211.

ON A THEOREM RELATING TO HYPERGEOMETRIC SERIES.

[From the Philosophical Magazine, vol. XVI. (1858), pp. 356-357.]

IN attempting to verify a formula of Hansen's relating to the development of the disturbing function in the planetary theory, I was led to a theorem in hypergeometric series: viz. writing, as usual,

$$F(\alpha, \beta, \gamma, x) = 1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} x + \frac{\alpha \cdot \alpha + 1 \cdot \beta \cdot \beta + 1}{1 \cdot 2 \cdot \gamma \cdot \gamma + 1} x^2 + \dots$$

then the product

$$F(\alpha, \beta, \gamma + \frac{1}{2}, x) F(\gamma - \alpha, \gamma - \beta, \gamma + \frac{1}{2}, x)$$

is connected with

$$(1-x)^{-(\gamma-\alpha-\beta)}F(2\alpha, 2\beta, 2\gamma, x)$$

by a simple relation; for if the last-mentioned expression is put equal to

$$1 + Bx + Cx^2 + Dx^3 + \dots$$

then the product in question is equal to

$$1 + \frac{\gamma}{\gamma + \frac{1}{2}} Bx + \frac{\gamma \cdot \gamma + 1}{\gamma + \frac{1}{2} \cdot \gamma + \frac{3}{2}} Cx^2 + \frac{\gamma \cdot \gamma + 1 \cdot \gamma + 2}{\gamma + \frac{1}{2} \cdot \gamma + \frac{3}{2} \cdot \gamma + \frac{5}{2}} Dx^3 + \&c.$$

The form of the identity thus arrived at will be best perceived by considering a particular case. Thus, comparing the coefficients of x^3 , we have

211]

$\frac{\alpha . \alpha + 1 . \alpha + 2 . \beta . \beta + 1}{1 . 2 . 3 . \gamma + \frac{1}{2} . \gamma + \frac{3}{2} . \gamma}$	$\frac{.\beta+2}{1+\frac{5}{2}}.1$	
$+\frac{\alpha . \alpha+1 . \beta . \beta+1}{1 . 2 . \gamma+\frac{1}{2} . \gamma+\frac{3}{2}}$	$\cdot \frac{\gamma-\alpha \cdot \gamma-\beta}{1\cdot \gamma+\frac{1}{2}}$	
$+\frac{\alpha \cdot \beta}{1 \cdot 2}$	$\cdot \frac{\gamma-\alpha.\dot{\gamma}-\alpha+1.\gamma-\beta.\gamma-\beta}{1.2.\gamma+\frac{1}{2}.\gamma+\frac{3}{2}}$	$\frac{3+1}{2}$
+1	$\cdot \frac{\gamma-\alpha.\gamma-\alpha+1.\gamma-\alpha+2.\gamma-\alpha}{1.2.3.\gamma+\frac{1}{2}.\gamma}$	$\frac{-\beta \cdot \gamma - \beta + 1 \cdot \gamma - \beta + 2}{\gamma + \frac{3}{2} \cdot \gamma + \frac{5}{2}}$
$=2\alpha . 2\alpha + 1 . 2\alpha + 2 . 2\beta . 2\beta + 1 . 2 \alpha + 2 . 2\beta . 2\beta + 1 . 2 \alpha + 2 . 2\gamma . 2\gamma + 1 . 2\beta $	$-\frac{1\cdot 2\beta+2}{\gamma+2}\cdot 1$	
$+rac{2lpha\cdot 2lpha+1\cdot 2eta\cdot 2eta+1}{1\cdot 2\cdot 2\gamma\cdot 2\gamma+1}$.	$\frac{\gamma - \alpha - \beta}{1}$	$\gamma \cdot \gamma + 1 \cdot \gamma + 2$
$+\frac{2\alpha \cdot 2\beta}{1\cdot 2\gamma}$.	$\frac{\gamma-\alpha-\beta\cdot\gamma-\alpha-\beta+1}{1\cdot 2}$	$\left\{\frac{\gamma+\frac{1}{2}\cdot\gamma+\frac{3}{2}\cdot\gamma+\frac{5}{2}}{\gamma+\frac{1}{2}\cdot\gamma+\frac{5}{2}}\right\}$
+1 .	$\frac{\gamma - \alpha - \beta \cdot \gamma - \alpha - \beta + 1 \cdot \gamma - \alpha - \beta + 1}{1 \cdot 2 \cdot 3}$	2

It may be observed that the function on the right-hand side is, as regards α , a rational and integral function of the degree 3, and as such may be expanded in the form

$A\alpha \cdot \alpha + 1 \cdot \alpha + 2$	2
$+B\alpha . \alpha + 1$	$\cdot \gamma - \alpha$
$+ C \alpha$.	$\cdot \gamma - \alpha \cdot \gamma - \alpha + 1$
+ D	$\cdot \gamma - \alpha \cdot \gamma - \alpha + 1 \cdot \gamma - \alpha + 2,$

and that the last coefficient D can be obtained at once by writing $\alpha = 0$; this in fact gives

$$D\gamma.\gamma+1.\gamma+2=\frac{\gamma-\beta.\gamma-\beta+1.\gamma-\beta+2}{1.2.3}\frac{\gamma.\gamma+1.\gamma+2}{\gamma+\frac{1}{2}.\gamma+\frac{3}{2}.\gamma+\frac{5}{2}},$$

and thence

$$D = \frac{\gamma - \beta \cdot \gamma - \beta + 1 \cdot \gamma - \beta + 2}{1 \cdot 2 \cdot 3 \cdot \gamma + \frac{1}{2} \cdot \gamma + \frac{3}{2} \cdot \gamma + \frac{5}{2}},$$

which agrees with the left-hand side of the equation: and the value of the first coefficient A may be obtained in like manner with a little more difficulty; but I have not succeeded in obtaining a direct proof of the equation. The form of the equation shows that the left-hand side should vanish for $\gamma = -2$, which may be at once verified.

Grassmere, August 25, 1858.