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An experimental and theoretical study of the distortion of a travelling 
shock wave by wall effects(*) 

W. FISZDON, Z. WALENTA (WARSZAWA) and A. WORTMAN (LOS ANGELES) 

AN EXSPERIMENTAL and theoretical study of the distortion of a strong shock wave travelling 
along a solid boundary by a laminar boundary layer developing under the induced flow field 
was performed for the purpose of establishing the shock front slope near the wall. A simple 
continuum flow model is found to yield results which are in good agreement with experiment. 
It is shown that the deviation of the shock front from normal is quite small, which is in direct 
disagreement with the commonly held belief of a gradual decay of the shock wave to an acoustic 
pulse as the wall is approached. 

W pracy przeprowadzono teoretyczne i doswiadczalne badania nad odksztalceniem silnej fali 
uderzeniowej, poruszaj~cej si~ wzdluz sztywnej 8cianki, w wyniku dzialania laminarnej warstwy 
przysciennej powstaj~cej w przeplywie za fal~. Celem ich bylo okreslenie k~ta nachylenia fali 
w pobliZu 8cianki. Stwierdzono, ze prosty model teoretyczny, oparty na zalozeniu osrodka ciu
lego, daje wyniki dobrze zgaclzcY~ si~ z eksperymentem. Uzyskane warto8ci odchylenia fali 
uderzeniowej od normalnej do 8cianki ~ niewielkie, co jest sprzeczne z powszechnym mniema
niem, ze fala uderzeniowa w miar~ zbliZania si~ do 8cianki przechodzi w zaburzenie akustyczne. 

B pa6oTe H3JIO>KeHbi reopeTHTiecKHe H OIIbiTHbie HCCJie~oBaHWI ~e<lx>pMHpoBaHIDI CHJibHO:ii: 
y~apHOH BOJlHbi, ~H>Icyll.{eHCH B~OJib >KeCTJ<OH CTeHI<H • .IJ;e$opM8~ $poHTa BOJlHbl HBJIH
CTCH peayJII>TSTOM B03~CHCTBHH JlaMHH8pHoro norpamAHoro CJIOH, B03IDIKaiOII.{ero 3a BOJIHOH 
B Hayt~aeMOM Tet~eHHH. UeJibro HCCJie~oBa.HHH HBJIHJIOCI> Haxo~eHHe yrna HaKJIOHa $poHTa 
BOJIHbi B oKpeCTHOCTil creHI<H. 06HapymeHo, tiTo xopoiiiHe peayJibT&Tbi, cornacyroll.{Heca 
C 3KcnepH,MeHT8JibHbiMH ~IMH, ~aCT npocraa TeopeTHliCCKaJI CXCM8, OCHOBaHHaJI H8 KOH
THHyaJII>HOH MO~eJIH TelleHHH. IlonyqeHHbie Be.JillliHHbl OTKJIOHCHHH y~apHOH BOJIHbl OT HOP• 

MaJIH K CTeHKe HMeiOT He60JibWlfe 3H8liCHHH, liTO llpOTHBOpetnrr pacnpOCTpaHCHHOMY MHCHHIO 
0 TOM, liTO y~apH3H BOJIHa nepeXO~ B aKyCTHlleCKoe B03M~eHHe UPH npH6JIH>KeHHH K 
CTeHKe. 

Notations 

c (}Jl/((}Jl)2, 
D half width of the channel, 
E energy parameter = uV2h2, 
f stream function defined so that/'= u/u2, 
g hfh2, 
h specific enthalpy of gas, 
L characteristic dimension of the interaction, 

M rate of mass increase in the control volume, Eq. (1.1), 
Pr Prandtl number, 

q velocity in the leading edge region, Eq. (2.5), 
S transformed airfoil coordinate, Eq. (2.4), 
u velocity relative to the shock wave, 
U velocity far from the airfoil leading edge, 

(•) Paper presented at the XIII I.U.T.A.M. Congress, Moscow 1972. 
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x coordinate along the shock tube wall, 
y coordinate normal to the shock tube wall, 
Y transformed airfoil coordinate, Eq. (2.4), 

<5* displacement thickness, Eq. (2.2), 
e small parameter in thin airfoil theory, Eq. (2.4), 
p viscosity, 

y 

TJ [e2u2/(U) 1
'
21 J (e/e2)dy', 

0 
X 

~ J Q2U2ft2dx, 
0 

V' stream function, 
e density, 
(} deviation of the shock front from normal. 

