CHAPTER XXIII.

CHANGE OF THE VARIABLES IN A MULTIPLE
INTEGRAL.

826. A NUMBER of cases have occurred in previous chapters
in which the evaluation of an area or a volume has been much
facilitated by a proper choice of coordinates, and changes
have been made from one specific system of coordinates to
another specific system, such, for example, as from Cartesians
to polars, or to elliptic coordinates.

In particular, we have established the results, that in
transforming from an z, y system, which may be regarded as
Cartesian, to a u, v system, we have

Jf deas=[r 55 e

and when we change from a three-dimensional Cartesian z, ¥, 2
system to another system in terms of new variables u, v, w, we

have Al e 0)
”.[de dydz= ”I 7 5 Y 2) gy gy dw,
o(u, v, w)

the symbol V' representing merely the value of V as expressed
in terms of the new coordinate system.

These changes have been found very especially useful in
the case where the bounding curves or surfaces of the regions
under consideration are themselves members of the three families,

u=const., v=const., w=const.

This was the case in the typical example of Art. 793, viz. the evalua-
tion of the area of a Carnot’s cycle, bounded by isothermals ay=a,,
Zy=ay, and the adiabatics xyY=f3,, 2yY¥=B,; and it will be recalled that
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2 CHAPTER XXIIL
the region thus bounded was divided into elementary areas bounded by
curves of the same types, viz.
Ty="u, zy¥=v,
zy=u+du, zy’ =v+ 8.
Exactly the same course was followed in the three-dimension
typical examples of Articles 797, 798.

827. Further Examples.
1. The quadrilateral bounded by the four parabolas
P=ddz, yP=bz, P*=ey, z*=f1,

revolves round the axis of y; find the volume generated.
[CoLLEGES a, 1890.]

If &z 8y be an elementary rectangle of this area, we have

V= [ona dz dy
o
’
P'Q
y ’ II
»
Dl isif
I: ': i o RI
Lot
S _’:—:‘ 3 /’:',
R I’ i B
pQ
A
(o] x
Fig. 295.

Now, instead of taking elements of rectangular shape such as 8z 8y, let
us divide up the area by the families of parabolas

it EORIE Gl 0 g s R R T T 1)

Then w=a and u=b, v=¢ and v=f are the bounding parabolas of
the region, and the elementary area enclosed by w, u+8u, v, v+8v is
+J8u v.
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CHANGE OF THE VARIABLES. 3

From equations (1) z=wu?, y=u2v,

e g(x» Y) 2%, 2uw |= —3uet
(v Quv, u?
b [f
Hehia V—_—G-;rf f w3yt dudv

=T @ - b= 1)

2. Evaluate the triple integral f f f gl—‘le‘?d—z taken through a volume

bounded by six confocal quadrics, the semiaxes of the quadrics being
a, by, cu} ag, by, cn} as, bs, ’«'ay}
and a, b/, ¢/,) and ay, by, ¢,) and ay, by, ¢
[MarH. Trip., 1889.]

Taking a definite confocal a, b, ¢, let the three confocals through any
point 2, ¥, z of the region be

: at z
m++=1, m++=1, 07+—V++=1,

and we have a?= £ t::)_(’;,;-(z:)fl;; a’)’ etc. (Art. 812);

whence g?£= X e e ete
2N A+a¥ zop p+a® 7
_ Oy, 2) xyz| 1 1 1
el J=a()n,,1,v)=% Ata?’ pt+a¥ v+ad
1 1 1
X+ p+b¥ v+b
1) 3. 1
A+c® p+c® v+t
Hence

drdydz 1 i 1 1 1 1
U zyz "ﬁfffzma(m'm-m~m.)dkd;»dv
=4 Z [log (A +a*)] {[log (u+b%)] (log (v+¢*)]

— [log (p+¢®] [log (v+ ®)]}
and at one set of the boundaries Clog [log "

Atat=a,?, A+02=02, A+ct=c?,

ptat=as?, /"+b’=bl’y ptct=cyt

viai=a?, v+bi=bs, vict=c?;

and for the other set,
A+a?=ay? A+b2=b,% etec.

Hence the limits for A are from a,*—a? to a,'*—a?
for p from b,2—b* to b,'* - b2,

for v from c2—c* to ¢,/—c
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Therefore
ff dx‘;iyg/zdz_ézl g 1 (log%”, logc logb' log )
= log—a—l, log g—‘,, log Z—‘l-
log Z—:, log %’:’, log i_—:’
log (:l—a’, log IIJ)—:’, log %i,

828. Remarks on the Transformation.

The usefulness of a change of variables is not, however,
confined to the case in which the bounding curves or surfaces
of the region considered are partioular cases of the families of
curves or surfaces by which it has been deemed desirable to divide
up the region into elements and for which case the limits are
constants.

The process of transformation is threefold :

(@) The transformation of the subject of integration into
terms of the new variables.

(b) The determination of the new element of integration,

which resolves itself into the calculation of J.

(c) The determination of the new limits.

Of these, (@) and (b) are merely algebraic processes, and give
no trouble.

The determination of the new limits (¢) however, often
presents considerable difficulty to the student. And we can-
not lay down explicit rules to be followed to suit all cases.
Generally speaking, it is best to proceed, from geometrical
considerations, fivst forming a clear idea of the region which the
ortginal element of area or volume was made to traverse. This
will be clearly indicated by the limits of the integrals occurring
in the expression to be transformed. Then the new limits
for the transformed integral must be so chosen that the new
element of area or volume, as the case may be, traverses the same
region, once and once only, as was traversed by the original
element in its march as defined by the limits of the original
integral.

The student will require considerable practice in the assign-
ment of the new limits, and therefore a number of illustrative
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CHANGE OF ORDER OF INTEGRATION. 5

examples are appended from which he may gather an idea of
the course to be adopted.

And before proceeding to discuss them in detail the student
is advised to note that at times, even a change of order in the
integration, without any change in the variables, may be useful,
and that in some cases an integration in different orders may
lead to important conclusions. Some of the earlier examples
are therefore confined to mere change of order with no change
in the coordinates, and the necessary change in the limits
will be the subject of main attention.

829. CHANGE OF ORDER OF INTEGRATION.

b d
Ex. 1. Consider / da f dy f(z, y), all the limits being known constants.

Here the space bounded by y=c¢, y=d, #=a, =0 is the region
through which all products such as f(x, )8z 8y are to be added, viz. the

5
D ss c
P ' Q
[ T i i (= i T i, SR Q
ik
A R!R’ B
i
(o] M x
Fig. 296.

rectangle A BCD in Fig. 296. In the integration as it stands we integrate
first with regard to y, keeping x constant, thus adding up all elements
in such a strip as RSS'R in the figure. Then all such strips are to be

b
added in the operation f ( )da.
If we wish to change the order of the operation and express it as
[ay [z r 9

we have to assign the new limits.
Clearly in this case the sum of such elements as we have considered,
added up along such a strip as PQ@ P parallel to the z-axis, will be

[ 7,
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6 CHAPTER XXIII.

and the sum of all these strips, from y=c¢ to y=d, will he
d b
[ay [*a s, )

Thus f ks f (o, gy f ‘& /., * def(e, 9)

It appears therefore that in the case of constant limits no change is
entailed by a change in the order of integration.

Ex. 2. Consider / i / f f(z, y)dx dy.
. o Jo

Here the limits for y are from y=0 to y=x, and for x from 2=0 to
r=a.

These indicate that the boundaries of the region for which the elements
f(#,y) 8z 8y are to be added are

the z-axis, the line y=x, the line v=a.

And if instead of taking strips parallel to the y-axis, we add up the

elements in strips parallel to the z-axis, of which PQ@F is a type

i 4
sl
s .
S:
4 R0 2 N Q
N L g Tt i 7
¥
1
i
i
(o] RR’ © g
Fig. 297.

(Fig. 297), this summation is to be taken from z=y to x=a, and
f.f(.r, y)dz will be the sum for the strip Q@ 7.
vy

These strips are then to be added from y=0 to y=a, giving

[ [ A, 5y dy de

as the transformed result.

acosa pa/gi_ gt
Ex. 3. Consider I -‘. Sz, y)dz dy.
0 ztana

The region of integration is bounded by the straight line y==xtan a,
the circle y=4/a*— 2% and the y-axis.

The present summation is that of strips parallel to the y-axis. If we
change the order of the integration we must add up all elements in a strip
parallel to the z-axis before adding the strips.
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CHANGE OF ORDER OF INTEGRATION. /

These strips change their character at the point where y=asin a ; from
¥=0 to y=asina, the length of a strip is bounded by the y-axis and
the straight line y=xztana; from y=asina to y=a the strip is termi-
nated by the circle.

Hence the integration consists of two separate parts, viz.

asina pycota a Nat—yt
I j‘o f(zt.'/)d?/dz"'-“a‘ J S, y) dy de.

