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Resonance vibration modes of point defects and the Mossbauer effect 

A. SZCZEPANSKI (WARSZAWA) 

Tms ARTICLE constitutes the first part of a more extensive study on the influence of sharp reso
nance modes in the Mossbauer atoms, vibrational frequency spectrum on the recoilless fraction 
in the case in which the Mossbauer atoms can be regarded as isolated impurities in an arbitrary 
host lattice; the second part of the paper concerns the case of higher concentrations. The general 
dependence of the recoilless fraction upon the vibrational resonance width is obtained as a time 
function which can be measured by means of the coincidence Mossbauer spectroscopy. An 
experimental determination of the recoil energy transfer time in a gamma emission process is 
proposed. 

Praca stanowi pierwsut, cz~sc wi~kszej calo3ci i dotyczy wplywu ostrych mod6w rezonansowych 
w widmie cz~to5ci drgan atomu Mossbauera na wsp61czynnik emisji bezodrzutowej w przypadku, 
gdy atomy mossbauerowskie stanowi~ domieszk~ o niskiej koncentracji (druga c~c pracy 
dotyczy przypadku wyzszych koncentracji). Macierz dla atom6w domieszki jest zupelnie do
wolna poza warunkiem tworzenia ostrych rezonans6w. Otrzymana zostala og6Ina zalei:nosc 
wsp61czynnika emisji bezodrzutowej od czasu, kt6ry uplyn~l od wzbudzenia mechanicznego 
atomu, energii wzbudzenia i szeroko5ci linii rezonansowej (wibracyjnej). Poza bezposrednim 
zastosowaniem do wyznaczania czasu relaksacji mod6w rezonansowych zostalo om6wione za
stosowanie otrzymanych wynik6w do eksperymentalnego okre8lenia czasu trwanie przekazu 
energii odrzutu przez k want gamma emitowany przez j~dro atomu zwi~ego w krysztale. 

CTaTMI HBJIHeTCH nepaoH: 'llaCTLIO 6oJiee o6IIIHpHoH: pa6oTLI o BJIHHHHH peai<HX peaoHaHCHLIX 
MO~ B cneKTpe 'llaCTOT KOJie6aHllH aTOMa Mecc6ay3pa Ha Ko3<fJcp~eHT H3JIY'lleHIUI 6e3 OT~a'lJ:H 
B CJiy'llae, KOr~a aTOMLI Mecc6ay3pa COCTaBJUIIOT npHMecl> C MaJIOH KOHI.leHTP~eH. BTopaH 
'llaCTI> pa6oTLI co.n;ep>KH:T aHaJIH3 CJIY'lla.R 6oJiee BLICOKHX KOHI.{eHTp~. MaTPHI.{a ~JUI aTo
MOB npHMecM; HBJIHeTCH COBepWeHHO fiPOH3BOJII>HOH H eromCTBeHHLIM YCJIOBHeM, Hlli<JI8,ll;LI
BaeMLIM Ha Hee, HBJUieTCH YCJIOBHe o6pa30BaHHH pe3KHX pe30HaHCOB. TIOJIY'lleHa 06II.{a.R 3a

BHCHMOCTI> K03<l>cpHI.{HeHTa H3JIY'lleHHH 6e3 OT~a'lJ:H OT BpeMeHH, HCTeKmero OT MOMeHTa Mexa
HH'lJ:CCKOro Bo36y~eHHH aTOMa, a TaiOI<e OT 3HeprHH B036y~eHIUI H IllHpM;HLI pe30HaHCHLIX 
(KoJie6aTeJII>HLIX) noJioc. KpoMe Henocpe.n;CTBeHHLIX npHJio>KeHHH: K onpe~eJieHHIO apeMeH 
peJiaKCai.UIH pe30HaHCHLIX MO~ o6c~aeTCH npHMeHeHHe UOJIY'lleHHLIX pe3yJII>TaTOB K 3KCUe
pHMeHTaJII>HOMY onpe~eJieHHro apeMeHH nepeHoca 3Hepruu oT~alfH KBaHTOM raMMa, H3JIY'lla
eMLIM H3 H~pa aTOMa, CBH3aHHOrO B KpHCTaJIJIH'lJ:eCKOH pemeTKe. 

THis paper presents an application of certain results of the theory of point defects in 
crystal lattices to the so-called Mossbauer effect. It may also be understood as an attempt 
at a new experimental research tool in the field of dynamics of such defects. 

General characteristics of the main objectives of the paper will be preceded by a quali
tative description of the physical situation considered here; it will facilitate precise statement 
and constitute the necessary introduction to more detailed considerations. 