Subscripts 1 and 2 denote conditions ahead of and downstream of the shock wave, respectively, in 
a shock based coordinate system. Subscript e denotes edge of boundary layer velocity in a fixed coordinate 
system and subscript s denotes wall conditions. 

1. Introduction 

THE PROBLEM considered here has attracted considerable attention in the past- e.g., 
MIRELS [1], HARTUNIAN [2], DEBOER [3], AKAMATSU and URUSHIDANI [4] and several distinct 
methods of solution of different models of the flow have been exhibited. In general, the 
justifications for the adoption of a particular model have been rather scanty and this has 
given rise to certain misconceptions which have been propagated through the literature. 

A common assumption is that of the decay of the shock wave to a Mach wave near 
the wall, since this automatically satisfies the condition of tangency at the wall. Our results 
indicate that this assumption is not true; the moving shock wave actualJy assumes an 
S-shape and intersects the wall at right angles. The difficulty of guessing the shape of the 
shock wave is avoided by SICHEL [5] who limits his attention to very weak shock waves. 
In our case, the shape of the shock wave is derived from the matching of the viscid and 
inviscid flows. In an essentially purely inviscid approach to the problem, DEBOER [3] 
assumed that the shape of the displacement thickness is known, and ignored the interaction 
of the boundary layer with the shock wave. 

The existing strong shock wave studies are marked by the employment of plausible, but 
physically unproved models of the flow. Most of the difficulties appear to stem from the 
failure to recognize the principal features of the flow- namely the existence of two velo
city scales, i.e. the shock wave velocity which is equal to the velocity of the origin of 
the boundary layer and the induced velocity which determines the magnitude of the 
vorticity diffusing into the flow. The flow at the edge of the boundary layer lags behind 
the development of the boundary layer and thus a motion away from the wall is induced. 
The induced flow away from the wall is of second-order in the sense of asymptotic mat
ching theory of viscid-inviscid flows, and thus the distortion of the shock wave must be of 
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second order. Consequently, for all flows in which a distinct boundary layer can be 
recognized, the decay of a strong shock wave to an acoustic pulse near the wall cannot 
be accepted on mathematical grounds, since it would imply that second-order viscous 
effects are capable of causing first order inviscid flow perturbations. 

At this point, it is convenient to illustrate the main features of the flow by considering 
the mass balance on a control volume bounded by a fixed plane normal to the duct axis, 
the plane of symmetry a distance D from the wall along which the shock wave is moving, 
and the shock front itself (Fig. 1). With subscripts 1 and 2 denoting the conditions ahead 

/fffi!uffi'/1/1~(/(/(/;/#ft/J///4-

. Shock 

I 

~I 

wave 

Control volume 

------~-----------, 

Fig. 1. 

of and downstream of the shock wave respectively, and Ue = Ut- u2 being the induced 

velocity, the rate of change of mass in the control volume, M, is 

D D D 

(1.1) M= J (hUt dy+ J eudy = (!tUtD+e2uef [1-(1-eufe2ue)]t(v 
0 0 0 

= (!tUtD+e2ueD(l-6*/D). 

Here 6* is the true boundary layer displacement thickness. One simple interpretation of 
the Eq. (1.1) is that the flow area of the duct is reduced by 6*, which results in the displace
ment of the flow away from the wall. An alternative interpretation is that mass disap
pears from the control volume at the rate of e2 Ue 6*. The latter explanation leads directly 
to the appearance of the negative displacement thickness when the problem is analyzed 
in a coordinate system moving with the shock front. 