0 sina Jo

J

0 X
Fig. 298.

It is often useful to test general results and verify our conclusions by
application to some simple case. Take, for instance, f(z,y)=1. Then
the primary integral represents the area of the sector of a circle of

radius a and angle ;—r-—a. Hence the result should be 3a* (g—a).
The intggration of the transformed result is

asina a
j‘ ycotady+j- Jat -y dy
0

asina
2 i g dudiy a
= I—% cota]:' M+% [.1/\/‘1' =¥ +a'5i"_'%:|a“ln‘
2 2 2
=%sinacosa+§a’. g —Qa"sinacosa—%a=a§<g—-a),

as it should be.
Ex. 4. To change the order of integration in the integral

jm J.v‘a. [, y)dedy.

0 JNaz—z*
Here the region of integration is bounded by
(1) The parabola y*=aux.
(2) The semicircle 2*+3*=ax, which we may note is the circle of
curvature at the vertex of the parabola, and lies entirely within
the parabola.

O R A
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8 CHAPTER XXIIIL

(38) The straight line 2=a ; and this is a tangent to the circle.
Instead of adding up the quantities f(z, y) 8z 8y along strips such as
DE (Fig. 299) parallel to the y-axis, and then adding the strips, we have

9 o

Fig. 299.
to add up elements in a strip parallel to the z-axis, and then add up these
new strips. It will be noted that so long as y is less than g such strips
are broken into two parts as G and HK, but for values of y >g they

are continuous as at U¥. Let W be the point of contact of the tangent
BC to the semicircle, which is parallel to the z-axis. The new integration
must cover the three portions
(1) AFBWGA; (2) WCKNHW ; (3) BUPCWB.
Referring to the figure in which the lines #&X and UV parallel to the
z-axis meet the y-axis at L and M respectively,
In region (1),
the limits for » are from LF to L@, and for y from 0 to NC.
Ia'region (2),
the limits for # are from LH to LK, and for y from 0 to NC.
In region (3),
the limits for « are from #U to MV, and for y from NC to NP.
Hence the transformed result will be

2 G

(Ve i
J. j f(x',y)dydx+I J- T—f(x,y)dydx+_‘.,,I S (@, y) dy da.
oJyt 0 ;—'+\/“7-v' v

Ex. 5. Change the order of integration in
; a(1+cos 8) m a(l+cosd)
j' j f(r, 0)rdg dr+j' j f(r, ) df dr.
0Jacosé = JO0

As the integral stands, integration is effected through a region bounded
by the upper half cardioide »=a(1+ cos @), the upper half circle »=« cos 8
and the intercepted portion of the initial line.
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CHANGE OF ORDER OF INTEGRATION. 9

When the order of integration is changed we are to add elements along
strips which are bounded by circular ares as shown in Fig. 300, and then
add all the strips. Let BC be the arc, with centre 0, which touches the
circle at B. Let M@, M’Q’ be contiguous arcs with centres at O inter-
cepted between the circle and the cardioide, and NP, N’P’ contiguous

pP

Fig. 300.

arcs with centres at O intercepted between the initial line and the
cardioide. Then the new limits of integration are :
A A
for 6, from 0=AOM to =A0Q, for values of » from O to OB,

and for 6, from =0 to 0=A6P, for values of » from OB to 0A.
The first of these accounts for the region O} BCQO.
The second accounts for the region A PCBA.
And the transformed integral stands as

ar-a ar-a
ar’“ £ 2a feos™ g™
J' S 0)rdrd0+j r f(r, 6)rdrdé.
0 m—lz_ a JO

Ex. 6. Change the order of operation in the integration system

. (Vi T (e
| Bl paedy+[ f f(w, y)dody
0 (2a—2) o (2a-1)
a (V2azx—2z*
ol T s e
= 2_a('Za—z)
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10 CHAPTER XXIII.

Here summation is effected by strips parallel to the y-axis within a
region bounded by
(1) the parabola 2ay=xz(2a-z),
(2) the semicircle y2=2ax—2?,
(3) the hyperbola 5zy = 2ax + 3ay.
The coordinates of the intersections of the curves are shown in Fig. 301.

J
a,a)
mL_R
/
L7k
A
[6) (ao) (2a,0) x

Fig. 301

Let C, D be the intersections of the circie and the hyperbola, and B
the vertex of the parabola. Let LP@ be the tangent to the parabola at
B, and let #D be drawn through D parallel to the x-axis, cutting the
y-axis at L and M respectively.

Then in division by strips parallel to the z-axis we have four regions
to consider, viz. : (i) OPB, (ii) BQA, (iii) PRD@, and (iv) RCEDR.

We then obtain for the transformed result,

% ey wy +Nat =y
j [ A y)dy«mj j e, y)dyds
v 0

a—\/a'—y' a+'\/u‘ 2ay

f j"”"'""' (@, y)dydwj I”_M_f(x,y)dydz,

Vai—yt e \/al_.y-

the several 1tems of integration referring to the respective regions
enumerated.

1 v e
Ex. 7. Evaluate the integral _/:f7 dz dy. [Sr. Jomx's CoLL., 1889.]

As the integral stands, summation is conducted over the infinite region
bounded by the line y=wx, the y-axis, and an infinite boundary, say
y=a, where a is infinitely large, and along which the subject of integra-

tion %’ is ultimately zero, the strips being taken parallel to the y-axis.

Change the order of integration, taking strips parallel to the z-axis.
The new limits are : for 2, from x=0 to z=y

and for y, from y=0 to y=a.
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CHANGE OF ORDER OF INTEGRATION 11

And the integral becomes Lt,— _/; v fo \ %‘-' dy dz

= Llma e—;[x]: A

=Lt L evdy

= Lt,,=.,|: - e"]:

=Lts=u(l —¢)=1.
Hence the value of the integral is unity.

S S'(m )
b /
P’ d
Q

B Q

VR

R
(o] X

Fig. 302.

Ex. 8. Change the order of integration of the triple integral
f . f o f u+’f(x, Y, 2)dxdydz
oJo Jo
in all possible permutations of dz, dy, dz.

The integration referred to is evidently through the volume bounded
by the three coordinate planes and the plane z+y+z=a.

The integration as it stands supposes this region divided into volume-
elements 8z 8y 8z by means of slices or laminae parallel to the plane x=0,
subdivided into tubes or prisms parallel to the z-axis, and these further
subdivided into elementary cuboids by planes parallel to the plane z=0.
The other modes of division and summation are obvious.

And the transformations are

L[ o dedeay

ﬁ; j;a—' oa—""f(.z, Y, z) dy dz dx,

AJ
VvV
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a fa—y [a——y
./‘; '£ o Sz, y, 2)dy da dz,
[ [T e v deaway,

/‘aj‘n—z A—y—2 d d d
L 9, ) dedy e
Ex. 9. Express the integral

1 RESLER
. @ —f"/a’-x’ N —zt—y*
I J‘JZ I & ”f(-""i.z/’ z)d"d.ydz
0J0 v

as an integral of the form

ffff(r’ Y, 2)dy dz d.

In the first integral the region over which the summation is conducted
is bounded by
(1) the sphere #*+32+22=aq?,
(2) the plane =0,
(3) the plane x=0,
(4) the plane z=y,

~

7“\
/

(] X

dxdy

i f
Fig. 303.

and the first integration was that of elementary cuboids in the tubes on
8z 8y for base and parallel to the z-axis. The second with regard to y
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CHANGE OF THE VARIABLES. 13

added the tubes in a slice parallel to the plane #=0, and the third,
integrated with regard to z, added up the slices.

We are now to construct tubes on 8y 8z for base, and the limits for the
first integration will be for 2 from 0 to Va?— - 2%

g
N P
i
(c) X
b
Fig. 304.

Then we are to sum these tubes which are bounded on two sides by
planes parallel to the plane of =0, and the limits for z are from z=y to
z=Nai—y2

Finally the slices thus formed are to be added from =0 to y=

it
N2

The transformed integral is therefore

.L\%,/;m j;vmf (@, , 2)dy dz dx.

830. Examples of Change of the Variables.

We shall use the notation ¥ for any function of the original
variables and V’ for the same function expressed in terms of
the new variables.

In the case of change from Cartesians to Polars for two-
dimension problems, the element of area dz dy is replaced by
730 ér, and for three-dimension problems dz dy dz is replaced
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by 72sin6 80 3¢ ér. In converting from three-dimension Car-
tesians to cylindrical coordinates dx Jy 6z is replaced by the
new element of volume 7 30 r 2.

It is convenient to remember these, as the labour of calcu-
lating the new element from the general result, viz.

Jousosw or SZY-2) gy 5 g0
o(u, v, w)

is in these cases thereby avoided.

831. Illustrative Examples.

e [c—z 1 c
Ex.1. Show that [ /o Vasdy=| fo Vudv il Lo sags

if y+o=u, y=uw.
(Jacobi’s Transformation, Crelle’s Journaly vol. xi. p. 307.%)

Here z=u(l-v), y=uv,
J=|1-v, —u|=u
25~
Hence oJ 8u 8v=1u 8u &v.

Also V upon transformation becomes V',
The transformed result therefore becomes

f f Vudvdu or f f V'u du dv,

according as we are to integrate with regard to w or with regard to v first.

y
MI
M
Q
P
R
o) 05 4 x

Fig. 305.