Let us consider a sample of a certain crystal containing Mossbauer-active (for the sake 
of simplicity called throughout the paper "M-active") impurity atoms. Assume the impurity 
concentration to be very low, thus enabling us to treat its atoms as isolated defects. Di
mensions of the host lattice sample are assumed to be sufficiently large that internal defects 
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only need be considered (the specimen is not a thin layer, for instance). Let us assume 
moreover, that the choice of the host lattice and impurities is such that in the vibrational 
frequency spectrum of impurity atoms, sharp resonance modes appear. Such modes 
occur when the impurity atom is much heavier than the host lattice atoms and/or its 
coupling parameters with the host lattice atoms are softer than those of the perfect 
lattice ([1], cf. also [4, 5, 17, 19]). It will be shown later that such a situation is considered 
favourable in view of the M-nuclides with mass numbers close to two hundred. 

Let us consider the phenomenon of recoilless emission for the impurity atoms. It is 
known to consist in the emitting, by a nucleus of an atom bonded in the crystal lattice, 
of a gamma quantum in such a manner that the number of lattice phonons before and 
after emission remains the same. Such emission is a result of the transition of an atomic 
nucleus from the excited Mossbauer energy state to the ground state. In the cases 
we are dealing with the M-level is created as a result of another, earlier radia
tiative transition and it should be stressed here that this passage is not recoil-free. 
Hence we are dealing here with a simultaneous creation of a nuclear M-state and with 
mechanically excited vibrations of the M-atom due to the gamma recoil from the transi
tion preceding the recoilless emission. Thus the M-emission occurs not from the atomic 
nucleus whose vibrational state is a state of thermal equilibrium, but from the atom excited 
to non-stationary vibrations. The mean square of non-stationary component of these 
vibrations decreases exponentially with time, and the state of the atom approaches the 
state of equilibrium. Since the parameters characterizing the recoilless emission (we mean 
here the recoilless fraction f, and the second order Doppler shift) depend on the state 
of vibration of the atom, it is to be expected that the recoilless emission spectrum is in
fluenced by the mechanical excitation of the atom. It is immediately seen that this influence 
can be essential only in the case in which the life-time (time of relaxation) of the excited 
vibrational state is not too short as compared with the life-time of the nuclear M-level. 
A typical life-time of sharp resonance modes is of the order of 10-10 s, while life-times 
of excited modes of the remaining portion of the atomic vibrational spectrum are stiJI 
shorter. Thus, e.g., Fe5 cannot be considered as a suitable M-nuclide (life-time of the 
M-level T M ~ I0- 7 s). Many nuclides, however, are characterized by considerably shorter 
M-level life-times. These are, for instance [6, 7]: Eu153

, Gd155
, Hf177

, Ir191, Pt195
, Re187

, 

Tb159
, W183, Th232

, U238 etc., with life-times of M-levels shorter than I0- 9 s. M-levels 
of these nuclei are formed as results of radiative transition recoils exciting the vibrations 
of atoms. 

An idea may now be conceived that, in order to evaluate the influence of the excitation 
upon the recoilless emission process, the delayed coincidence technique might be applied 
(cf. the classical papers [8, 9], the review paper on the Mossbauer coincidence spectro
scopy [10] and [25, 26, 11, 12, 13]). This would make it possible to measure recoilless 
emission spectrum as a function of time passed from the instant of formation of the 
M-level and the excited mechanical state. Namely, the gamma quantum resulting from the 
radiative transition forming the M-level might be used as a signal for the coincidence appa
ratus. In this manner, it would be possible register the instant of formation of the nuclear 
M-level and, simultaneously, the moment of excitation of the vibrational state, and next -
measure the counts of the spectrometer for various retardation times of the coincidence. 
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Owing to the fact that the form of time-dependence of the excited states may be determined 
from the theory of defects, measuring of the time variation of the recoil-free emission spec
trum may be used for determination of the influence of mechanical vibrations on the 
emission parameters. 

Two such parameters have already received mention: the recoilless fraction f defined 
as the ratio of the number of recoilless emissions to the total number of emissions from 
the M-level (cf. the monograph [14] and review articles [15, 16]) and the second order 
Doppler shift [5]. The first of them determines the emission line intensity, the second 
influences the position of its centre. In this paper, we shall deal with the coefficient/ only, 
since here the effects considered can be observed most easily and exceed, at least by one 
order of magnitude, the variations caused by the second order Doppler shift. 

We are now in a position to formulate the principal aims of the present paper. Our 
objective is to investigate the influence of the existence of sharp resonance lines on the 
recoilless fraction/ as a function of time. It will be shown thatf(t), depending in a simple 
manner on the relaxation time of the resonance mode, furnishes direct information on the 
width of the resonance A, is of particular value in the case of mono-atomic crystals in which 
optical methods must fail. The measuring method proposed would then be a unique meth
od of measurement of A for low concentration of defects in metals. 