2. Analysis 

2.1. Boundary layer flow 

We are considering a two-dimensional parallel wall duct in which flow is induced by 
a strong shock moving into a quiescent medium (Fig. 1). The induced inviscid flow is 
perturbed by the development of a laminar boundary layer which extends forward at the 
speed of the shock wave. The characteristic Reynolds number of the flow is taken to be 
sufficiently high to allow the use of the concept of a distinct boundary layer. 
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Only strong shock waves are considered here so that in the wall fixed coordinates the 
ratio of wall to total edge of boundary layer enthalpy will be small; the flow Mach number 
will also be small, so that following LEES [6] we can argue that the effects of the longi
tudinal pressure gradients wiJI be negligible. Actually, in our analysis we do not need to 
employ this argument since in our use of thin airfoil theory we can take advantage of 
a fortuitous mathematical result that on an infinite parabolic cylinder the surface speed 
is equal to the free stream speed and no pressure gradient is induced. The displacement 
thickness on a fiat plate grows parabolically and thus does not tend to induce a pressure 
gradient. In the shock front based coordinate system, we can therefore write the boundary 
layer equations in self-similar form: 

(2.1) (Cf")' +If"= 0, ( ~ g')' +Jg' = -2ECJ"2
, 

with the boundary conditions, 

'I']= 0, != 0, f' = Ul/Uz, g = gs, 

'I'J --+ oo, f'--+ I, g--+ 1.0. 

In the shock front coordinate system, the boundary conditions exhibit apparent slip at the 
inner boundary, but this is due to the apparent motion of the wall away from the shock 
wave, and no physical surface slip is implied. These equations are in standard form and 
may be solved easily using the simple, exact, semi-analytical technique developed in Ref. [7]. 
The crude series solution of these equations by AKAMATSU and URUSHIDANI [4], who 
used the degenerate gas properties C = 1.0 cannot be justified on either mathematical or 
physical grounds, since variation of physical properties is known to play a critical role 
in boundary layer flows (e.g. Ref. [8]). The Mirels' solution claimed to be "exact", 
suffers from precisely this defect, in addition to failing to match the viscous and inviscid 
flows. With a negligible pressure gradient the displacement thickness is given by: 

(2.2) 

with 

Re.x = (!2U2X/f.t2· 

At the inner limit of the outer flow the velocity is directed along the tangent to the 
displacement thickness so that v, the y component of velocity is 

1 

v = L1 *u2 (2Re.x) -2. 

In the shock front based coordinate system, L1 * appears to be negative so that v is directed 
towards the wall and, in terms of the asymptotic matching concepts, the outer flow at the 
inner boundary appears to flow along a parabola. In a fixed coordinate system, the stream
lines again appear to be parabolic, but are directed towards the origin. The above observ
ations are not valid at the origin itself, where in the simple formulation presented above 
the streamline slope and the normal velocity tends to infinity. 

http://rcin.org.pl



AN BXPBRIMENTAL AND nJEORmCAL STUDY OF 11IB DISTORTION OF A TRAVELLING SHOCK WAVE 865 

The above considerations bear directly upon the work of DEBOER [3], who calculated 
the curvature of the shock wave by solving Laplace's equation for the induced flow field 
with continuously curving boundaries formed by the shock wave and a laminar or turbu
lent boundary layer. While quite correct mathematically, DeBoer's solution is physically 
questionable since at the shock wave the slope of the boundary layer displacement thickness 
is infinite, and the tangent streamlines can be generated only by a shock wave lying parallel 
to the wall rather than by a weak wave demanded by the solution. Conversely, if DeBoer's 
discussion of the corrections for the region near the foot of the slwck wave is taken .. then 
his solution leads to a mathematical problem since discontinuities appear in his bound· 
ary conditions. In De Boer's analysis a connection between the induced flow field 
solution with the flow ahead of the shock front through the Rankine-Hugoniot and 
kinematic conditions does not appear. This difficulty is avoided here by the matching of 
the flow field generated by a perturbed shock wave with the flow field due to the boundary 
layer displacement thickness effects. 