In our example the former is the case. We now have to determine the
proper limits of integration.
In the original form the integration was for y from 0 to ¢—2 and for

z from 0 to c.
* Gregory’s Examples, p, 41.
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The region through which the integration is to be conducted is then
that hounded by the axes and the straight line 24y =c.
The transformation formulae

sry=t y=loo

indicate that the new division of the area is to be by means of lines
drawn parallel to #+y=c and by radial lines through the origin, the
lines %, u+8%, v, v+8v bounding the element whose area has already
been formed, viz. u du dv.

Let these lines be LM, L'M’, OP, 0§ respectively. Then as we are to
integrate first with regard to u, keeping v constant, we are to add up all
the elements in the triangle 0@, and afterwards add up the elementary
triangles. In passing from O to P u increases from u=0 to u=c.

Hence the first integration is f * Prudu.
0

In the second integration l—f; changes from tan 0 (ie. 0) to tan90°

(t.e. ), and » changes from 0 to 1. Hence the transformed result is

1 fe
f f V'u dv du.
0o JO

If we had elected to integrate in the opposite order the result would
have been o
'[) /: V'ududv.

Ex. 2. Change the variables in f dady to u, v, where 22+y2=u,

22— y*=v; and apply the result to show that the area included between
the circles 22+ y?=a? 2?+y%=">% one branch of the hyperbola 22 —j3y2=¢?
and the axis of y is

. bAb - c‘

2
gl g N LS 0
8(b a)+ sm o sin a’+41

4 @ +Nat— b
where c<a<b. (R.P.)
Here J'=| 2z, 2y |=-8ay,
2z, -2y
14 1 1
and therefore O P A e i ot
e 8 xy 4 Jut -2
dv.dv

, where it remains to assign

and the transformed integral is —— f f -
the proper limits. Wu

The region over which summation is to be conducted is the portion
ABECDFA of Fig. 306.

If OFE be the asymptote of the rectangular hyperbola, the area of the
portion FECD is plainly $(wb?—ma?). We have then to turn our atten-
tion to the portion ABEF. And for this the line FE is a case of
rectangular hyperbola, viz. v=0. Hence for this region the limits are

2
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constant, viz. u=qa? and u=10% v=0 to v=c? and with this assignment of
limits we may omit the — sign and take

) alk ”/” du dv
Area ABEF=} L [

v=c?
i /v l:sin'12 du
4 a? Udy=0
gl f" el
=3/, 80 Edu

1 3 cf‘]"' 1 ""' c?
=% —1_ e e
Flusin = + c‘du

1[ =19 s —1 ]b’
i u sin +c cosh &l
_g‘fsi a8 e —152__,.0_210 ______.._ba'*"’/b‘_“"
B b PR Sl PO
X
(o}
E
D
B
F
A
(o} x
Fig. 306.

Hence adding the portion FECD already found, we have
Area of ABECDFA
¢ BRIt

B i S 2 it St og e
8(b2 a)+ sm sin™ a2+4logcz+~/a‘__c‘

B4
Ex. 3. Show by transforming to polar coordinates that

tana fatang dz d,/
N
{ sin o tan~!(tan 3 cos a)+sin B tan~!(tan a cos 3)}.

[CoLLkcEs, 1887.]

Putting z=rcos @, y=rsin § and remembering that the element of

area 88y is replaced in polars by 786 6r, we have f f (:;ffi;,, and it
remains to assign the limits for » and 6.

www.rcin.org.pl



CHANGE OF THE VARIABLES. ¥

The region of integration is the rectangle bounded by #=0, z=atana,
y=0, y=atan B. If y be theangle which the diagonal through the origin

: . tan 3
makes with the z-axis, tany= vy
5/

B Cc

atanf o

P

(o (LS 7 I atana A X
Fig. 307.

The whole integration consists of two parts, viz.

atanasecd » d@ dr f atan g cosecd » df dr
/: [, Fra )y (r*+a)?

the first referring to the portion of the rectangle between the diagonal

and the 2-axis, and the second to the part between the diagonal and the
y-axis.
This is clearly

1 [ 1 a tan a sec @ 1f;[ 1 ]atan,‘lcoseco
§f 2 +a’dy d0+2 , LT ratl oy

1 (v cos?6 ) 1-(¥ sin?f)
_W’_/; (1 " cos?@ + tan®a d0+§6ﬁ.y (l_sin20+tan2,8)d0

ok tan?a d@ +__]__ : tan?f3 df
2a? ), sec’a cos®d +tan’asin®f * 2a¢®/y sec®Bsin?@+ tan? cos?f
1 sec’d df 1 (¥ cosec?dd

T 242 ), cosec’a +tan?f ' 2a2Jy cosec?F+cot?f
s : b g § Y
=§}? [sm atan~!(sin a tan 0)] +§:?2 [sm B tan—(sin 8 cot 9)]
f 3

o 5 go %
=ggiSinatan 1(cos a tan 3) + g2 in 3 tan—(cos 3 tan «).

Ex. 4. Two lemniscates whose equations are 7?=a,2cos26 and
r2=b,2sin 26 respectively, are drawn through a point 2, and two others
whose respective equations are ?=a,? cos 26 and »2=b,?sin 26 are drawn
through @. P and @ are both in the first quadrant. The remaining
intersections of the four curves in the first quadrant are R and S. The
coordinates of these points are respectively (ry, 6y), (s, 6s), (73, 03), (ry, O)
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18 CHAPTER XXIIL
It is required to show that the curvilinear quadrilateral thus enclosed
has an area 1{( e 1 rd )_( 72 3 g2 )}
2 \\sin40; ' sin 44, sin 4¢, ' sin 46,
Considering the two types 2=} cos 26, 12 =21 sin 26, we obtain

A(+D)=1 and tan2o-nf%
v v

2

3
3 v e
te. "=my 6=4%tan 1,,_5'
1 e 9 1 P u? G0 1
Hynos O(w, v) 167%| - *v*, _udyd [(utv) T 16r (u+ v){

e =[5 o[ 5

The limits of integration are a,* to a,* for u, and b,* tc b,* for v taking
a positive sign before the integral.
¥

Fig. 308.

Bence =g/ [* i
I e
i [ {_1__ 1 }du
Slat {bt 4w (bt +w
it mb-gir ]
= (bt +at - (bt + a9 - (0,4 + @)+ (bt + 0]

ad (b dudy
4
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CHANGE OF THE VARIABLES. 19

Now the curves a,, b, intersect at r,, 6;, and

4 4
0 A il .__TL..__*._}.’___
ay +bl _008'201 31)')’20‘ 3111’401
Similarly,
4r & 4p,4 47 A
S p el $ pprets L Ui f+byt=—51r
o' +by “einidfe +h sin’40,’ Nl et sin?46,’

0 e N ]
Hence A= 2[31]:40, sm40. sin46; sin 46,

Ex. 5. Transform the integral f 9 f’ 'J w de¢ df by the substitution
o Jo Ysin @

z=sin¢cosh, y=singsinf,

and show that its value is 7. [Oxrorp II. P., 1880.]
o () cos¢cos0 —sin ¢ sin @
iy e a(¢’, 6) |cos¢psinf, sin ¢ cos
=sin¢ cos ¢
sin ¢ 5 1 sin 4>
sad ff\/sin ()dd,de*ffsindacos ¢>\/am [ dy dx

-dy d.
ff\/_y\/l 22—yt i

The original limits were =0 to 0=§ and ¢=0 to ¢=

S}

Now #*+y*=sin?¢ and %= tan 6.

y s

0
(o] sin g X
Fig. 309.

We may then regard the integration as extending through the positive
quadrant of the circle 2*+y*=1. The limits for z will then be from #=0
to x=~/1-33 and for y from y=0 to y=1.
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Keeping 7 constant
1eNI=y5 g 1
—m—_dy dz
.[0."0 Ny J1-2* =y v

1 Ni—yt
i z :] 1 y‘dg/
0

I [
—— | AINL
os/.'/l: Vi-gt
L 1 T 1
- —'.—dy=—[2~f:| =
oNy 2 % ¥
Ex. 6. Show that if z=u(1+v) and y=v(1+u),
2 [z 1 (v
f/{(.z'—-_y)’+2(x+y)+l}‘§dzdy=ff dv du,
o Jo (e

and prove the identity by finding the value of each integral.
[Oxrorp II. P., 1889.]

Here J=‘l+v, % i—_-1+u+v
v, 1+u]
and  (z-g)+2(z+y)+1=(v—v)*+2(u+v)+4uv+1=(u+v+1)%

Hence ff{(.r—g/)’-i- 2(x+_y)+1}'§dxd_y=f[dvdu.

R (2,2)
k4 /" ’
e ’
g g (¢)
’//’ . A n’ Q:
(r).'/)F -
Vol 2 3’{
e
—"’ /A' l"
e /E N

(=2,0) c,c, (=1,0)

Next consider the limits. The region through which the summation in
the first integral is to be effected is that bounded by the 2-axis, the line
y=x, and the ordinate #=2; <.e. the triangle ONA in the accompanying
figure (Fig. 310).

