(xt)+{/>t(x1)+xt (/>~(xt)+'Pt(x 1 )- ( f-l I) {eia.+e-ia. 
n x+ x 1 -z1 

+ e-i~ _ (x1 -:Z 1)eia.} = O. 
x 1 -z1 (x 1 -z1)

2 
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Note that (P1 (x1) is a boundary value of a function which is holomorphic within the 
half-plane Imz < 0, and rewrite this equation in the following form: 

(2.11) 

Both sides of the Eq. (2.11) are boundary values of functions which are holomorphic 
within the upper and lower half-planes, respectively, and consequently are holomorphic 
everywhere. It follows from the condition (I .9') that the functions must tend to zero at 
infinity. We conclude then that both sides of the Eq. (2.11) are equal to zero. Now, we 
easily find that 

(2.12) 

(2.13) 

The Eqs. (2.6), (2.9), (2.12) and (2.13) constitute the solution sought for. From (2.6) 
it follows that the normal and shear components of stress on the crack line are given by 

(2.14) T~Y>-irr<Y> = (P(z)-(P(z)-e2i«(Zcp'(z)+P(z)). 

Now, using the Eqs. (2.6), (2.9) and (2.12) to (2.14) and evaluating the real and imagin
ary parts of the Eq. 2.14, we obtain: 

(2.15) 

and 

(2.I6) 

n(x+ I) 
2p, 

I s+s1 cos2et 
i(Y J = -- - --=----::----:----

t s-s1 s2 +s1
2 + 2ss1 cos2et 

4s1 cos et(s- s1)(s3cos 3et + 3s2 s 1 cos a+ 3siscos a+ si cos 3a) 
(s2 +sf + 2ss1 cos2et)3 

Now, we are in a position to return to our basic crack problem. 

3. Integral equation for the crack problem 

Introducing the expression for r~Y> from the Eq. (2.15) into the Eq. (l.I5), we obtain 
the following singular integral equation for u'(s), the derivative of the displacement jump: 

b b 

(3.1) I J u'(s1)ds1 I JK( ) '( )d _ x+ 1 ji( ) - + - S, S1 U S 1 S1 - -- S 
n s1 -s n 2p, 

a a 

for a< s< b, 

where 

(3.2) K 
s+s1 cos2et 

(s, st) = ~---=-2-----
(s2+s1 + 2ss1 cos2a) 

4s1 cos a(s-s1) (s3cos3et+ 3s2s1 cos et+ 3srscos a +si cos 3 et) + ------~----~~~~~----~~----------~ 
(s2 +sf + 2ss1 cos2ocP · 
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42~ R. DMOWSKA AND B. V. KOSTROV 

For the surface crack, we obtain the same integral equation, where only a must be 
replaced by zero. 

Though we have restricted ourselves to the case in which there is no friction between 
crack surfaces, we note here that friction may easily be accounted for by a slight modifi
cation of the above equations. Consider, for example, the case of Coulomb friction. Then 
in place of the condition (1. 7), we should have: 

(3.3) 

where k is the coefficient of friction. Introducing into this equation the stress perturba
tions r, and Tn, we obtain: 

(3.4) 

Now, after examining the previous considerations, we conclude that to account for 
friction we must put 

(3.5) f(s) = -a~-ka~ 

and 

(3.6) 
s+s1 COS2(l 

K(s,s1)= -
(s2 + sf + 2ss 1 cos 2(l) 

4s 1 cos (l(s- s 1) (s3cos 3(l + 3s2 s 1 cos (X+ 3sf scos (X+ sf cos 3a) 
+------~--~~~--~~----~~-------------

(s2 +si+ 2ss1 cos2(l)3 

k 4sfcos2a(s3sin4(l+ 3s2s1 sin2a-sf sin2a) 
+ (s2+si+2ss1 COS2(l)3 • 

We shall not go into greater detail of the friction case, but one must understand 
that in this case essential properties of the integral equations will be the same as for 
the case without friction, which will be explained below. 

The properties of the integral equation (3.1) are quite different, depending on whether 
the crack is internal or the surface one. 

If a # 0 (internal crack), the Eq. (3.1) is a common singular integral equation of the 
type thoroughly studied elsewhere (see, e.g., MusKHELISHVILI). Without going into detail, 
let us note here that the Eq. (3.1), together with the condition (1.16b), has a unique so-. 
lution, which has the inverse square root singularities at s = a and s = b: 

1 

(3.7) u'(s) = O((s-a) -2) ass ---4 a+, and 

1 

u'(s) = 0 ((b-s) -2) as s ---4 b-. 