In conclusion, another idea of possible application of the /(I)-measurement will be 
discussed; it may be used to solve a certain theoretical problem which arises in connection 
with the Mossbauer resonance scattering but which falls outside the scope of both the theory 
of Mossbauer effect and the theory of defects; it concerns the controversy regarding the 
recoil energy transfer time of a gamma emission by the nucleus of an atom bonded in a 
crystal lattice, and also the problem of possibility of its being measured. 

1. Recoilless fraction f 

The recoilless fraction f of an atom being in the state of thermal equilibrium with the 
crystal may be expressed, in harmonic approximation, by the known formula ([14, 15, 16]) 

(1.1) 

where (.)T is the thermal mean, x- wave vector of the gamma radiation emitted, u
component of the displacement vector of the emitting atom the direction of x. 

Our interest is focused on the situation in which the emitting atom has been knocked 
off the state of equilibrium at the instant of formation of the nuclear M-level. The 
starting point of our considerations should then be the definition of the recoilless frac
tion f without assuming the vibrational state to be stationary. f is namely the probability 
that the gamma quantum emission will not change the state of energy of the lattice 
containing the emitting atom. This probability may be written, at any instant, in the 
form ([14, 15, 16]): 

(1.2) f(t) =}; WLI(Lieixu(t)IL)I 2 ; 

L 

Ket IL) is the eigenvector of the Hamiltonian describing the crystal lattice in the state L, 
wL is the statistical weight of the L-th energy state of the lattice (lattice temperature is 
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assumed to be different from zero), u denotes here the displacement operator of the 
emitting atom in the Heisenberg picture. 

The system considered is assumed to be harmonic. Time changes (except the oscillatory 
term) of the displacement operator u for t > 0 (i.e., after excitation) are thus only the 
results of energy transfer to other atoms of the crystal, without any energy exchange be
tween the normal modes. The Hamiltonian describing the vibrations of each of the normal 
modes is then independent of time fort > 0. In order to determine the time-dependence 
off (which makes sense only if t > 0) it suffices to know the time-depencence of u(t). Let 
this assumption be made what splits the problem into two parts: determination of f(t) for 
arbitrary, known u(t) {subject to the condition that u(t), apart from the high-frequency 
oscillatory term which does not enter the expectation value, is a slowly varying function 
as compared with the characteristic frequency of vibration of the atom}, and determina
tion of u(t) from the dynamics of the defect itself. 

The function u may now be expanded into normal modes [16, 17]: u =}; r;sQs (with 
s 

Qs denoting the normal coordinate of the s-th mode); making use of the fact that L is 

expressible in terms of the product TIIns ), Ins ) being the eigenfunction of the Ha-
s 

miltonian of the harmonic osillator representing vibrations of the s-th mode, we may 
write 

(1.3) 

w(ns) is the statistical weight on the n-th energy level of the s-th mode. 
Let us assume that the s-th oscillator (normal mode) before excitation was in the state 

lms>· If, as a result of excitation, the number of phonons in that mode increased by ks, 
then In,) may be written in the form lms+k,). Expanding)he matrix elements in the Eq. 
(1.3) into series of the exponent, taking into account the facts that 'YJsQs = O(N-1' 2) 

(N denoting the number of elementary cells of the crystal) [17] and that only terms with 
even powers of Qs do not vanish, averaging over the distribution w(ns) and returning to 
the exponential form, we finally obtain (see, Appendix): 

(1.4) f(t) = exp { -x2 ~ r;;(l +2 (ms)r+2 (ks)w(n.))} 

= exp {-x2 (u2)r} exp {- x2(u2)w(n,.)}. 
st ex 

Here u denotes the stationary part of the displacem~nt operator, u -its excited part. 
~ ~ 

( • >w<n·> is the distribution w(ns)i average. Writig here (u2)wcn,.) = (u 2)r we have made 
st st 

use of the fact that m, is the distribution b~fore excitation -i.e., the thermal distribution 
independent of k,; distribution of the phonon number k, may, on the other hand, be de
pendent on m11 , since the probability of excitation of the oscillator by k, phonons generally 
depends on the energy level occupied by the oscillator b~for~ excitation. It also depends 
on factors which are external with respect to th~ s-th o,;~ill1tor, su~h ao; en~rgy of the gamma 
quantum emitted, form of the frequency spectrum (Fourier transform>) of the recoil 
forces etc. All factors which enter the relations are contained in the distribution w(n,), 
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though explicit presentation - or even knowledge - of them is not necessary thus far. 
The problem we have to tackle right now consists in the determination of the relation 
between the mean square of the excited displacement vector and time, which will enable 
us to find f(t). 

Let us now pass to the discussion of dynamics of an emitting Mossbauer atom treated 
as an isolated defect. 

2. M-atom as an isolated defect 

It is known that the vibration spectrum of an isolated point defect containing sharp 
resonance maximum in the low-frequency part of the band models has the form of a line, 
which may be considered to be a Lorenz line, and a flat background much lower than the 
line [5, 19, 20]. It should be stressed that we are dealing here with the stationary spectrum 
of the defect itself, and not with what is called the mean phonon spectrum of the lattice 
with defects. 

