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ON AN APPLICATION OF THE NEW ATOMIC THEORY TO THE 
GRAPHICAL REPRESENTATION OF THE INVARIANTS AND 
COVARIANTS OF BINARY QUANTICS,-WITH THREE AP
PENDICES.

[American Journal of Mathematics I. (1878), pp. 64—12δ.]

[The figures are given on p. 163.]
By the new Atomic Theory I mean that sublime invention of Kekul6 

which stands to the old in a somewhat similar relation as the Astronomy 
of Kepler to Ptolemy’s, or the System of Nature of Darwin to that of 
Linnaeus;—like the latter it lies outside of the immediate sphere of energetics, 
basing its laws on pure relations of form, and like the former as perfected by 
Newton, these laws admit of exact arithmetical definitions.

Casting about, as I lay awake in bed one night, to discover some means 
of conveying an intelligible conception of the objects of modern algebra to 
a mixed society, mainly composed of physicists, chemists and biologists, 
interspersed only with a few mathematicians, to which I stood engaged to 
give some account of my recent researches in this subject of my predilection, 
and impressed as I had long been with a feeling of affinity if not identity 
of object between the inquiry into compound radicals and the search for 
“ Grundformen ” or irreducible invariants, I was agreeably surprised to find, 
of a sudden, distinctly pictured on my mental retina a chemico-graphical 
image serving to embody and illustrate the relations of these derived 
algebraical forms to their primitives and to each other which would perfectly 
accomplish the object I had in view, as I will now proceed to explain.

To those unacquainted with the laws of atomicity I recommend Dr 
Frankland’s Lecture Notes for Chemical Students, vols. 1 and 2, London 
(Van Voorst), a perfect storehouse of information on the subject arranged 
in the most handy order and put together and explained with true scientific 
accuracy and precision. On the algebraical side of the subject my readers 
may consult Salmon’s Lessons on Higher Algebra, Clebsch’s Bindren Formed
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14924] On an Application of the New Atomic Theory

or Faa de Bruno’s treatise more elementary than the former, Sur les formes 
binaires (Turin, 1876). I propose also to run a course of articles on the 
Invariantive Theory, beginning from the beginning, through the pages of this 
Journal, from my own particular point of view, which will be found, I hope, 
considerably to simplify the subject.

Any binary quantic may be denoted by a single letter with a number 
attached corresponding to its degree, and may therefore be adumbrated by 
a chemical symbol with corresponding valence. Thus hydrogen, chlorine, 
bromine, or potassium will serve to denote so many distinct binary linear 
forms; oxygen, zinc, magnesium, &c., binary quadrics; boron, gold, thallium, 
cubics; carbon, lead, silicon, tin, quartics; nitrogen, phosphorus, arsenic, 
antimony, &c., quintics; sulphur, iron, cobalt, nickel, &c., sextics. The sixth 
appears to be the highest degree of valency at present recognizable in natural 
substances.

The factors of any algebraical form may be regarded as in some sense 
the analogues of the rays of atomicity in the equivalent chemical atom— 
these rays being what Dr Frankland, according to his nomenclature, would 
have to designate as free bonds; such rays between two consecutive atoms in 
a molecule are conceived as blending in some manner so as to represent some 
unknown kind of special relation existing between them; they may then 
with propriety be called bonds or lines of connexion.

An invariant of a form or system of algebraical forms must thus represent 
a saturated system of atoms in which the rays of all the atoms are connected 
into bonds. Thus, for example, O2 (oxygen combined with itself) will 
represent a quadratic invariant of a quadric. Its graph is seen in Fig. 1 (a). 
Potash, a combination of potassium, oxygen and hydrogen, having tor its 
graph that of Fig. 2, will represent the invariant to a system of one quadratic 
and two linear forms which is linear in each set of coefficients. This is in 
fact the Connective between the given quadratic and another obtained by 
taking the product of the two linear forms. Phosphorus and arsenic are 
quinquivalent, but form “ tetratomic molecules.” An isolated element of 
phosphorus may possibly, therefore, be represented by the graph of Fig. 3, 
which will correspond, if the figure is indecomposable (which requires 
examination to determine), to the quart-invariant of a quintic, and the same 
for arsenic. So too the graph to nitric anhydride (Fig. 4) may possibly serve 
to express the resultant of a binary quadric and quintic, or this blended 
with any other invariant of the system included under the same type 
[10: 5, 2; 2, δ]*. And in general, the Jacobian to any two quantics will 
be completely expressed by their two corresponding atoms connected by 
a pair of bonds. Nitric acid has for its graph that of Fig. 5. This will* 10 is the weight; 5, 2 the degree and order in the coefficients of the quintic ; 2, 5 the degree and order in the coefficients of the quadric. See p. [15Γ].
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150 On an Application of [24

correspond to an invariant of a quintic, quadric and linear form of the first 
order in the coefficients of each extreme and of the third order in those 
of the middle form. Such an invariant as is well known (by virtue of 
a general principle about to be stated), is, in substance, the same thing 
as a lineo-cubic linear covariant of a quintic and quadric. The general 
arithmetical rule (also hereafter to be set forth) for determining the number 
of asyzygetic derivatives of a given type, enables us to see that such a 
covariant exists and is monadelphic. It may readily be obtained by making

d dthe given quintic (after substituting and — for x and y respectively) 

operate on the cube of the given quadratic.
The general principle above referred to, which is extremely easily proved 

from the partial differential equation (but which I believe I was the first 
to enunciate), is that every covariant of one quantic or several simultaneous 
quantics may be transformed into an invariant of the same quantic or 
set of quantics enlarged by the addition thereto of one additional linear 
form ; the degree in the variables becoming replaced by the order in the new 
set of coefficients, and the orders in the original sets of coefficients remaining 
unchanged.