At the other points between a and b, u'(s) has the same smoothness as the right-hand 
side of the Eq. (3.1). This suggests the following representation for u'(s): 

(3.8) u'(s) = v(s) "+ 1 
y(b-s)(s-a) ~' 

where v(s) is a smooth function of s. 
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Then the Eq. (3.1) takes the following form: 
b b 

1 J v(s1)ds1 1 J ds1 
(3.9) - +- K(s, s1)v(s1) = f(s). 

n (st -s) y (b-s1) (s1 -a) n J/ (b -st)(s1 -a) 
a a 

For fracture mechanics, of the greatest importance are stress intensity factors- i.e., the 
coefficients in the asymptotic representation of the stress (in the case under consider
ation the shear stress r,), having the form: 

I 

r, "'jl~ib~s) as s-> b+, and 

(3.10) K(a) 
'l't ~ - as s -+ a-. 

y2(s-a) 

We easily obtain from the Eq. (3.9) the expressions for K(a) and K(b): 

(3.11) K(a) = V b~a · v(a), K(b) = -V b~a · v(b). 

Now, the case of surface crack (a = 0) is more complicated. In this case, the kernel 
K(s, s1) has a singularity at the points= 0, s1 = 0, so that the usual theory of singular 
integral equations cannot be applied. The scope of this paper does not permit us to study 
the equation thoroughly. Using the fact that the crack problem with the additional condi
tion (1.10) has a unique solution, we can prove that the solution of the equation is also 
unique. A proof of the existence of the solution would be rather difficult. So we restrict 
ourselves here to investigation of the behaviour of the solution at the end points s = 0 
and s = b, assuming its existence. Usual methods give the following asymptotic re
presentation for the vicinity of s = b: 

(3.12) '( ) const 
us~---

V b-s 
as s-+ b-. 

Obtainment of an asymptotic representation of the solution near the point s = 0 
needs rather sophisticated treatment. However, owing to the great importance of this 
point, we describe it in greater detail in the Appendix. 

As is shown there, the asymptotic representation of u'(s) near the point s = 0 has 
the form: 

(3.13) u'(s) = Re ~ u sPn (Re{J > 1) 4...-J n ' n - , 
n 

where Un are unknown constants and fln are roots of the following equation: 

(3.14) 2cosn{J- fJ ({J + l)cos2rx.{J- 2{J({J + 2)cos2rx.{{J + 1)- (fJ + I){{J + 2)cos2a{{J + 2) = 0. 

It may be shown that this equation has no roots between - I and 0. So the main term 
of the expansion (3.13) is 

(3.15) 

where Re{J1 > 0 and Im{J1 "# 0. 
From (3.15) it is seen that u'(s) tends to zero ass-+ 0. This fact will be of substantial 

use for the algorithm which is developed in the following section. 
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4. Reduction to a set of simultaneous linear equations 

4.1. Internal crack 

R. DMowsKA AND B. V. Kosmov 

For numerical solution of the Eq. (3.9), we shall replace it approximately by a set of 
simultaneous linear equations. For this purpose, we shall use the Hermitc quadrature 
formula to represent the integral 

b 

_!_ J K( ) v(s 1)sds1 
S, S1 .. ! , 

n r (s-a)(s-b) 
a 

which gives 

(4.1) 

where 

(4.2) 
a+b b-a 

Sm .= -
2
- + -

2
-Xm, m= 1, ... , n. 

Here, Xm are the zeros of Tn(x), the Tschebyscheff polynomial of order n, first kind -i.e., 

(4.3) 
2m-1 

Xm=COS~n. 

A similar representation for a singular integral 
b 

1 J v(s1)ds1 

n (s1 -s) v' (s-p) (s-:-b) 
a 

may be obtained as a specific case of the general formula derived by KoRNEICHUK [8], 
which in our case gives: 

_!_Jb v(st)ds1 _ _!_ ~l v(sm) [!- u.- 1 (~-~)] 
(
4

. n (s
1 
-s) v' (s-a)(s-b) - n LJ (sm -s) Un-1 (xm) ' 

a m=l 

where Un-I (x) is the Tschebyscheff polynomial of second kind, and sm, X m are defined 
in the Eq. (4.2), (4.3). 