The mechanical excitation of defect vibration (i.e., the exciting force) is assumed to be 
of very short duration as compared with the characteristic period of atomic vibrations -
i.e., it is proportional to ~(t). It turns out that such general information, in the case of 
isolated defects, suffices to determine the time-dependence of the coefficient f Let us 
therefore split the excited contribution of the displacement vector of the defect uR into 

ex 

the resonance part uR and the part due to the background u8, [11, 12]. We may write 
ex ex 

(2.1) (u2(t)) = (uj(t)) +(uj(t)), 
ex ex ex 

since (uRu8) = 0, which is immediately seen once u is written in terms of normal modes. 
ex ex ex 

Let us recall that the time-dependence of the classical displacement vector and that of 
the displacement operator in the Heisenberg picture are identical (cf. e.g. [19]). 

The relaxation time of < ui) is of order 1 o- 13 s and thus it may be disregarded in 
ex 

comparison with the excited resonance part with relaxation time greater by three orders 
of magnitude. More strictly speaking, (ui) is disregarded in comparison with the life-

ex 

time of the nuclear level, which is of the order of the relaxation times of resonance modes, 
and so ( Uj) "has no time" measurably to influence the coefficient f 

ex 

The time dependence of (uj(t)) for a Lorentz line has the form 
ex 

(2.2) (ui{t)) = (ui(t = O))e-At, 
ex ex 

where ). is the resonance line width. 
Coefficient f for an isolated impurity atom (with a spectrum containing a sharp reso

nance Jine) may then be written as [cf. (1.4)] 

(2.3) /(t) = .fstexp {- u2 (uj(O))w(ns)e-At}. 
ex 

Here,fst = exp{ -u2(u2)T} [cf. Eq. (1.1)]. The Eq. (2.3) may also be rewritten in the form: 
ex 

(2.4) 

6 Arch . Mech. Stos. 4/73 

http://rcin.org.pl



654 A. SzczEPANSKI 

Here 

The measurement off as a function of time makes it possible to determine the resonance 
line width A. The problems arising in connection with the measuring will be discussed in 
the second part of this paper. For the time being, in order to determine the range of applic
ability of the Eq. (2.4), let us discuss the assumptions necessary for its derivation. Let us 
name them consecutively. 

I. Harmonic properties of the system : "impurity atoms-host lattice". Owing to the 
prospective measurement off, we are interested only in crystals at low temperatures. 
This means, in turn, that we are dealing with systems in which the assumption of harmoni
city is most completely satisfied. Let us consider this problem in detail. Harmonic properties 
are necessary in deriving the Eq. (1.4) for f(t) and in satisfying the Eq. (2.1). They do 
not intervene, however, in the form of time-dependence of <z4(t)): accounting for an-

ex 

harmonicity increases only the width of the resonance line. 

Introduction of anharmonic terms into the lattice Hamiltonian leads to energy ex
change between the normal modes. Weak anharmonicity corresponds to a soft coupling 
between the modes. Assuming the equation 

(2.5) H(t) IL(t)) = E(t) IL(t)), 

to be satisfied at any instant (cf. [21], Chapter xvii) (in the formula, the time-dependence 
of the Hamiltonian of the system H(t) and of its eigenvalues E(t) is treated as dependence 
on a parameter), a formula analogous to the Eq. (1.3) may be written for each value oft. 
The solution will be analogous to the Eq. (1.4) except for the fact that, in addition to the 
damping due to the energy transfer between the atoms within each of the modes, additional 
damping appears resulting from coupling of the modes; this expressed by a slow dependence 
of the energy of individual modes on the time. Consequently, the result is of the same form 
as in the harmonic case except for the necessity to take into account the increased of the 
width resonance line. 

Let us indicate that exact satisfaction of the Eq. (2.1) is not a necessary condition 
for the Eq. (2.3), which finally appears in our result. It is sufficient to assume that (uRu8 ) 

ex ex 

vanishes much faster in time than (u~). This condition is fulfilled since the life-time of 
ex 

(uRua) is of the order of the relaxation time (uj) which may be disregarded in further 
ex ex ex 

considerations. 

From the remarks presented it follows that the assumption of harmonicity of the 
system: "impurity atom-host lattice" may be weakened by allowing for a weak anharmo
nicity. 