The loci u=const., v=const. are respectively the lines
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We are to integrate first with regard to w, keeping v constant,
t.e. along a strip formed by the lines », v+8». These lines, represented
by C14,P,Q, and CyA3P,Q, respectively in the figure, form a strip of
gradually widening breadth in passing from P to @, for, as the intercept
0C; on the z-axis increases (negatively), the line rotates counterclock-
wise. It begins its rotation, as far as our triangle is concerned, with
coincidence with ON, for which v=0, and ends its rotation when v=1,

when the line is ‘%—g =1, and passes.through R(2, 2), taking the position

C'R. Now along the whole length of OR, Ze. y=ax, we have u=v, and

along the whole length of NR, i.e. z=2, we have 2=u(1+v), t.e. u=l_-?—v'
Hence, in integrating along the strip P,Q,Q;P,, keeping v=constant

2
u changes from w=v at P, to u=m at Q,.

Hence the limits for » are v and l—i—v , and for v, 0 and 1.

2

Hence f‘ fz{(z-—y)’+ 2(x+y)+1)2dx d_y:_/ lflﬂdvalu».

0 o o Jv

The student may show without difficulty that each side of the identity
takes the value 2log 2 — 3.

If, however, the integration had been conducted in the reverse order,
integrating first for strips along which « is constant, it is to be noted
that the character of such strips changes when the line D DR, passes
through Z(1, 0), the strips being terminated by OF (v=0) and OR (v=wu)

for the portion OER and by EN (v=0)and NR (v:%— 1) for the second
part.

2
“ T
‘We then have fdu/ dv+qu/ dv.
o o h o

Ex. 7. Obtain the value of

TR T
I= f f f s ) dwdyd
1 5 manE zay az,
-)
the integral being taken for all values of 2, ¥, 2, such that

x? ‘1/3 22
(;;+I)?+LE<]'

We shall divide up the ellipsoidal volume into a set of thin homoeoidal
shells, that is shells bounded by ellipsoidal surfaces, concentric, similar
and similarly situated with the bounding surface. Let a typical mem-
ber of this family of surfaces be

Tl 5=
p lying between 0 and 1.
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Then the volume of the shell bounded by p and p+8p is
34 7r((w)(bp)(w)} = 4mabep* 3p,
and the value of + b‘ at. points between the boundaries of the
shell differs from p? by an 1nﬁn1tes1mal only.

Hence I= A : '\/ %—%ﬁ - dwabep? dp.
Write p =cos ¢.
Then T / \/{ ;zz:g - 4rabe. cos? P sin ¢ dp

=4rabe f(l —cos ¢) cos® p dep

2
=4mabe (2 3 3)

=%1rabc(31r —-8).

Ex. 8. If zu+yv=a? and 2v-yu=0, prove that

V'atdu dv
7 i b Terdinad o
[[razdy=- [ | G
And if the limits in the former integral are y=0 to y=~a?—2? and

=0 to #=a, investigate the limits in the latter. [St. JonN’s, 1885.]
Tk P T 1
T YT
at v—u?, —2uw | (s 290N
whe | (W +v%) | — ouw, u?— o (u?+ o2’

'™
whence fflfdxdy—- —ff i(;;:l;;v’

where V'’ is what V becomes after substitution for # and y in terms of
w and ».

Next, as to the limits. In f. fv o Vdz dy the integration is over the
0

0
region bounded by the positive quadrant of the circle 22+ y2=aqa?
Eliminating » and « alternately, we have

2 2
3. % - (LB
22+ y % 0, 2?4y = 0,

and the curves w=const., »=const., are orthogonal circles touching
the axes at the origin. Let us integrate first with regard to », then with
regard to ». Whilst integrating with regard to v, the element J du 8v is
bounded always by the two complete semicircles » and u+ 8u, so long as
this ring lies entirely within the circle 22+ 3?=a? and the limits for » are
from the case where the v-curve is a circle of infinite radius coinciding
with the x-axis, to the case where it is a point circle at the origin. The
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2
radius is %} Hence the limits for » are from v=0to v=w. And the

2
u-circle has a radius g—u, and changes from a circle of radius g to a circle
of radius zero, z.e. u changes from u=a to u=w.

When the u-circle has a radius in excess of g, the limits for » will be

from the value of » for which the u-circle cuts the a-circle, viz. at P, in
Fig. 311, to the value of » for which the v-circle becomes a point-circle
at the origin, v.e. when v=c.

Now at P we have

a? i3
Zy= =a? & pend
o 22+y*=a® and Semal,

i.e. at that point 2=u and y=v, whence »?=qa%—u%

B

§) Nl R
Fig. 311

Hence the limits for » are from s/a?—u? to o, and » now varies
between the value which makes the w-circle a straight line coincident
with the y-axis, 7.e. =0, and the value of » which gives a semicircle on
the radius OA, 7.e. u=a. Thus the integration referred to divides into
two portions, the first referring to the portion of the quadrant included
in a semicircle on 04 for diameter, and the other to the remainder of
the quadrant.

Thus

LR vaess=ef e [y i

It may be observed that the transformation formulae z = i

il @
Y T we
indicate an inversion from the Cartesian coordinates z,y of a point within
the circle, with a for the constant of inversion, to a point whose coordi-
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nates are u, v, which lies without the circle. Hence as (z, ) is to traverse
the ¢nterior of the quadrant of the circle, (%, v) is to traverse the portion
of the first quadrant of space which lies outside the quadrant of the circle,
and therefore, the circle having equation %2+ »?=a? in the new coordinates,
the limits must be

v=na?—u? to v=c0 from u=0 to u=a,
and v=0 to v=o from u=a to u=wo,
which agrees with the result stated.

Ex. 9. Obtain the value of the integral
15[ (A2 +2Bxy + Cy*) dx dy,

extended to all values of #, y which satisfy the condition
Ax*+2Bry+ Cyr =1,
4 and C being supposed positive, and 40— B2 > 0.
The conditions given indicate integration within the area bounded by
the ellipse A+ 2By + Cy* =
Divide this area up by a family of similar and similarly situated con-
centric ellipses, of which a type is
Ax*+2Bry+Cy*=t,
¢t varying from O to 1.
The equation to find the semi-axes of this ellipse is

YV AFOT ACS B'=0, [SmiTH, Conic Sections,

pt i et 2 Art. 171.]
1
"VAC-B
Hence the area of the annulus bounded by the ellipses ¢ and ¢+ ¢ is
St
g
NAC-B?
and ¢’(Az?+2Bxy+ Cy?) only differs from ¢’(z) by an infinitesimal at
any point of this ring.

and its area is

H in the limit I= t
ence in the limi fq;() TJA()
ORIO <l>(0)
T VA B
Ex. 10. Prove that f f du dv over a portion of the surface w=0 is
/ fa(u, v, w) das

R Y

u, v, w being functions of z, y, 2.
Let 2, y, z be a point on the surface w=0 at which an element of the

normal is 8n. Then 8n=87w, where h?=w,2+w,2+w? (Art. 789).
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Also 88.8n is an element of volume, and may be replaced in volume-
integration by

g—(’fﬂ Sudvdw (Art. 794),

(w, v, w)
te. 88.— oo 7 may be replaced by W&L&Sw
E(t) Y 2)

and ffdudv:f %((%wd_f

Ex. 11. Prove that /= f / f f dx dy dzdw for all values of the variables

for which 2%+ g%+ 2%+ w? is not less than a? and not greater than 4? is
"
it (b* - at).

In this case we cannot appeal immediately to a figure to help in the
determination of the limits.

We may at first ignore the condition that 22+ 3%+22+w? is not less
than a2 and let the variables have full range of any values up to such as
will make #2432+ 22+ w?=0%. We shall then subtract the result for such
as make the variables in the extreme case such that 22+ g%+ 22+ w?} a2

In the first integration, keeping #, 7, z fixed, w ranges through all
values from —nB3—a?— 32— 2% to +nb2—22— 32— 2% and

Hff"“ﬂdzd@'f=fff[w]dwdydz

=2f/f~/_b2—x2—y2—z’dz'dydz.

In this integral, keeping x and y constant, z ranges from
N2 to 2=+ B2t g,
WNF—F—F-2 B-aty? :
2 S

NE—2—y?

2 and y being constant during the integration. And inserting the limits,

fffns/b2~x‘ zzd:rdydz—/f (69— 22— y)da dy.
We have now reduced ffffdxdg/dzd‘w to 2.—2—ff(b2—x2—y2)dxdy;

and now we are to integrate with regard to y, keeping x constant, and the
limits for y are from —n/b7—2? to +/62—2®

and f\/b’-.zr"—y2~z“dz=

sin™?

Also f (b2 2~y dy = (b*— %)y —%3,

and =2[§(bg—x2)§]

when the limits are taken.

= O e
WWW.rcin.org.pil
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We have now arrived at §r f (b2—a:2)‘;dx, the limits for x being from
—bto +b. Put x=bsinfd. The int,egral then becomes

31xw
122

Now, in exactly the same way we may see, as is indeed obvious at once,
that the amount included in excess by giving the variables free play up
to the case r"+1/2+.z"+w2 =b? instead of excluding those values which

e
make r2+y’+42+w’<a2 is ?“‘

o
18 —r/ bdcos’@bcos df or —mbt= ie.?b‘.