So the Eq. (3.9) can be written in the approximate form: 

(4.5) 
_!_ ~ v(sm) f1- _u"_-1 (:___b~_sa ___ :_~:--=---) l 
n L.J Sm-S Un-l(Xm) . 

m=l 
n 

+ -~ 2 v(sm)K(s, sm) = f(s). 
m=l 

To obtain from this equation a set of simultaneous algebraic equations, it is convenient 
to set 

(4.6) 
a+b b-a 

s = t" = -
2

- + -
2
-yk, k = 1, ... , n-1, 
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where y1, are the roots of U,._ 1(y)- i.e., 

kn 
Yk = cos- , k = 1 , ... , n -1. 

n 

Then the second term in brackets in the Eq. (4.5) vanishes and we have: 

n 

__!_ ~ v(sm) [-
1

- +K(tk, sm)] = f(tk), k = 1, ... , n-1. 
n m=l Sm-tk 

(4.7) 

431 

To complete the set of equations, we must represent the additional condition (1.16b) 
using the expression (3.8) and Hermite's formula, which gives 

n 

(4.8) 1y - v(sm) = 0. n -..; 
m=l 

This formula gives just the last, n-th equation of the set. 
Now, once the set is solved, the values of v(s) at any point may be obtained by in

terpolation. The corresponding expression is 

2 ~ ( ~ ) (2s-b-a) v(s) = n _LJ L:.J v(sm) Tk(xm) Tk -ii=(l ; 
k=O m=l 

(4.9) 

for s = a and s = b, this expression simplifies to 

n 

(4.10) 
1 \-, 

v(b) = n L..J v(sm)(1 + (1-xm)- 1 T,._ 1 (xm)) 
m=l 

and 
n 

(4.11) v(a) = ~ ~v(sn-m+t)(l+(I-xm)- 1 T,._t(Xm)). 
m=l 

We may easily obtain the appropriate formulae for coefficients of intensity K(a) and 
K(b), substituting these equations into the expressions (3.11). 

The formula for the displacement jump u(s) is obtained by integration of the Eq. (3.8), 
using the expression ( 4.9), which gives 

(4.12) u(s) = - "
2
: 

1 (i1 
v(sm)) arccos 2s;;~:b 

m=l 

n-l n 

_ x+1 "~(" ( )T ( >)Tr (2s-a-b) y(b-s)(s-a) 
2 _LJ k L:.J V Sm l: Xm vk-1 b b • 
ft k=l m=O -a -a 

Owing to the condition ( 4.8), the first term vanishes, and for the case of internal crack 
with which we are dealing, we have finally: 

n-1 n 

(4.13) u(s) =- "~1 ~ ~ (~ v(s.)T.(x,.)) u._, (2s;;~:b) y' (b~~~-a). 
k=l m=O 
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4.2. Surface crack 

It is rather difficult to achieve a good numerical approximation for the behaviour 
of the solution as described by the Eq. (3.15). We choose here a somewhat simplified way. 
As may be seen from the asymptotic representation of the solution near the point s = 0, 
u'(s) is finite and even u'(s) = 0 at the points = 0; thus it could be expanded into Fourier 
series by means of Tschebyscheff polynomials. 

Now, after replacing v(s) by the part of this expansion and then using interpolation 
formulae, we obtain the same set of equations ( 4. 7) as for the inner crack. Instead of the 
Eq. (4.8) there must remain the following equation, obtained from the Eq. (4.11) and 
the condition that u'(s) tends to zero ass-+ 0: 

n 

(4.14) ! .2; v(sm) (1 + ( -l)n+m(l +xm)- 1 
Tn-1 (Xm)) = 0. 

m=O 

With this equation we obtain, of course, K(O) = 0. Physically speaking this condition 
means that there exist no bonds between the crack sides at the point s = 0 - i.e., on the 
free surface. 

Note that to calculate the displacement jump the Eq. (4.12) must be used- not the 
Eq. (4.13). 

The numerical solution of the surface crack problem so obtained should be convergent 
with the exact one with n -+ oo. In the next section, we shall consider numerical solutions 
for some particular examples which would suggest that sufficient accuracy may be reached 
with not very large n. 