The physical and mathematical difficulties in the region at the foot of the shock wave 
are avoided by making use of the well known thin airfoil theory result that the flow in 
the leading edge region is independent of the details of the leading edge shape, to at least 
the second order of magnitude. Thus, while acknowledging the existence of a complex 
viscid-inviscid interaction region, we do not inquire into the details of its structure 
but simply deal with the local external flow due to the effective displacement thickness of 
the interaction. Here the implicit assumption of a relatively small interaction region is 
employed, so that the Reynolds number must be high enough to give a fairly distinct shock 
wave whose structure does not have to be examined. When the local leading edge region 
is connected with the downstream flow over the parabolic displacement thickness, the 
whole perturbation of the induced flow field by the boundary layer may be described in 
terms of thin airfoil theory. 

The interaction region is analysed using the approximation methods of thin airfoil 
theory. It should be realized that this theory was developed for convex shapes, while in 
our case the apparent region is concave. The similarity of the two situations is obvious 
from the reversibility and equivalence of purely inviscid flows. Thus we can use the results 
of Van Dyke's analysis [9] which showed that any leading edge shape of a thin airfoil 
may be approximated by a parabola. We are thus relieved of the problem of specifying 
exactly the effective displacement thickness in the interaction region, where neither the 
physics nor the mathematics of the problem are well understood. Also, we thus have a 
smooth junction with the downstream boundary layer displacement thickness which is 
known to vary parabolically with the streamwise direction. We follow the notation of 
V AN DYKE [9] and write for the effective displacement thickness: 

1 

(2.3) Y = - (2S)2, 

with 

(2.4) Y = yfe2L, S = x/e2L, 
where e is a small parameter of the problem. The velocity in the leading edge region of 
radius e is given by: 
(2.5) q = U(I +e), 
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with U being the unperturbed free stream velocity. In our case, we obviously have the small 
parameter from the form of the relation ford*, viz.(~): 

(2.6) 
1 

e = -LJ*(e2u2Lifl2) - 2 , 

with L being the characteristic dimension to be determined from the matching of the 
leading edge and the downstream solutions. 

2.2. Induced flow 

We must now estimate the distortion of the shock wave necessary to produce a flow 
acceleration of e required by the Eq. (2.5). The inviscid flow downstream of the shock 
wave is described by: 

(2.7) 
(eu)x+(ev)y = 0, e(uux+vuy)+Px = 0, 

(!(UVx+VVy)+py = 0, u(pj(!Y)x+V(pj(!Y)y = 0. 

In the von Mises coordinates, which use the stream function as the normal coordinate, 
we have: 

ay 
Tx = vju, 

ay 1 
a;;;= eu-· ~+~=0 

OX OVJ ' 

u2 +v2 + -~ L = 1, PfeY = f(VJ). 
y-1 e 

Normalization of the above equations by the upstream values of density and velocity 
does not change anything; and from now on the equations will be considered to be nor
malized even though old symbols will be retained. We begin the analysis by assuming 

Fig. 2. 

that a strong normal shock wave is perturbed smoothly in such a way that the leading 
terms for the shock wave angle (Fig. 2) may be taken to be: 

sin2 @ = 1-02 +/(x, VJ) 

( 1) Substituting (2.4) into (2.3) and taking y = <5*, we obtain: 
<5• 

E=---, 
y2XL 

which, after using (2.2) gives (2.6). 
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The Rankine-Hugoniot relations are: 

2 
P = P2/e1uf = --(1-lF) 

y+l ' (2.8) 

u = u2/u1 = (y-l)/(y+l)+202 /(y+l), 

The solution is in the form: 

u = uo+02
Un, V= Ovr, (! = (!o+0 2(!n, P = Po+02PII, Y = Yo+Oyx+02Yn· 

Substitution of the above relations into the fuJl problem with boundary conditions 

results in: 

(2.9) 
uo = (y-I)I(r+ 1), Po = 2l(r+ 1), 

(!o = (y+ 1)/(y-1), Yo = 1p, 

for the basic solution, and 

(2.10) 
u11 = 21(r+ 1), 

Pn = -2l(r+ 1), 

(!11 = 0, VI = -2l(r+ 1), 

Yx = - 2x I (y- 1 ), Yn = - 21p I (y -1) 

for the perturbations due to the distortion of the shock wave. We have the immediate 
resu1t(2): 

(2.11) 