2. Assumption that the excited vibrations frequency spectrum has the same form as 
the stationary spectrum. This assumption is reduced to confining the excitations to such 
as resulting from transitions fast in comparison with the characteristic times of vibration 
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of the atoms in the lattice (I0- 13 s), since then the exciting recoil force may be assumed 
in the form F(t) = const ~(t). It follows that (cf. [19, 20]) 

(2.6) u(t) = J dt'G(t-t')const~(t') = constG(t), 
ex 

where G is the Green function for a crystal with defect; strictly speaking, it is the function 
G00

, indices denote the lattice sites, u = u0
• On the other hand ([19, 22]) 

(2.7) 

Here, g(w2 )is the stationary frequency spectrum of the atom in the site 0 (i.e., the spectrum 
of the M-atom considered), and 

(2.8) ReG00 (w) = HT{ImG00
}. 

HT denotes here the Hilbert transform with respect to the variable w 2
• This yields u0 (t) = 

ex 

constFT{g(w2
)}, and here FT is the Fourier transform. 

Let us now relax the assumption that F(t) oc b(t). We select such a reference frame that 
F(t) # 0 in the interval [0, tF]. The Eq. (2.6) will take the form: 

tF 

(2.9) u(t) = f dt'G(t-t')F(t'), 
ex 0 

or 
tF 

(2.10) u(t) = e-;.112 J dt' rp(t'; t), 
ex 0 

where the time-dependent exponential term has been excluded from the Green function, 
the product of the remaining term by F(t') being denoted by rp(t'; t). Since rp(t'; t) depends 
on t only through the oscillatory term which does not enter (u2 (t)), from the Eq. (2.10) 

ex 

it is evident that the time of duration of the force does not influence the character of the 
time-dependence of (u2 (t)). 

ex 

If it is assumed that the M-level is formed at the instant when F(t) is removed, the 
assumption of proportionality of F(t) to ~(t) ceases to be necessary for the fundamental 
formula (2.4) to hold true; we have to remember, however, that in determining the para
meter l/> in Eq. (2.4), u(tF) should be used instead of u(O). 

ex ex 

3. Application to the estimation of the recoil energy transfer time in a gamma emission 
process 

Measurements off as a function of time may serve, in addition to the immediate 
application for the determination of the relaxation time of impurity atom vibration, to 
estimation of the recoil energy transfer time in the gamma emission process of the nucleus 
of an atom bonded in a crystal. 

The problem of the time of recoil energy transfer and momentum transfer in such 
a process was stated in connection with a controversy concerning the mechanism and 
description of the Mossbauer resonance scattering [23, 24]. MossBAUER and SHARP sug
gested that the time of duration of an "average" individual process of gamma emissi on 

6* 
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or absorption cannot be considered as short -i.e., of the order of I0- 20 s, but that cha
racteristic times of these processes are related to lifetimes of the characteristic nuclear 
levels. The authors suggested, moreover, that the time of duration of an individual 
emission or absorption process cannot be measured. 

Our present aim is to propose a certain method of estimation of the recoil energy trans
fer time in the process of gamma emission by a nucleus bonded in a crystal. 

Let us start from classical considerations. The point of departure might be the fact 
that the process of relaxation of atomic vibrations starts simultaneously with the initial 
instant of their excitation, and thus at the instant t F, when the force of excitation is removed 
and the M-level created, a part of the excitation energy has already been transferred to 
other atoms in the lattice. One should expect the parameter <P to be dependent on t F. 

Let us consider this problem in detail. The mean recoil energy R transferred to the 
lattice equals 

(3.1) R = };p(j,i)(£1 -E;); 
f 

J, i labeling the final and initial states of the lattice, with energies E 1 and E;. R is 

independent of tF [16, 24]. Hence 

(3.2) R = E(t)+E(t) = const, 
ex rl 

where E(t) is the excited energy of M-atom at the instant t, and E(t)- the energy trans-
~ rl 

ferred to the lattice at the instant t in the process of vibration relaxation. It follows that 

(3.3) u2 (t)+u2 (t) oc R, 
ex rl 

indices ex and rl having the same meaning as in the Eq. (3.2). 
Let us now rewrite the Eq. (2.9) with the Green function in the form G(t- t') = 

= y(t-t')exp {- J..(t-t')/2}: 

(3.4) 
'F 

u(t) = e-J.tt2 J dt' et'f2 y(t-t')F(t'). 
ex 0 

Fort ~ tF it clearly follows that 

(3.5) 
'F 

u2 (t)+u2 (t) = {J dt'y(t-t')F(t')} 2 

ex rl 0 

and, in view of the Eq. (3.3), (3.4), that 

(3.6) 
ex 

Here, t is contained in the interval [0, tF] and depends on the form of F(t). 
The ratio of parameters <P1 , <P2 for two different transitions of excitation (the defi

nition of <P being employed, cf. Eq. (2.4)) is then 

(3.7) 
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since from the Eq. (3.1) it is evident that the mean (:) denotes exactly the same as the 
mean ( . >w<ns> in the definition of (1J [cf. the Eqs. (2.3), (2.4) and the final remark of Sec. 2]. 