5. Computational results 

As an example of the mathematical method presented above, we computed numerically 
the displacement jump dependence and stress-intensity factors for a number of surface 

u 

s 
0~----------------+-----------------~b 

0.5 

1..1NE 1 2 3 ,. 
n -\0 20 30 ~0 

~(b) 1,~4 1)47 1)19 1.50 

FIG. 3. 

and internal cracks with different lengths, in a field of given constant shear stress acting 
along a crack line. Our main object was to study the convergence of the numerical solution 
to the exact one with n-+ oo. We have restricted ourselves here to the mathematical problem 
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mentioned above, leaving for future research such physical questions as the dependence 
of the displacement jump and stress-intensity factors on the length and position of the 
crack, stress field and material constants. 

Comparison of the numerical results obtained for n = 10, 20, 30 and 40 with all the 
other parameters - such as stress field, length and position of the crack and material 
constants being fixed (Fig. 3) - clearly shows their convergence. It is obvious that the 
higher is n, the better the coincidence between the results obtained and the exact solu
tion with n -+ oo. But let us recall here that in increasing the number of equations n we 
increase above all the number of points near the crack ends (see our definition of Xm, 4.3). 
It can be seen from our results that n = 40 gives sufficient accuracy of the solution and 
there is no use in further increasing this value. 

6. Conclusions 

The solution presented above for an arbitrarily situated shearing crack in a semi-space 
under plane strain conditions opens up a prospect, for future applications of the results 
in different branches of science. It would be particularly valuable in the physics of the 
earth's interior, and, especially, in earthquakes mechanics. In this last application, how
ever, one should probably consider a crack with some kind of friction between its surfaces, 
so that it is necessary to take in mind that in such a case the kernel K(s, s1) described 
by the Eq. (3.2) must be replaced by the Eq. (3.6). In this case, the essential properties of 
the integral equations will be the same as for the case without friction, which we have 
solved above. 

Appendix 

Investigation of the asymptotic behaviour of the displacement jump derivative for 
a surface crack 

Here, we shall study the asymptotic behaviour (for small s) of the solution for the case 
of surface crack when the integral equation has the form: 

(A. I) _!_ j u'(s1) [-
1

- +K(s, s1)] ds 1 = f(s) u
2
+ 1 

. 
n

0 
s1 -s p, 

Consider a number 0 < s ~ b and rewrite the equation for 0 < s < e as follows: 

(A.2) 1 Js , [ 1 J u+ 1 - u (s1) --+K(s, s1) ds1 =f(s)-
2
-

n o St -s fl 
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Assume that for s < e the function f(s) may be expanded into a power series- i.e., 

CO 

(A.3) 
~+1 ~ 

f(s)~ = L.Jfns", 
11=0 

and suppose that for the same values of s there exists an asymptotic expansion for the 
solution 

CO 

(A.4) u'(s1) = 2 s~+A"u,(s 1 ), 
11=0 

where .A,. are real numbers such as 

(A.5) 

and 

(A.6) 

This expansion is consistent with the additional condition (4.8). 
Now, fors< e < sb we have the expansions 

CO 

(A.7) 
1 ~ s" 

s -s = .L.J s"+ 1 
1 11=0 1 

and 

(A.8) 

The last equation is easily obtained from the expression (3.11) for K(s, s1). 

Introducing the expansions (A.3) to (A.8) into the Eq. (A.2), we have 

(A.9) 

CO b 

= 2 {- ~ (I +c,) J u'(s1) s~\ +f. }s•. 
11=0 6 

Now observe that K(s, s1) has the form: 

(A.IO) K( s) = Qo(s, St) 
s, 1 P( ) , s, s1 

where Q0 (s, s1) and P(s, s1) are the homogeneous polynomials of orders five and six, 
respectively: 

(A.ll) 

s 
Qo(s, s1) = ,2; ai0> sf-ksk, 

k=O 
6 

~ 6-k k P(s, s1) = L.; b1cs1 s . 
k=O 
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It is easy to prove the following identity: 

{A.l2) 

where 

{A.l3) 

and 

(A.l4) 

(A.l5) 

(A.l6) 

n-1 

s"K(s s) = s" Q,(s, s1) + "'c sn-m- 1sm 
1 ' 1 P(s' s1) ,L.; m 1 ' 

m=O 

s 
Q,(s, s1) = ~a~"> si-ksk 

k=O 

a~> 
Cm=~, 

a~m+l) = ak+1-cmbk+1' k = 0, 1, ... , 4, 

a~m+1) = -cmb6. 