1.3. Displacement thickness effects 

As was pointed out above, the boundary layer equations can be solved easily and 
accurately using the method of Ref. [7] and a very simple computer program. Having 
solved the equations, L1* can be evaluated according the Eq. (2.2) 

The final quantity still to be determined is the characteristic dimension of the 
problem, L. We know from thin airfoil theory that the region affected by the leading 
edge disturbance is of the order of e. Since the only physical dimension associated with 
the problem is the duct half width, and a dimensionless radius e is affected by viscous 
effects, we conclude that D characterized the physical magnitude of the problem and set 
L = D. Another argument in favor of the duct half width as the characteristic dimension is 
that mathematically our solution breaks down as e -+ 1.0, which means physically that 
the boundary layer fills the whole duct and our basic assumptions break down. The value 
of the shock wave inclination angle is then finally: 

(2.12) 0 = ( r; 1 )~/Ll*/iRe0 -~. 
e> The Eq. (2.8h can be transformed to the form: 

u =!!!.... = y-
1 (1+~). 

Ut y+1 y-1 

Comparing it with (2.5), using also (2.9) and taking u0 = U, we obtain: 

2()2 
E=--, 

y-1 
which gives immediately (2.11). 

10* 
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with 

(2.13) 

The region affected by the viscous effects is 

(2.14) 

It should be noted that the inclination of the shock wave from normal is a weaker function 
of the Reynolds number than the region influenced by the boundary layer. 

The above relations show that the deviation of the shock wave from normal is quite 
small for any flow in which some sort of rational boundary layer exist~. With the condition 
of the tangency of the flow at the wall and a small deviation from normal away from the 
wall, it is clear that the popular assumption of the decay of the shock front to an acoustic 
pulse near the wall cannot be accepted. 

3. Experimental reswtse) 

The experiments were performed in a 120 mm diameter shock tube lO·m long. Air, 
at an initial pressure of 0.05 Tr and initial temperature about 293°K was used as the 
test gas in which shock waves at Mach 3 and Mach 6 were generated. The intent was 
to obtain Mach numbers sufficiently high to justify the strong shock assumptions without 
getting into the problems of real gas effects. Under these conditions, the mean free path 
ahead of the shock front was about 1 mm, the shock wave thickness was about 4 mm, 
and the contact surface was never less that 50 mm from the shock wave at the test station. 

The shape of the shock wave was studied in the vicinity of a glass plate placed in the 
shock tube (Fig. 3), using the electron beam attenuation technique, Refs. [12-16]. The 

. ~ 

----~-~--- -t---

Electron beam 

Fig. 3. 

(3) Detailed description of the experiments may be found in Refs. [10 and 11]. 
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electron beam, 0.5 mm dia, was generated with an ordinary TV type electron gun. Thin 
film heat transfer gages were placed in the shock tube to indicate the location of the shock 
wave and its inclination to the tube axis. The electron beam could be translated normal 
to the glass plate surface from a distance of 1.5 mm to a distance of 12 mm. The shape 
of the shock wave was determined in a series of measurements at various distances from 
the plate with identical initial shock tube conditions. 

It is estimated that maximum error in any single measurement of the position of the 
shock is about 1 mm, which is less than 1 /3 of the shock wave thickness. 

4. Comparison of test data with theoretical predictions 

A representative example of the comparison of calculated shape of the shock wave 
(solid line) with measured data (open circles) is shown in Fig. 4. Theoretical predictions 

Fig. 4. 

p 

• Direction of the 
shock wa..e motion 

X 

are seen to agree, as regards mean inclination of the shock wave, very closely with experi
ments. The agreement in the extent of the affected region (dashed lines) is not equally 
good. 

5. Conclnsions 

The good agreement of the theoretical and test data indicates that · a simple, but 
mathematically and physically consistent, continuum flow model is adequate for accurate 
estimates of the distortion of a travelling shock wave by viscous effects in the wall region. 
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It is also concluded that the commonly held belief that a shock wave decays to an 
acoustic wave as the wall is approached has neither theoretical nor experimental basis in 
fact. The results presented here may be used to estimate the actual transverse disturbances 
of the shock tube flow due to the distortion of the shock wave. The important fact is 
that these disturbances are always small. 
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