Knowing the curves /(t) enables us to determine the width of line A. and the parameters 
(1J [cf. Eq. (2.4) and Appendix]. Ris known if the energy of the excitation gamma transi
tion is known (R = h2

K
2 /2M, M- mass of the nucleus, ;e- wave vector of the gamma 

quantum). If, according to our expectations, the force F(t) behaves regularly in [0, tF] , then 
!"satisfies the following conditions: 

(i) t < tf, 
(ii) tF-tis of the order of tF. 

Thus the Eq. (3.7) indicates that the time differences tFl -tF2 could be determined 
by measuring the curves f(t). 

The reasoning leading to the Eq. (3.7) was based on a semi-classical treatment of the 
excited vibration processes of the atom and their relaxation. Before trying to tackle the 
problem formulated at the outset, let us first consider the physical situation using the 
quantum description. 

We are dealing here with a nucleus of an atom bonded in a crystal, an atom which 
is in the state of excitation on the N-th energy level. There is a radiative transition to the 
M-level (Mossbauer level) and then, in an recoil manner, to the ground state (transi
tions other than zero-phonon are of no interest to us). The N ~M transition conveys 
a certain recoil energy to the atom; thus we have to consider the system "atom-crystal 
lattice-phonon". Not the entire energy, however, is transferred to the "atom-lattice" system 
in the form of phonons. A part of the recoil energy is absorbed by the crystal as a rigid 
structure - by means of the motion of its mass centre. We are interested in that part of 
energy which is used for the production of phonons -i.e., the part which excites atomic 
vibrations. It should be noted that the phonons are not the vibration energy quanta of 
a single atom but the quanta of collective lattice vibrations. This quantization may be 
performed formally in various, physically equivalent ways. If the lattice vibrations de
scribed by the usual normal modes are quantized (cf., e.g., [1, 5, 19]), then the vibrations 
of a single atom are (in the harmonic approximation) a superposition of normal vibrations 
with a proper set of coefficients. In a given state of the lattice -i.e., at a given number 
of phonons in the lattice, the contributions of individual atoms to the energy of each of 
the modes are determined by coefficients which are c-numbers. Thus, in spite of the fact 
that the energy of vibration of individual modes possesses a discrete spectrum, the vibra
tion energy of each of the modes can be transferred from one atom to another in a contin
uous manner. The relaxation of excited atomic vibrations considered here consists mainly 
in the continuous process of energy transfer from the excited atom to other atoms without 
any changes in numbers of phonons in the individual modes. Therefore a continuous 
process of relaxation of the excitation energy according to exp(- A.t) occurs even for 
individual atoms. 

Another, even more important problem consists in replacing the classical description 
of excitation of atomic vibrations by the force F(t) -with a quantum description. 

If the recoil energy transfer time of the gamma quantum is short, then for each of the 
emitting atoms there exists a probability of excitation of ns phonons in the s-th mode 
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the conditional probability of ms =I= 0 phonons at an arbitrary instant later than the instant 
of excitation of the first ns =I= 0 phonons being equal to zero. It is in this way that the short 
duration of recoil energy transfer is manifested.lfthe transfer lasts longer (i.e., say according 
suggestions of MossBAUER and SHARP, its duration is of the order of the lifetime of nuclear 
N-level), then the conditional probability of formation of ms =I= 0 phonons at a later in
stant (with ns =I= 0 initial phonons) is different from zero. This means that phonon excita
tions occur, with a certain probability, several times within a finite time period which may 
be called the duration of recoil energy transfer. This time is denoted by tR. 

Let us denote by p(mn tins) the conditional probability of excitation in the s-th mode 
of ms phonons within the time interval [t, t + dt] provided ns phonones were excited at 
t = 0. This probability satisfies the following conditions: 

(i) 

(ii) 

for 

for 

for 

t =I= 0 for fast energy transfers, 

for slow energy transfers. 

Using the probability p(ms, tins) we may write R in the following form [cf. the Eq. 
(3.3)]: 

(3.8) 
tR 

R = 'Y} J dt'}; (ns+ms)p(ms, t'lns), 
0 

'YJ being a certain constant. The mean excitation energy at instant t is, according to that 
notation, equal to 

(3.9) 
'R 

E(t) = 'Y}e-M J dt'e"'' 2 (ns+ms)p(ms, t'lns). 
ex 0 

Thus the ratio of excitations <1>1 /<1>2 sought for is 

(3.10) 

The integrals in the Eqs. (3.9), (3.10) may be written in the form: 

(3.11) 
tR -

J dt' = e"' R. 
0 

Here 0 < t < tR, since the distribution p(ms, t'lns) is assumed to be different from zero 
in the finite interval [0, tR]. The Eq. (3.10) then yields finally: 

(3.12) ~ = e-At(tRl -ft)+Az(tRz-tz) Rl 
(/>2 ii2 

and may formally be identified with the Eq. (3.7) obtained in the classical considerations, 
provided the time of action of the classical recoil force is identified with the time (time 
interval) in which the probability of a repeated excitation of phonones by the recoil energy 
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of the same gamma quantum is different from zero; the "mean" times t should also be 
identified [cf. the Eqs. (3.4), (3.6), (3.11)]. 