Hence the summation of the cases from
24y 2+ uwt=a? to 22 +y?+22+ wi=b?
is 1;—2 (bt —at).
It is clear also that after the first integration with regard to w had been
completed we might for the remainder have illustrated the triple integral
it j [NE—E vy

by integration through a spherical volume, the summation being that of
Nb%— 22 —y? — 2% throughout the sphere 224 y2+22=b%
Then writing 22+ y%+22=72, we have

o FEEe S o
1 2]0‘h£./;~b 7 r2sin 0 40 dep dr

=81r/br2~/b” ~rdr=8r b‘f'ain2 x cos? x dy, (r=bsiny)
0

ot TPID_ T e

832. Case of an Implicit Relation between Two Sets of Variables.

In our previous work and in the typical examples discussed,
we have regarded the transformation formulae to be such
that each of the one set of variables is expressed, or easily
expressible, as an explicit function of the variables of the new
group. If this be not so, we can still form the Jacobian by
the rules of Arts. 543 and 544, Diff. Calculus.

For in the case when

fi(@, y, u, v)=0, L@, y, u, v)=0
are the connecting equations, we have
a(fvf2) o(z, y) _ a(fvf2
o, y) 2, v) o, v)’
and when ; fi(®@s y, 2, u, v, w)=0,
L@, y, 2, u, v, w)=0,
fslo 4, 2%, v, w)=0,
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are the connecting formulae,
o(fy fo f3) 1 o(z, ¥, 2) =(_1)sa(fvfzrf3)
o, y,2) O(u, v, w) o(u, v, w) ’
and generally, if there be n connecting equations,

f 0 fZ 0 f3 'fn=0»

between 2n variables,

Uyy Yos'ono by BN Zos Ty oo Ty
O f1s for o= fn) 0@y, Ty - Tn) (=1 & Al f saifa) i
Oy, Ty, -00 Tp)  O(Uy, Yg, --- Uy) S AR s )
Hence for a double integration

o(fy o)

”de dy =HV’ ;’(‘f"l: ;,-),) UE
o=, y)

o fufo fo)

j j Byl mV' ,;’((f““;’,z”;z)dudvdw

ECY DR

and for a triple integration

and so on.

DIGRESSION ON JACOBIANS. JACOBI'S AND BERTRAND'S
DEFINITIONS.

833. Jacobi’s Definition.
If f,, for fr --- fa be any function of the n variables

B Ty - on Loy

of afl 3f1 ofy

the determinant

J= " " B
ofy 3fz afz ofy
2w, o, oy o,

s 2 0s.. Ys
Ty Toat atee, | o,
is called the Jacobian of f}, f,, fs, ... f, with regard to z,, x,, ... @,.
Jacobi in one of his memoirs pointed out the strong analogy
which the properties of this function bears to those of a
differential coefficient of a function of a single variable. This
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resemblance of results, rather than of demonstrations, has
already been mentioned (Diff. Calculus, Articles 542 onwards).
It was by starting from the form of this determinant that
Jacobi’s investigation proceeded.

834. Bertrand’'s System of Increments.

A different standpoint was suggested by M. J. Bertrand in
a memoir to the Académie des Sciences (1851), which has
many advantages, and Jacobi’s results may be deduced from
M. Bertrand’s new definitions almost as corollaries.

Let fi, fo ... fn be n functions of the » independent variables
o e

Let us give to these independent variables the following n
systems of increments, viz.

dyey Lidie, T diy, ..o d i,

dytey, Sdanytdaey L dy (A)
ete,
o8 Sd a0 "udiRd . d
and let the corresponding increments in the several functions be

dlfl’ dlf2’ dlfa’ 2a2 dlfn
d2f1’ d2f2’ d2f3’ o de” k (B)

ete.,

dobiro e e d el
ie. d.f, is the increment of f; when z,, z,, etc, increase to
z,+d,x,, z,+d,,, ete.

These several increments dz,, dy,, d.z, ete, though in-
crements of the same variable, are arbitrary and independent,
and there is reserved to us the power of making them equal
later, or of assuming any such relations between them as we
may subsequently choose.

It is clear that we have the n? relations of which

d,f,= of, drz1+ f"d,a;2+ +af” o ©)

is a type, it bemg unnecessary in the partial differential
coefficients occurring to specify which of the particular in-
crements we choose when we proceed to the limit in their
formation.
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835. Bertrand’s Definition of a Jacobian.

M. Bertrand’s definition of a Jacobian is that it is the ratio
of the determinant formed by the increments of Group B to
the determinant formed of the increments in Group A.

Now

! (G} () 6]
!}dlml, C o b B don ko Tl éi—‘i, ‘axi:’ 54 a—:{—‘
n

Lisghp ol {ppein] iy Ol %zfi', ol R
2

.........................................................................

..............................................

dnfl’ dnfzr dnfs’ g9 dnfﬂ

by the rule of multiplication of determinants and by virtue
of the equations of Group C.

Hence Bertrand’s definition agrees with that of Jacobi.
We have, however, gained command over the increments of the
independent variables.

If we adopt the notation Df and Dz for the determinants

dyfin. idifametoel pand. idiry v digeit il
defaf v m'l, idzavl. ]
Aol i i g duwy, :

respectively, we have J =§£.

836. Corollaries.

1. It follows at once that if F,, F,, ... F, be functions of
J1s fas oo« for and fy, fy, oo fi-be functions of %y, @3, ... @, then,
since DF_DF If

Dz Df Dz
we have
Jacobian of F,, F,, ... Jacobian of F,, F,, ...
{with regard to @y, @,, ...}={with regard to fi, fy. }
{Jacobian of Ly [ }

with regard to x,, z,, ...
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inge T 5 DO
2. Also, since szDf—l' we have
{Ja,cobian (o) i AR g {Jacobian of [z, Ta, ...}_1
with regard to z,, z,, ... X with regard o fy, fy, s ). ix

3. Again,if F;=0, F,=0,...F,=0 ..., F,=0 be n indepen-
dent equations oonnectmg n varm.bles Uy, Ug,...U%,, and n

other variables z,, z,, .. m,,, then, since
oF
é—@-' 7 1+ ' sTg .. + rd sTn

+ 'du,-{— 'd, Uyt .. + 'du,, 0,

we have
Syt ok Sz = (S At ot S ).

which may be a.bbrevmted into
NP A R R W S 48 (a)
the suffix z being attached to indicate those partial differential
coefficients in which u,, ,, ... are regarded as constant whilst
%y, Ty, ... vary and vice versd.
Now D, F and D,F are the respective determinants
dlelr dleZ" dlen 3nd dlth dluFZ:" dluF
dzzFl! d?zFZ’“ dIzF d‘zuFlr d2uF27" dz F

dna:Fh dnzFZ)" dnzF dnthdnuFﬂv i dnan )
and by virtue of equations (a)the constituents of the one only

differ from the corresponding constituents of the other by
a negative sign, whence

D, F—=(—1)"D,F,

D.F

that is P—"—‘—( 1) Dl%

Du
Hence in the case of implicit connections amongst the 2n

variables u,, %y, ... %,; @y, &y, ... T,, by virtue of n equations
F,=0, F;=0, ... F,,=0, connecting them,
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{The Jacobian of u,, u,, ... u,
with regard to z,, ,, ... z,
{Jacobian of Fy, F,,... with regard to z,, z,, ... }

(1) treating u;, %,, ... as constants
I, {Jacobian of F,, F,, ... with regard to u,, s, ...,|
treating z;, @,, ... as constants

The substance of this and the immediately preceding articles
on M. Bertrand’s treatment of Jacobians was communicated to
the author many years ago by his former tutor, the late
Dr. E. J. Routh. The reader may consult Bertrand’s Calcul
Différentiel, pages 62-70, and Calcul Intégral, pages 465-469.

837. Advantage of Bertrand’s Definition.

It will be seen that M. Bertrand’s definition leads to simpler
proofs of the fundamental properties of Jacobians than those
given in Arts. 540, 544 of the author’s Differential Calculus,
and retains a command of the several increments which we
shall find useful for subsequent work in the transformation of
a multiple integral.

838. Bertrand's Method of Calculating the Jacobian Determinant.

Let there be 2n variables, in two groups, viz. z,, z,, ... z,
and %y, %,, ... u,, connected by » independent implicit relations
F,=0, F,=0, F3=0, ... F,=0. Then n of the 2n variables
are independent. If increments be given to each, these 2n
increments are connected by » homogeneous linear equations,
and if n—1 of the increments be chosen to be zero, the ratios
of the remaining n+1 are determinate by the n connecting

equations.
Consider the n incremental systems,
it sud vy, (daty, o5 diteg] [ A 00 e 0wk 0
05 |idsusdaug, vis die bt damsy, dae, 0,7 e O

0, 201 dyveg ) iyl damyy. dimy, dymy, i 0
0, L0 3 05ty Waw b Lidgmiiid e dimnci  d
that is systems in which

increments d,u,, d,u,, ..., d,u, give rise to an increment
d,z, in z,, but make no change in z,, ,, ..., @,,
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and increments dyty, dgits, ..., dyW,, da, give rise to a change
dy, in x,, but make no change in u,, 5, 2, ..., Tp,
and so on.