Observing that fors < s1 

435 

and comparing (A.12) with (A.8), we conclude that Cm as defined by (A.l4) is the same 
as in the expansion (A.8). 

Now, defining the kernel K,(s, s1) by 

(A.17) ( ) 
Q,(s, s1) 

K,. s, s 1 = P( ) , s, S1 

it is easy to see, that K,(s, s1) has the same properties as K(s, s1), and that there exists 
for s < s 1 the following expansion: 

(A.l8) 

Using (A.l2), (A.17) and the obwious identity 

(A.l9) 

and changing the summation order, we obtain from (A.9): 

(A.20) 

CX) 6 CX) b 

+s" 2 (l+c,) J sr••.-•-lum(sl)chl} = 2 s•{t.- ! (l+c.) J u'(sl)st•-lct.l}· 
m=n+l 0 n=O 
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Now, using the expansion (A.4) we can obtain the obvious identity 

oo s n e 

(A.21) l, f sT+.ln-n- 1um(s1)ds1 + .2 f. p. f sT+,.n-n-tum(s1)ds1 

m=n+l 0 m=O 0 

£ 

= f. p. J u'(s1)s1"- 1ds1 ~ 
0 

where f.p. denotes the finite part of a diverging integral in the sense of HADAMARD [Cou
RANT and HILBERT). 

Substracting (A.21) multiplied by (1 +en) from each term of (A.20), we obtain: 

n • oo b 

-.2 (1-tc,)f. p. J sT+'m-•-•u.(s1)ds1 } = 2 s" {.r.- ~ (I +c,)f. p.J u'(s1)sl"- 1ds1}. 
m=O 0 n:=O 0 

Let us change the summation order in the left side of the Eq. (A.22). Then, 

(A.23) 

Introducing new variables by 

we have 

(A.24) 

00 £ 00 

-2 (I + c.)s•f. p. J s~+A,-m- 1 u,(s 1)ds 1} = .2) s• {.r. 
m=n 0 n=O 

b 

- ~ (I +c.) f. p. J u'(s1)sl"-1ds1}. 
0 

S = E~, S1 = E1J, 

00 1 00 

- .2; (I +c.)~•f. p. J '1•+A,-•- 1u,("1)1i'1} = 2 E"~·{.r. 
m=n 0 m=O 

b 

-! (I +c.)f. p.J u'(s1)st'-1ds1 }. 
0 
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Since the powers of e are linearly independent, we conclude that if A.,. =I= 0, then 

1 

(A.24a) ! J ql,u,(eq{ 'I~~ + K,(~, q)] dq 
0 

(A.24b) 

b 

~ f. p. J u'(s1)s1"- 1 ds 1 = f,/(1 + c,.). 
0 

In the case, if A.,. = 0, we obtain only one equation: 

b 

437 

=f,.-! (l+c,.)f. p.J u'(s1)s1"- 1 ds1 • 

0 

However, because e is an arbitrary constant, it may be proved that a solution of the 
last equation may be obtained only if the right-hand term is equal to zero. So for ).,. = 0, 
we return to the pair of equations (A.24a), (A.24b). 

Next, we shall solve the Eq. (A.24a). At this point let us observe first that the equation 
is homogeneous, and consequently it permits the trivial solution u,. = 0. It is understood 
that a nontrivial solution may exist only for certain discrete values of A.,.. Later, we shall 
construct an equation the roots of which will be equal to )., . 

Let us demonstrate here that in the Eq. (A.24a) an arbitrary number R > 1. 

Fio.4. 
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may be chosen for the upper limit of integration. In fact, we consider the 
integral 

R 

~ J 1JA.u,( •7J) [ 1J ~ ~ + K(~, 1J) }'I 
1 

for ; < 1. Here, the expression in brackets may be expanded into the power series in terms 
of; f'YJ, which gives 

R oo R 

1 J ). { ) [ 1 ] 1 "\1 m J i. d'YJ n 'YJ nu, E'YJ 'Y}-[ +K(;, 'YJ) d'Y] = n L (1 +cm+n); 'YJ mum(E'YJ) 'YJm+l . 
1 m=O 1 

We can now easily obtain the conclusion desired. 
With this fact we begin from defining a function U,('YJ) of the compJex variable 'YJ, 

which is regular everywhere outside the cut along the positive real axis, and such that 

(A.25) U,('Y]+iO)- U,('YJ-iO) = 'YJ~"U,('YJ) 
for all positive 'YJ· Then, the integrals in the appropriately prepared Eq. (A.24a) may be 
reduced to contour integrals along a loop (Fig. 4) around the part of the real axis from 
0 to 'YJ, and the equation can then be rewritten in the form: 

(A.26) ~ V. P. f U,(e7J}[1J~~ +K,(~. 1J)J-! .i; (l+c,..,}~ 
fi' m=O 

J d'Y] 
X U, ( E'YJ) -----;;;-:t1 = 0 . 