The formulae (3.7) and (3.12) indicate the limits within which the measurement of f(t) 
(which in turn serves for the determination of parameters f/>1 , f/> 2 and the relaxation times 
Xi\ Ai 1) enables to estimation of the times tR. Namely, it is seen that the difference of 
times tR 1 - tR 2 must be of order ). -t or greater, in order to be manifested in the measure
ment off(t). Typical values of ;.-tare of order I0- 10 s. The duration of the gamma recoil 
energy could then be determined, in principle, with accuracy of w- 10 s. Obviously, the 
entire procedure is limited to the corresponding Mossbauer nuclei with lifetimes of the 
M-levels being of the order of ). -t (cf. introduction). The energy transfer time can be 
determined not for the M-level but for the N-level from which the nucleus passes to the 
M-level. It may be added that the lifetimes of N-levels of the M-nuclides considered here 
(and presented in the introduction) are practically contained within the limits 0 (that is, 
~ ). -

1
) and oo (cf. [6] and the data of Nuclear Data Sheets). 

The controversy concerning the time of duration of the recoil energy transfer in gamma 
emission processes may now be formulated in the form of the following conclusions. 

1. The controversy concerned the emission/absorption of the M-level of the Fe5 7 
-

nucleus with the lifetime of about I0- 7 s. The test proposed in this paper makes it possible 
to register the times of energy transfers from I0- 10 s up. 

2. The experimental data obtained from the measurement of f(t) does not directly 
refer to the energy transfer time of the radiation emitted from the Mossbauer level, since 
it concerns the transitions between other nuclear levels. This fact does not seem to be an 
obstacle to of applying the results of measurement of f(t) to the deduction of the manner 
in which the process of emission from the M-level occurs, the nuclear processes being 
independent of the phonon processes (cf. [14, 23]). 

Appendix 

Transformation of the Eq. (1.3) to Eq. (1.4) 
Let us more explicity present the principal stages of the derivation already outlined. 

The Eq. (1.3) is rewritten (using the notations introduced earlier) in the form 

f(t) = 2; w(ns) I n (nslei"1JsQs Ins> 1
2

• 

ns s 
(A.1) 

The matrix element in this equation is equal to 

(A.2) 
1 

(11) = 1- 2 "2 17; (Q;), (Q;) = (nsiQ;I ns), 

since higher order terms of the expansion may be disregarded in comparison with 17; = 
= O(N- 1

), and the linear term disappears. The absolute value terms in the Eq. (A.l) are 
real and thus the square of absolute value may be replaced by the ordinary square, 

(A .3) IT < ~~< 2 = IT (I - } "2"1; (Q;) r = rr (I - "2"1; (Q;)) 
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still in view of the equality rd = O(N- 1
). Performing the product in the Eq. (A.3) and 

putting for ease of writing 

and (. >w<n.> = (.)we obtain: 

(A.4) f(t) = ( 1- _2 Xs + ~ XrXs- ~ XPXrXs+ .. .) 
r<s p<r<s 

= 1 - ~ <xs> + }; <xr> <xs>- · · ·, 
s r<s 

since Xr and Xs are statistically independent for r =1- s. The Eq. (A.4) can be rewritten in 
the form: 

(A.5) 
-- 1 - --

/(t) = 1-N<x>+ 21 N(N-I)<x><x>- ... , 

- 1~ . . 
where <x> = N ~ Xs· Neglectmg terms ~ 0 (N- 1

) the latter equatiOn becomes: 
s 

(A.6) 
- 1 - - -X2 ~ 'ls«Q~)) (rr) 

f(t) = 1-N<x> + 2TN2(<x>)2- ... = e-N<x> = e s w • 

and the substitution of the explicit form of the matrix element (Qi) leads to the Eq. 
( 1.4), if we can assume 

(A.7) 
ex ex 

where t = 0 is the moment of the M-level formation. But Eq. (A.7) means that there is 
no time averaging, i.e., that the energy transfer is fast. We have then to ask whether the 
use of the Eq. (1.4) is still correct for the investigation of the long energy transfer time 
case. Note, that if we want to confine ourselves within limits of a pure phenomenological 
treatment, we cannot say much about the possible time average of the e-J.t term. Thus, 

let us assume the most unfavorable case, namely, that (e-J.t) = ;t (1-e-J.t) which would 

correspond to a uniform time distribution. It is easy to see, that if one approximates (e-J.t) 
by a suitably chosen e-'t, the differences between values of C for different time windows 
used in coincidence Mossbauer spectroscopy experiments [10, 25] are relatively small (they 
differ by a factor "'2 for the extremal time windows). Thus, possible time averaging does 
not matter for the determination of the order of magnitude of t R and we can conclude 
that the Eq. (1.4) can be used for the here proposed analysis of the energy transfer time. 