Let J be the Jacobian of z,, ,, ..., z, with regard to
Uy, Ug, ..., U,. Then forming J according to Bertrand’s defini-
tion, each of the determinants of the increments, the one
formed from the z-increments, the other from the u-increments,
reduces to its diagonal term, and

iy d,@,.dy%,.dgTs ... AT, _Ox, Oxy T4 o,
dyty . dgtiy. dgtiy... d,u, Ou, Ou, duy ' ou,’

where g:’ is the limit of the infinitesimal change in z, to
:
that in w, when %, ug, ... %,_,, Tp4y, Tris ... T, are regarded

as constants,

839. It is necessary for the use of this rule to consider the
several connecting equations reduced to such form that

(1) #, is a function of u,, z,, zs, ..., ©,; 4, only varying

(2) z, is a function of w,, u,, @, ..., z,; 4, only varying ;
(8) z, is a function of u,, uy, us, @y, ...,%,; %z only varying ;
(n) =, is a function of u,, u,, ug, ..., %,; u, only varying.

The calculation of J will then be reduced to the multipli-
cation of the several partial differential coefficients derived
therefrom.

840. Illustrative Examples.
Ex. 1. If x#=rcos 0, y=rsin 6, write
z=~r" =y containing one of the new variables;

y=rsin @, containing two and no .

;.
Then J=:/-7:;/i.rcos G=r.

Ex. 2. If #=rsinfcos¢h, y=rsin @sin ¢, z=7 cos f, write
2=~r"—yT—74 containing one of the new variables ;
z=rc08 0, containing two and no 2;
y=rsin @ sin ¢, containing three and no zor 2

% Oz .oy r

Then J—a 0 o e .(—7sin @) (r sin @ cos ¢) = —7?sin 6.

N N
1y-V
W
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Ex. 3. If z+y+z=u, y+z=uv, z=uvw, we have
x=u—y—2z containing one new variable,
y=uwv—z, containing ¢wo and no z,
z==uvw, containing three and no z or y;
Ox Qy 0Oz
and J=x—* == =—=1.u. uww=uv.
Oou Ov Ow
Ex. 4. If #;=7rsinfcos¢p, x3=rsinOsin ¢,
xg=rcosfcosy, xy=rcosfsiny,

we have 2y =N x — rg? — 2, containing », &xa, x3, &y
2a=nN1?COS?H — 2%, containing 7, 6, Ty;
2y=rsin @sin ¢, containing », 6, ¢;
24=7cos @ sin ), containing », 6, ¥

and

Oxy Oxy Org Qg 1 —1%sin Gcos
Jmat 8 3 28 T fsin@icosdhi ncosficos
dr 00 3¢ Y n & ¢ ¥
= —13sin @ cos 6.
Ex. 5. If @y =rcos by,

2y=1sin 6;°cos 6,

Zy=17sin 6, sin @ cos O3,

2y=7sin 0, sin @, sin 4 cos 4,

25 =17 sin @, sin @, sin G, sin G, cos Oy,

ag=7sin @, sin @, sin @, sin O, sin Gy,
we have Te=N72 — 2,2 — g — 4% — 22 — 32,

&y =rcos 0,

2y=17sin 0, cos Oy,

xy=7sin @, sin @, cos O,

y=7sin @, sin G, sin O, cos 6;,

as=7sin f, sin 6, sin Gy sin 6, cos Oy;

and J=£ (—7sin 0,)(—7sin 6, sin 6.) (=7 sin 6, sin 6. sin Gy)
L]

x (—7sin @y sin @y sin Oy sin O,)( —7sin Oy sin 0,’sin 65 sin 6, sin 6;)
=(—1)57%sin* @, sin? @, sin®f, sin 6,
a result which can obviously be generalised.
841. Change of the Variables in any Multiple Integral. General

Theorem.
Let the integral in question be

1=m...dez1 da, ... dos

there being n integration signs, and ¥V any function of the

variables @, @, ... z,. Let the new system of variables be

U, Usy, ... Uy, there being n independent connecting relations
F,=0, F;=0,:... F\=0,

www.rcin.org.pl
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between the two groups of variables, either set forming a
group in which there is no interdependence. That is, the group
%, Ty, ... T, forms a set of » independent variables, as also does
the group u,, %,, ... ¥, When a further relation is assigned,
say ¢(x,, %, ... ,)=0, to be satisfied at the boundaries of the
region of integration, an interdependence of the z-group is
created, and one of the z-group of variables is dependent upon
the others. Integration is then to be conducted for the domain
or region bounded by the specific limitation ¢=0. There will
then be a corresponding relation amongst the wu-group of
coordinates, and a specific limitation will be implied for the
new definition of the domain of integration when I has been
referred to its new coordinates.

842. In the transformation of I three separate considerations
are to be attended to. As has already been pointed out in the
case of double and triple integration, we have to consider

(1) the determination of the new form of V, which is merely

an algebraic matter of substitution or elimination ;

(2) the assignment of the new limits which is also an

algebraic matter, materially. assisted in the case of
double and triple integration by geometrical con-
siderations ;

(3) the determination of the new element of integration

which is to replace dz, dz, dz, ... dz,.

As regards the assignment of new limits it is not possible
to give a general rule, but it must be such as will cause the
march of the new element as described in the new system of variables
to traverse the same domain once and once only as was traversed
wn the march of the original element, which domain was defined
by the limits of integration in the original system of variables.

Let us imagine that the connecting equations have been
thrown into the forms

@y =1 (0 gy gy ) (1), 1.e wy, U, ... u,eliminated;
2, = [ 0 A T S (ZY e e, o,
zg=f(u,, Uy, Uy, ,, ... T,) ...(3), ete. ;

ete,,

zﬂ:f(up Ugy Ug, ... u,,) ...... (n) ete.
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We have seen in earlier articles and examples, that in a
given multiple integral the order of integration may be
changed, provided a suitable change be made in the limits.

Then, first, suppose we attempt to replace integration with
regard to x; by integration with regard to u,.

Change the order of integration in

Isj”...jv(le &, 5. di

so that dw, stands last with the suitable change in the limits.
We then have to perform the operation

pis jm "'IMZ ... do, | dz,

and in this operation m, =, ..., are to be regarded as

constants, and equation (1) gives dar:1=—aji du,.
l

And since IU dxl—j.U 'du,, we have as z;, and u, are the

only varying quantities

1=([{[. jV diy dafi ]af 5,

where V, is what V becomes when f,(«,, @, @, ...%,) has
been substituted for @, that is, ¥, is the value of V expressed
in term8 of 44, &, g, 1ro Ty

We have now arrived at

I=IIJ"'IV1§‘% dx, dz, ... dx,, du,.

Let us repeat the process.
By change of order of integration with a suitable change in
the limits, transfer da, so that it stands last.

I=Ijj.. I oh da:s da, ... dz, du, de,

o j[”j af {doyda, .. d, du, |z,

and in this operation ,, ¥, ... T,, %; are to be regarded as

constants, and equation (2) gives dzz f du2
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Whence again applying the theorem jU’dz2=‘[U'§w72 du,,
2

and z,, %, being the only varying quantities, we have

:j[j'[ : 'J-V“’ guf—ll dw, dw, ... dz, du,l:] ,2—‘2 du,,

where V, is what V| becomes when f,(u,, u,, %,, ... z,,) is sub-
stituted for z,, that is V, is the value of V expressed in terms
of u,, uy, @,; ... x,; and we have now arrived at

I= HI j af ! af 2 dza dw, ... dz, du, du,.

Continuing this process of ch&ngmg the order of integration
so that dz, is transferred to the end, and then exchanging the
variable z, for u,, ete., we finally arrive at

W %h of s Ofa
z_m...jv,,aul b2 e audu, .. du,
where V,, is the value of ¥ when all letters of the z-group in
V have been replaced by letters of the u-group, that is
V.=V, say.
Now it has been seen that
o % 2% LEJ
Pu, du, ouy"" du,
the Jacobian of 2, &, ... , with regard to u,, w,, ... u,; and

go(1p |2, O O | 2B, oF,  oF,

u,” m,’ " du, o anl e
oF, oF, oF,|||oF oF, °F,
ToT DA TR T BELf L or s Lo

oF, °F, oF,| |oF, oF, oF,

ou, ' ouy’ " ow, oz, omy’ " ow,
O(Fpillas Bgsinstll,)

o Oty Yo, Uy ... Uy)

i SR T7 90 o o 1

D itle; B )

where in forming the numerator all letters of the 2-group are
considered constant, and in the denominator all letters of the
u-group are considered constant.

o
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Hence, we have finally,

jjijdx dz, dz, ... dz,

o(F, F,, ... F,)
== 1ef][- jV'W:—:TA’—F—duIduldus...dun.
BRI ,,)
3. f =a?
FO ) A s ’} be the connecting equations,
v —yu=0,
% Y
B e e
W R N (R
v, —u

Compare the process of Ex. 8, Art. 831.

844. The Vanishing of J.

It may be noted that the vanishing of J would imply that
when z,, %,, ... , are regarded as functions of u,, u,, u,, ...,
there would be some identical relation amongst the members
of the x-group of variables; and if J were infinite, we should
have J'=0, and there would be some identical relation amongst
the values of u,, u,, ... %, as expressed in terms of x,, z,, ... @,
(Art. 547, Differential Calculus). We have, however, assumed
all our several connecting equations F,=0, F,=0, ... F,=0, to
be independent relations, so that no such identical relation
can occur amongst either set of variables.

