210.

ON THE CUBIC TRANSFORMATION OF AN ELLIPTIC FUNCTION.

[From the Philosophical Magazine, vol. xv. (1858), pp. 363-364.]
Let

$$
z=\frac{\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \backslash x, 1\right)^{3}}{(a, b, c, d \chi x, 1)^{3}}
$$

be any cubic fraction whatever of x, then it is always possible to find quartic functions of z, x respectively, such that

$$
\frac{d z}{\sqrt{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} 久}(z, 1)^{4}}=\frac{d x}{\sqrt{(A, B, C, D, E 久 x, 1)^{4}}} .
$$

This depends upon the following theorem, viz. putting for shortness,

$$
\begin{aligned}
U & =(a, b, c, d \gamma x, y)^{3}, \\
U^{\prime} & =\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\langle x, y)^{3},\right.
\end{aligned}
$$

and representing by the notation

$$
\text { disct. }\left(a U^{\prime}-a^{\prime} U, \quad b U^{\prime}-b^{\prime} U, \quad c U^{\prime}-c^{\prime} U, \quad d U^{\prime}-d^{\prime} U\right)
$$

or more shortly by

$$
\text { disct. }\left(a U^{\prime}-a^{\prime} U, \ldots\right),
$$

the discriminant in regard to the facients (λ, μ) of the cubic function

$$
\left(a U^{\prime}-a^{\prime} U, \quad b U^{\prime}-b^{\prime} U, \quad c U^{\prime}-c^{\prime} U, \quad d U^{\prime}-d^{\prime} U \gamma \lambda, \mu\right)^{3}
$$

or what is the same thing, the cubic function

$$
\begin{array}{r}
\quad(a, b, c, d \gamma \lambda, \mu)^{3} \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \backslash x, y\right)^{3} \\
-\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \backslash \lambda, \mu\right)^{3} \cdot\left(a, b, c, d^{\chi} x, y\right)^{3} ;
\end{array}
$$

and by $J\left(U, U^{\prime}\right)$ the functional determinant, or Jacobian, of the two cubics U, U^{\prime}; the theorem is that the discriminant contains as a factor the square of the Jacobian, or that we have

$$
\text { disct. }\left(a U^{\prime}-a^{\prime} U, \ldots\right)=\left\{J\left(U, U^{\prime}\right)\right\}^{2} .(A, B, C, D, E X x, y)^{4}
$$

For assuming this to be the case, then (disregarding a mere numerical factor) we have

$$
U d U^{\prime}-U^{\prime} d U=J\left(U, U^{\prime}\right)(y d x-x d y)
$$

and the two equations give

$$
\frac{U d U^{\prime}-U^{\prime} d U}{\sqrt{\operatorname{disct} .\left(a U^{\prime}-a^{\prime} U, \ldots\right)}}=\frac{y d x-x d y}{\sqrt{(A, B, C, D, E \backslash x, y)^{4}}},
$$

whence writing z for $U^{\prime} \div U$, and putting y equal to unity, we have

$$
\frac{d z}{\sqrt{\text { disct. }\left(a z-a^{\prime}, \ldots\right)}}=\frac{d x}{\sqrt{(A, B, C, D, E 久 x, 1)^{4}}}
$$

where disct. $\left(a z-a^{\prime}, \ldots\right)$, or at full length,

$$
\text { disct. }\left(a z-a^{\prime}, b z-b^{\prime}, c z-c^{\prime}, d z-d^{\prime}\right)
$$

is a given quartic function of z,

$$
=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \chi z, 1)^{4}
$$

suppose; and this proves the theorem of transformation.
The assumed subsidiary theorem may be thus proved: suppose that the parameter θ is determined so that the cubic

$$
U+\theta U^{\prime}
$$

may have a square factor, the cubic may be written

$$
\left(a+\theta a^{\prime}, b+\theta b^{\prime}, c+\theta c^{\prime}, d+\theta d^{\prime}(x, y)^{3},\right.
$$

and the requisite condition is

$$
\text { disct. }\left(a+\theta a^{\prime}, \ldots\right)=0 \text {; }
$$

there are consequently four roots; and calling these $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, we have identically

$$
\text { disct. }\left(a+\theta a^{\prime}, \ldots\right)=K\left(\theta-\theta_{1}\right)\left(\theta-\theta_{2}\right)\left(\theta-\theta_{3}\right)\left(\theta-\theta_{4}\right) \text {, }
$$

or what is the same thing,

$$
\text { disct. }\left(a U^{\prime}-a^{\prime} U, \ldots\right)=K\left(U+\theta_{1} U^{\prime}\right)\left(U+\theta_{2} U^{\prime}\right)\left(U+\theta_{3} U^{\prime}\right)\left(U+\theta_{4} U^{\prime}\right)
$$

Now any double factor of U or U^{\prime} (that is the linear factor which enters twice into U or $\left.U^{\prime}\right)$ is a simple factor of $J\left(U, U^{\prime}\right)$, and we have $J\left(U, U^{\prime}\right)=J\left(U, U+\theta U^{\prime}\right)$, and consequently

$$
J\left(U, U^{\prime}\right)=J\left(U, U+\theta_{1} U^{\prime}\right)=\& c .
$$

hence the double factors of each of the expressions $U+\theta_{1} U^{\prime}, U+\theta_{2} U^{\prime}, U+\theta_{3} U^{\prime}$, $U+\theta_{4} U^{\prime}$ are simple factors of $J\left(U, U^{\prime}\right)$, or what is the same thing, $J\left(U, U^{\prime}\right)$ is the product of four linear factors, which are respectively double factors of the product

$$
\left(U+\theta_{1} U^{\prime}\right)\left(U+\theta_{2} U^{\prime}\right)\left(U+\theta_{3} U^{\prime}\right)\left(U+\theta_{4} U^{\prime}\right),
$$

or this product contains the factor $\left\{J\left(U, U^{\prime}\right)\right\}^{2}$, which proves the theorem.
2, Stone Buildings, W.C., March 5, 1858.