Aknowledgement 

The author wishes to express his gratitude to Prof. M. SuFFCZYNSKI and Doe. W. NA
ZAREWICZ for helpful discussions and advice. He is also indebted to Doe. D. RoGULA, 
his scientific adviser, since a part of this paper has been included in the Ph. D. - disser
tation. 

http://rcin.org.pl



RESONANCE VIBRATION MODES OF POINT DEFECI'S AND THE MoSSBAUER EFFECT 661 

References 

I. A. A. MARADUDIN, Elementary excitations in solids, ed. A. A. Maradudin and G. F. NardeiJi, Plenum 
Press, p. 35, 1969. 

2. A. J. SIFVERS, Phys. Rev. Letters, 13, 320, 1964. 
3. A. J. SIEVERS, S. TAKENO, Phys. Rev., 140, A 1030, 1965. 
4. J. A. KRUMHANSL, Localized excitations in solids, ed. R. F. Wallis, Plenum Press, New York 1968. 
5. A. A. MARADUDIN, Solid State Phys., 18, 272, 1966; 19, 1, 1966. 
6. A. H. MuiR Jr, K. J. ANDO, H. M. COOGAN, Mossbauer data index 1958-1965, John Wiley, New York 

1966. 
7. J. BARA, Proc. of the Conference on the Applications ofthe Mossbauer Effect, Tihany 1969, ed. I. Dezsi, 

Akademiai Kiad6, Budapest 1971. 
8. F. J. LYNCH, R. E. HoLLAND and M. HAMERMESH, Phys. Rev., 120, 513, 1960. 
9. C. S. Wu, Y. K. LEE, N. BENCZER-K0LLER and P. SIMMS, Phys. Rev. Letters, 5, 432, 1960. 

10. G. R. HoY, D. W. HAMILL, P. P. WINTERSTEINER, Mojsbauer effect methodology, ed. I. J. Gruverman, 
Plenum Press, 6, p. 109, New York 1971. 

11. A. SzczEPANSKI, Phys. Stat. Sol. (b), 46, K 103, 1971. 
12. A. SzczEPANSKI, IFTR Reporsts, 15/1971. 
13. A. SzczEPANSKI, Sol. State Comm., 10, 447, 1972. 
14. H. FRAUENFELDER, The Mossbauer effect, W. A. Benjamin, New York 1962. 
15. A. J. BOYLE and H. E. HALL, Rep. Progr. Phys., 25, 441, 1962. 
16. A. MuKERJI and C. ALTON CouLTER, Topics infields and solids, ed. C. Alton Coulter and R. A. Shatas, 

Gordon and Breach, New York 1968. 
17. A. A. MARADUDIN, E. W. MONTROLL, G. H. WEISS, Theory of lattice dynamics in the harmonic approx-

imation, Academic Press, New York 1963. 
18. W. LUDWIG, Ergebnisse der Exakten Naturwissenscha/ten, 35, Springer-Verlag, p. 1, Berlin 1964. 
19. W. LUDWIG, Recent development in lattice theory, Springer-Verlag, Berlin 1967. 
20. A. A. MARADUDIN, Rep. Progr. Phys., 28, 331, 1965. 
21. A. MESSIAH, Quantum mechanics, North-Holland Publ., Amsterdam 1969. 
22. E. J. ELLIOT, Phonons in perfect lattices and in lattices with point imperfections, ed. R. W. H. Stevenson, 

Oliver and Boyd, Edinburgh, p. 377, 1966. 
23. R. L. MossBAUER and D. H. SHARP, Rev. Mod. Phys., 36, 410, 1964. 
24. H. J. LIPKIN, Ann. Phys., 18, 182 and 294, 1962. 
25. G. P. Hoy and P. P. WINTERSTEINER, Phys. Rev. Letters, 28, 877, 1972. 

As this paper reached the author after his own manuscript had been completed, it is impossible to discuss 
it here in detail. It may be mentioned, however, that the authors measured/(!) for Fe57secking effects 
different from those discussed in the present paper. The measurements do not lead to the results 
expected but, quite the contrary, yield in a certain case a function /(t) which coincides with the 
ideas of DASH and NusssAUM [26] and with our results. Unfortunately, the complex structure of the 
chemical compound used as the source does not enable prompt orientation in its vibrational structure; 
thus the results of [25] cannot, for the time being, be interpreted in terms of definite vibration modes. 

26. J. G. DAsH, R. H. NusssAuM, Phys. Rev. Letters, 16, 567, 1966. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH 

Received July 14, 1972 

http://rcin.org.pl