845. Remarks.

It may be useful to call attention to the fact that in the
geometrical treatment of Arts. 792 and 794 for double and
triple integrals respectively, the new element of integration
was formed and the variables were changed to the new group
all together. 1In the general proof of Art. 842, the original
variables were exchanged for the new variables one at a time.
When a geometrical method of determining the new limits
is not available, this consideration will often be useful for
their proper assignment, and may be used when other means
are wanting. But the process followed out in detail is
generally tedious, as every change in order of an integration

www.rcin.org.pl
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as well as every exchange of a new variable for an old one
necessitates in general a readjustment of the limits of each
integration.

846. Examples in which Multiple Integrals of Order higher than
the Third occur in Physics.

Multiple integrals occur frequently in researches of physical
nature, of higher degree of multiplicity than the third. For
instance, in the problem of the illumination of one surface by
another, the two surfaces being such that every point of the
one can be seen from each point of the other, the quantity to
be evaluated is the quadruple integral *

(bt asas

where dS, dS’ are the elements of the two surfaces; ¢, ¢’ the
angles which the outward normals make with r, the distance
between dS and dS’, and the integration is to be conducted
over each surface. In such case, the limits form two separate
groups, the one referring to surface S, the other to surface &',
and if any transformation of variables be required, a new
assignment of limits being required, they will be available
from geometrical conditions for each group.

Another illustration from Physics is in the mutual potential
of two attracting systems, which for a continuous distribution
of matter in regions P, @ has for its expression the sextuple

integral
Weo=|[|[[[e22sdrar,

where p, is the volume density at a point p of the region P ;
pq the volume density at a point ¢ of the region @ ;
drp, dr, elements of volume at p and ¢, and 7,, the
distance from p to ¢.

In this case also the system of limits will be two separate
systems, the one ensuring summation through the region P
and the other through the region . And if any change of
variable be required to facilitate integration, necessitating a
new assignment, of limits, they will be available as in the
former case from the geometrical conditions for each group.

*See Herman, Geometrical Optics, Art. 157.
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847. Case of Implicit Relations.
If in Art. 839 Equations (1), (2), ... (r) had not been supposed
to express
z, explicitly as a function of u,, z,, z,, ... z,,
z, explicitly as a function of u,, u,, z,, ... z,,
ete,,
but had been given as implicit relations, viz.
b1(%y, Ty, T3, ..o T,) =0...(1), in which u,, u,, ... u, are
eliminated,
Pa(uy, Ug, g, X3, ... T,)=0...(2), in which z;, us, ... u, are
eliminated,
Ps(uy, Us, Ug, Ty, ... T,)=0...(3), ete.,
ete.,
D (%, Ug, Ug, ... Uy, 2,)=0...(n) ete.,
we have in the subsequent work, from equation (1), con-
sidering z,, %3, ... &, as constants,
!
e ou, '
A= —?—4)1 du, ;
o,

and from equation (2), considering u,, z5, 2,, ... @, as constants,

Ogps

g B0ty
day,= %2 du,,
Oty
and so on.
And we finally obtain in the same way as before,

H...dexldw,...dx,,
Op1 O¢y Ops Odn

i e ,ou; du, ouy " Ju,
=(—1) IIIV 55, 00 (o¢s %dulduz...du,,.
%1 : e "0y Om,

848. For example, taking
Pr=r2—22—y?—z2 =0 (containing z, y, z, ),
$y=r2sin?f—a? - y?=0 (containing y, , r, 0),
¢s=rsin fcos p—2 =0 (containing x, r, 6, ¢).
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Then we have

O, Oy Odby

ffthlrdydz va'aifl aafz g¢sdrd0d¢

(g ,2r.2r’sm Bcos 6(—rsin @sin ¢p)
r RNy es0dp

Foli _[f v 1"sin30.cos€sin4> drdfd

rsin @sin ¢ . 7 cos
i f f V'r2sin 0drd6 dé,
as we should expect ; see Ex. 2, Art. 840, and elsewhere.

849. Example of Assignment of Limits.

Ex. Asan example of the assignment of limits in a multiple integral,
let us take two squares of sides 2a in parallel planes at distance ¢ apart,
the squares being placed so that they form the ends of a rectangular
parallelepiped of square section, and let us find the mean wvalue of the
squares of the distances of points on the one square from points on the other.
By a mean or average value we shall suppose to be meant that each
square is divided up into equal small elements, and the sum of the
squares of the distances apart is to be divided by their number, z.e. if
there be n such elements, and 7pg be the distance between two of them at
27‘?»9 BSPSSQ
_ZSSPSSQ
if 8Sp and 8Sg be the elements at P and @ ; and in the limit, when 2
becomes infinitely large, we have

P and at @ respectively, 2:?’9, or, which is the same thing,

‘L/—‘/M ~ (See Chapter XXX VI., Art. 1657.)

W

Let O, O be the centres of the squares, and take O for origin and axes
of # and y parallel to the sides of the squares.

Divide up each square by families of lines parallel to the axes, and let
(2, y, 0), (¢, ', ¢) be the respective coordinates of P and Q. Then the
Mean Value required is

=fjj[[(r— 2P+ (y -y + et da’ dy’ dew dy

/ f f /dx’dy’d.rdg/

Now keeping the position of ¢ fixed, we may add up all the elements
75982 8y in a strip between x and z+ 8z, by varying » from —a to +a,
keeping 2/, ¥/, « constant. Then, still keeping ', ' constants, we may
add up all the strips in the square 4 BCD which lies in the z-y plane, by
integrating with regard to x from z= —ato 2=+4a We have then
completed the summation of all such quantities as r3, dv’dy’ for all

www.rcin.org.pl
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In the same way we may add up the

positions of P in the square 4 BCD.
results of these integrations for various points of the square 4'B'C'D,

by integrating with regard to 3 from —a to +a, keeping 2’ constant to
add up the elements in a strip between 2’ and #’+382". And finally in-
tegrating with regard to z’ from —a to +a will add up the results for all

the strips in the square 4’2'C’'/' and will complete the integration.
cl

Fig. 312.

And the same with the denominator. The result for the denominator
is obviously the product of the two areas, ze. 4a?X 4a? or 16at.

The numerator is
[[[[@+52 o457 - 220 -2y + ) do’ dy iy

and it will save some trouble to observe :
(1) That for every term xz’ 82’ 8y’ 8« 8y, there is another term

(- 2’) 8x’ 8y’ 8w 8y.
Hence such a term contributes nothing to the value of the
integral, and the same with the ¥y’ term.

(2) That obviously
222 d8dS’ =Zy*dS d8’' =2z dS d8’' =2y dS dS".

Hence it will be sufficient to attend to the value of one of them,
and quadruple the result.

Now
F[;[u 22 dx’ dy’ de dy= f 2a2? dz’ dy’ dv
2a3 . 2a®
=[J:(2a)(—:§—>dw dy’ =(2a) - Ta

Hence the value of the numerator is
4(Af a®)+c?. 16af,
24 9.2
and M:@,
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It follows that the mean of the squares of the distances from any point

2
of a square to any other point of the same square is 4—“, by putting ¢=0.

[Also see Art. 1657 and Art. 1658, Ex. 2.] g

850. A Consideration useful for the Simplification of some
Transformation Formulae.

Let a multiple integral ”j V du,du, ... du, be trans-
formed in two ways:
(1) to a set of variables z,, z,,...z,;
(2) to a set of variables £, &,,... £,.

And suppose these two sets are linearly connected with each
other, the transformation formulae
for the linear connections being bbb
given by the transformation scheme
in the margin. And let the two
results be I,

H...Iv, J, dz, dz, ... dz,

and ”jvz Jydg, dg, ... dé..

Then, the Jacobian is a covariant of u,, 4,, ... %, ; we have
Fa=dlel

my; Mg, «o.

a2 Fiolg! amgat ey

=,
(Diff. Cale., Art. 546),

..............

wn being the transformation modulus. And that the above
expressions are equal may be seen by transforming directly, for

”...jvl J, do, ds, ... dz,
=IJ....IV2J12—E%—::%3@J§2 oagdh
=” ...IV2 I, ide dts . d¢,
=”...IV2J,J§, e ... a¢.,

and the results are identical, as might have been expected.
It follows that if a transformation be proposed to a set
of variables £, &, &, ..., a transformation to another set
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Z,, T,, %,... may be substituted for the former, where a
suitable choice of linear connection between the former and
the latter sets may sometimes be made to simplify the
working.

851. For example, if the transformation formulae proposed be
w,= (A& + By) sin (C + Dy),
uy=(A§£+ By) cos (C¢+ D),
we shall have the same result as if we transform with the easier formulae

w,=xsin y,
Uy =2 COS Y,

for which the Jacobian is obviously —, and multiply the result by the
modulus 4D - BC.

Thus fdeu,du,:—ffV,xdxdy

= —(4D- BC) f f Vo(AE+ By)dédy,

thus avoiding the more troublesome evaluation of the Jacobian with
regard to £, .

852. Speaking of the result

m”xdy dz=j”V’2§—i——-%du do i,

Lacroix* remarks: “Ce resultat a été donnée pour la premiere
fois par Lagrange en 1773. Mais Legendre, en 1788, en a
fait des applications que Lagrange n’avoit point indiquées.”
This application referred in part to the analytical proof of a
theorem with regard to the attraction of a spheroid.