!i' 'YJ 

Now, in each term of the series, the contour of the integration may be deformed into 
the circular path eR of radius R. On eR the modulus of 'YJ is equal to unity and for; < R 
we can exchange the order of integration and summation, which in view of the expansions 
(A.l8) and (A.7) gives in place of (A.26) the following expression: 

(A.27) ! V. P. J U,(E1J) [ 1J ~ [ + K.(~, 1J) Jd7] = 0, 
fi'R 

where !i' R is a closed contour consisting of the loop !i' together with the path eR. 
From (A.l7), (A.l2) and (A.19) we have the following identity: 

n-1 

(A.28) -
1

- +K,(s, s1) = s! (-
1

- +K(s, s1))- 2 {1 +cm)sT- 1s-m. 
sl -s s sl -s m=1 

Introducing this into the Eq. (A.27), and observing that the last sum is regular within 
!i' R, we obtain: 

! V. P. f (E1J)"U.(E1J>[-1J~~ +K(~, 7J)J d7J = 0. 
.fl'R 

(A.29) 

Using the fact that the solution must be a homogeneous function, it is easy to prove 
that the solution of this equation may have only the power form: 

(A.30) (e'YJ)"U,(e'YJ) = e(e'YJ)P, 
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where C is an arbitrary constant and fJ is some complex number to be determined later. 
From (A.27), (A.30) we observe that the real part of fJ is equal to n +An. 

Now, the kernel K(~, 'YJ) as determined in the Eq. (3.2) may be represented as follows: 

(A.31) 
1 { e2ia e-2i« . 4rJCOscx(~-rJ) 

K(~, rJ) = 2 rJ+~e2ia + rJ+~e-2ia +e
3111 

(rJ+~e2iap 
_ 3 ia 4rJCOSCX(~-rJ) } 

+e (rJ + ~e-2iap · 

It is seen that K(~, 'YJ) is a regular function of 'YJ everywhere except the poles at 
rJ = -~e2ai and 'YJ = -~e- 211i. Thus, introducing (A.24) and (A.31) into (A.29), the left 
side of this equation is reduced to the sum of residues at 'YJ = ~' 'YJ = - ~e2ai and 'YJ = 

= - ~e- 211i. After some rearangement, we obtain: 

(A.32) iCeinf1[2cosn{J- {J({J + I)cos2cx{J- 2{J(p + 2)cos2cx({J + 1) 

- CP + 1)(p + 2)cos2cx({J +2)](e~)'' = 0. 

Since the equation must be satisfied for any ~' the expression in brackets ought to 
be zero -i.e., 

(A.33) 
1 -.-p- [2cosn{J- {J({J + 1)cos2cx{J- 2{J({J + 2)cos2cx({J + 1) 

smn 

- (fJ+ 1)({J+2)cos2cx(p+2)] = 0, 

where the factor (sinn{J)- 1 is introduced to accent the fact that integer roots of the equa
tion are unsatisfactory. This is the equation determining },n. Now, the asymptotic ex
pansion may be rewritten in more convenient form: 

(A.34) u'(s) = ReEunsfJn, RefJn > 1, 

where un are arbitrary constants and Pn are the roots of the Eq. (A.33). 
The Eqs. (A.33), (A.34) and (A.35) complete the result sought for. 
For the sake of completeness we note here that the Eq. (A.24) with the Eq. (A.1), 

rewritten for the interval < e, b > only 

(A.35) 1 Jb , [ 1 J u+ 1 - u (s1) -- +K(s, s1) dst = f(s) -
2

-
n s1 -s p 

B 

- ~ l,'Re(u, j s{{s,~s + K(s, s1)] ds,). Rep,> -I, e < s < b, 
0 

may be used for determination of the constants Un. 
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