166.

NOTE ON THE HOMOLOGY OF SETS.

[From the Quarterly Mathematical Journal, vol. I. (1857), p. 178.]

Let L denote a set of any four elements a, b, c, d, and in like manner $\Lambda, L_{1} \& c$. sets of the four elements $\alpha, \beta, \gamma, \delta ; a_{t}, b, c_{t}, d_{l}, \& c$.; then we may establish a relation of homology between four sets L, L_{1}, L_{2}, L_{3}, and four other sets $\Lambda, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}$; viz., considering the corresponding anharmonic ratios of the different sets, we may suppose a relation of homology between these ratios. Thus considering the set to L, write

$$
\begin{aligned}
& x=(a-b)(c-d), \\
& y=(a-c)(d-b), \\
& z=(a-d)(b-c),
\end{aligned}
$$

then $x+y+z=0$ and the anharmonic ratios of the set are $x: y: z$-we may, if we please, take $x: y$ as the anharmonic ratio of the set. And in like manner taking $\xi: \eta$ as the anharmonic ratio of the set $\alpha, \beta, \gamma, \delta$, \&c., the assumed relation between the sets L, L_{1}, L_{2}, L_{3} and the sets $\Lambda, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ will be

$$
\left|\begin{array}{cccc}
x \xi, & x \eta, & y \xi, & y \eta \\
x_{1} \xi_{1}, & x_{1} \eta_{1}, & y_{1} \xi_{1}, & y_{1} \eta_{1} \\
x_{2} \xi_{2} & x_{2} \eta_{2}, & y_{2} \xi_{2}, & y_{2} \eta_{2} \\
x_{3} \xi_{3}, & x_{3} \eta_{3}, & y_{3} \xi_{3}, & y_{3} \eta_{3}
\end{array}\right|=0 ;
$$

and it is to be observed, that this relation is independent of the particular ratio $x: y$ which has been chosen as the anharmonic ratio of the set; in fact, if we write $x=-y-z, \xi=-\eta-\zeta$, \&c., then reducing the result by means of an elementary property of determinants, the equation will preserve its original form, but will contain the ratios $y: z ; \eta: \zeta$, \&c., instead of the ratios $x: y ; \xi: \eta$, \&c.