The corresponding result for a double integral had been
employed by Euler in 1769.

Many references with regard to the history of the subject
are given by Todhunter, Integral Calculus, Art.251. There is
a valuable table of references in Lacroix’s Cale. Diff. et Int.,
vol. ii., prefixed to the volume, which may be useful to
students interested in the subject and desiring to consult early
writers.

* Lacroix, Calcul. Diff. et Int., vol. ii., p. 206.
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PROBLEMS.

1. If the rectangular coordinates of a point are
z=a+éfcosa, y=PB+cfsinag,
show that the area included between the curves a,, B;, a,, B, is

1 (ay - ap) (2B, — € - 2B, + ).
Mg 4k g [Mata. Trrp., 1873.]

2. Integrate “.z‘b‘ dzdy over the space enclosed by the four
parabolas P =4daz, yi=4bx, ?=4cy, a*=4dy.
[TriNiTY CoOLL., 1882.]
3. The four curves y=ax? y=0ba? y=cad, y=da® intersect in four
points, excluding the origin, and thus form a curvilinear quadri-
lateral ; prove that its area is

Lt ‘_~‘_).

2 b)<03 a? [Oxrorp II. P., 1901.]
4. An area is bounded by those portions of the four rectangular

hyperbolae zy=a?, ay=a'? 2?2 —y2=c?% 22- y2=c'?, which lie in the

first quadrant. Every element of the area is multiplied by the

square of its distance from the centre. Prove that the sum of all

Sl preduds i 3(@®~a'?)(c?~c"?). [J. M. Sc., OxF., 1904.]
5. If the surface density o of the area in the first quadrant
bounded by Fh =™, 2Py =Y,

Yt =0, Y =b,
be given by oxy =k, show that the mass is
k(m+'n)(p+q)1 og
; mq — np
6. Change the variables from z and y to u and v in the double
integral at
afz
‘[ j b (, y) de dy,
0Jz

where zy=u?, 2?+y2=1% [ST. Joun’s, 1882.]

! log

7. Show that in r “- bf(x y)dzdy all terms in f(z,y) may be
a
omitted which contain an odd power of z or y.

Find I j (z+y) cos(mz + ny) dx dy.
0J—2

©(Viaz  g2dydy
8. Transform jo Io W

o/E=y/ ="+ +a /e,

and show that its value is 7/4+/2, [Oxrorp II. P., 1903.]

[TriNiTY CoLL., 1881.]

by the substitution
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9. Change the order of integration in

a 2?
z

2T
“-I, Vdzdy.
02

a

1f1

10. If ay=§, «*—y2=q trausform‘\‘ J. Vdxdy so that in the
0Jo

result we integrate first with regard to & and then with regard to 7.

[R.P.]

[St. JonN's, 1889.]

11. Change the order of integration in the expression
cl

also, change the variables to & and » where 22+ y2 =1, £x=cy, without

assigning the new limits. (It may be assumed that % is greater

than A.) [St. JonN’s, 1888.]
12. Prove that '

T |
'_xi_yﬁ dedy= Z(-é g 1) ab,
s @t ,
the integral being taken for a.ll positive values of 2 and y such that
Y
a2 + < 5 [CoLLEGES, 1886.]

13 Express J’I f(z, y)dzdy in terms of r and 6, where =1 cos 6,

y=rsin6.
Change the order of integration in

Vaz
f’ j f(@, ) de dy.
0 JNaz—2* [CoLLEGES a, 1883,]

14. Change the order of integra.tion in ’

I““’*”' j " fia, ) dy da.

[ST. JouN’s, 1892.]
15. Change the order of integration in

¥ placosd
J' J‘ (r, 6)dé dr.

l
0Jasect;

16. Change the variables from 2, y to u, », where 2%+3y2=u,
zy=v, and find the limits in the new integral when integration is
extended over the positive quadrant of the circle 22+ y?=a2

[St. Jonn's, 1881.]
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17. Change the order of integration in the integral

rr V dz dy,
¢ gda'Tz'

where ¢ is less than a. [COLLEGES a, 1888.]

18. Change the order of integration in

Na—g
r]. U dz dy,
0JiNai=z*

U being a function of z and 7.
Express the same integral in polar coordinates. [CorLEces a, 1886.]

19. Show that

28 ~V2az 2a %
IJ‘ dedy=j r 2y dg,
0 JN2az—2z* adq-al

2 24
when £=;’—x, 7= 2;’;

and change the order of integration in the latter integral.
[CoLLEGES S, 1889.]

20. If the density of a plate be -~ show that the mass of the

g
part enclosed by the curves 2?—y2=a, 22-y2=f, ay=1y, wy=3 is
w(B(® dudv
QH,W
Show whether this gives the mass of one of the areas between the
two curves, or of both. [COLLEGES a, 1883.]

21. Change the variables from (z, y) to (v, v) in the double
integral || (z, y) dzdy, where 22+ y*=wu, zy=v, and the integration
extends over the area bounded by the straight lines

y=2, z+y=1, y=0,
obtaining the new limits on the supposition that the order of inte-
gration is first  and then o, [CoLLEGES a, 1870.]

Verify your result by evaluation of the integral for the case
when ¢(2,y)=1.

22. Change the variables from 2 and y to £ and 7 in the expression

Vdx dy, having given ¢(z,y, & n)=0 and ¢(2, 7, & 1) =0.
Show, by transforming to polar coordinates, that
-—c:hnc -i.-_tnna
4 J‘\/ZA J“m dedy  _ tan-1%¢C2 =008 &
0 0

(2 +92 + )} 2
[TrINITY, 1882.]
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23. If 7, 7" be the distances of a point in the plane of reference
from two fixed points at a distance 2¢ apart on the axis of z, then
between corresponding limits of integration

” 2eyda dy = H"" drdy’. [Oxrorp IL., 1886.]
24. Prove that

() z
I dwrdy F(z, y) =rda;[ dyF(l-y, 1 -2),
o Jo o Jo
and hence deduce that

I [dG’(sm0sm0’)2‘ 1sin(6 - (9’)—l 2

[SYLVESTER. ]
25. Prove that

z x x
[(as[lazr @ pta-2)=[ a0 - O} (a2
y . [St. Jonn’s, 1885.]
26. Transform the integral ]V dz dy by the substitution
z=ccos £ coshy, y=csin¢sinhy.
{CoLLXGES v, 1890.]
27. If u+vJ/ = 1=¢(z+yv/ - 1), prove that

MG+ (&) o= [[[(52) + () Jusm

when 7 is the resu]t of substltutmg for z, y in terms of u, » in V.
[COLLEGES a, 1881.]

28. If z=asinacos¢ coshy and 7 =a sin asinésinhy, transform

@ pcosaNat -z
I I {(z - asin a)? + 92} Yz dy
0

0
into an inbegral in terms of ¢ and 7, and evaluate the new integral.

29, If b2 + —=1and S= ‘Udz dy~1+p?+¢?, transform the

varlables in the mtegral to 6, ¢, where
z=asin 0 cos ¢, y=>sinfsin .
[Ivory, Phil. Trans., 1809.]

30. Prove that the assumptions

z,=rcos b,

2, =17 sin 6, cos 6,,

Ty =780 0, 8in f,...8in 6,_, 0080, _,,
Z,=7sin 6, sin 6,...sin 0,_,sin 6,_,,
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will transform the integral H-IV dai'l dxy dr, ... dr, into

+ J‘.” sy V-t emNEE ORI =R 0. TR 0N Sdrd0 L 100,

[CLARE, ETC., 1881 ; TODHUNTER, [nf. Calc., p.241.]
31. Show that
4SIIj(x2 +y2+22) de dy dz = bmad

for positive values of #, y, # limited by 2%+ ﬁ 4az and Pal

[Oxrorp II. P., 1889.]
32. Prove that

B 4B WD 24 g2 1 A2)2
.[ I .[ e mdodydi= ot i’
0Jo o(x2+y"'+z2+a?) v ( )
[CoLLEGES ¥, 1882.]

33. Two given rectangular hyperbolae have the same asymptotes ;
two other given rectangular hyperbolae have also common asymp-
totes, one of which coincides with an asymptote of the first pair,
while the other is parallel to their other asymptote. Show that the
area of the curvilinear quadrangle formed by the four hyperbolae
is the same, whatever the distance between the pair of parallel
asymptotes. [MarHs. Tripos, 1895.]

34. Transform the double integral

J' Iz"“ly"‘l dy dz
by the formulae z+y=wu, y=uv, showing that the transformed

result is
”u"‘*"‘l (1 - v)ym=1yn=1 du dy.

B [JAcosl, Crelle’s Journal, tom. xi.)
30, If UL =Uglg, Uyl =Uglly, UgZ=1 Uy,

prove that j IV dz dy dz

is transformed into 4 j.j [V 1 duy duy, dug.
36. Show that !

J-nlz I\/w z'(z2+y2)x <l—£)l_{%,

and both from geometrical considerations and by direct evaluation,
show that this integral is equal to the integral

[Oxrorp II. P., 1885.]

a :J_al_yl dx
.[o yL (2% + 3/2)* [OxForp I. P., 1912.]
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