Thus, covariants might altogether be dispensed with and invariants alone 
made the object of study. But algebraists have found and will continue to 
find it more convenient to dispense with the additional linear form and to 
retain in use co variants as well as invariants. With me, co variants are to be 
regarded as simple emanations, so to say, from differentiants which are 
functions of the coefficients alone, and of which invariants are merely a 
particular species satisfying a certain condition of maximum ; this is why the 
properties of invariants can with difficulty be made out so long as they are 
studied alone ; it was only by contemplating the whole group of differentiants 
simultaneously, that I was enabled, after a suspense of more than a quarter 
of a century, to set on an irrefragable basis Professor Cayley’s fundamental 
arithmetical theorem for calculating the number of asyzygetic invariants 
and covariants to a given quantic, and also the more general theorem which 
I have shown applies to a system of quantics*.

I will here give this rule, as it may be useful to us in the sequel. First, 
for a single quantic.—Let i be its degree, J the order of any covariant, w its 
weight (that is, the weight of its root-differentiant). Then we may call its 
type [w : i, J]. Now let us, in general, employ (w: i, j) to signify the 
number of ways in which m can be made up with j parts of which each is 
either 0, 1, 2, 3, &c. up to i, and let us use the symbol Δ (w : i,j) to denote 
(m : i, j) — {(m — 1) : ι, ; then Δ (w : i, j) is the number of arbitrary* The demonstration is given in a paper inserted in the Philosophical Magazine for March of this year [p. 117, above].
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24] the New Atomic Theory 151

numerical parameters in the most general covariant or invariant answering 
to the type ∖w: i, y]. It is a known theorem in partitions of numbers that 
(w⅛: i, j) = (m: j, i), from which it follows that the number of arbitrary- 
parameters remains unaltered when the degree of the primitive and the 
order of the derivative are interchanged. It is sometimes more convenient 
to use the degree of the derivative in lieu of the weight to express its type; 
let then e be the degree, so that e = ιj-2w, then I shall employ, when 
desirable, [⅛', j: e] to signify the same thing as [w: i, y]. If there be several 
quantics, the type may be expressed in like manner by [w: i,j; i',j'^, &c.], 
or by [i,j> i'>j' > &c· ∙ e]∙ The rulθ f°r finding the number of independent 
parameters, or the most general covariant or invariant corresponding to 
either of these types, then becomes as follows. Let (m:i,j; i'>j'> &c·) 
denote the number of ways in which m can be made up of j elements each 
comprised between 0 and i, combined with j' elements each comprised 
between 0 and i', and so on, and let Δ (m: i,j> i'>j'∖ &θ·) denote (to: i, j; 
i',j'∙, &c.) —(to —1 : i,j∖ i',j'", &c.). The number of parameters in question 
is Δ (w : i, j; i',j,'i &c.) and I may observe that the value of Δ remains 
unaltered when any one i is interchanged with the corresponding j, and 
consequently when any number of i’s are interchanged, each respectively 
with its corresponding j. This theorem of reciprocity for a single quantic is 
due to M. Hermite. The above statement, applicable to a quantic system, 
constitutes a notable and important generalization of it. In Note D to 
Appendix 2, it will be shown that this theorem still further generalized by 
employing the method of Emanation (virtually the same thing as Regnault’s 
law of substitution) admits of the following simple chemico-algebraical 
statement. In an algebraical compound (in an algebraical sense) to n-valent 
atoms may be replaced by n m-valent ones. But it should be observed that 
this replacement involves an entire reconstruction of the representative graph 
and conveys the notion of respondence or contraposition rather than similarity 
of type. (See Appendix 2.)

It may be well here (as it will be useful in the sequel) to say a few words 
more on these differentiants in their relation to covariants. Every covariant 
may be regarded as arising from either of two differentiants, as from a root. 
One, the coefficient of the highest power of x, is called a differentiant in x; 
the other, the coefficient of the highest power of y, a differentiant in y. It 
is not, for ordinary purposes such as present themselves in this study, 
requisite to consider more than one of these at a time, and for greater 
brevity it will be understood that, unless I give notice to the contrary, a 
differentiant will always be understood to mean one in x. I shall also suppose, 
when dealing with a single binary quantic, that the successive coefficients 
beginning with the highest power of x, are a, b, c, ... h, k, I multiplied 
successively by the binomial coefficients proper to the degree of the form.
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152 On an Application of [24

A differentiant, D, may then be defined as a rational integer function of the 
coefficients of equal weight in all its terms in respect to either variable 
subject to satisfy the equation

(ai + 26s+3cé+-)D=0·

An invariant again may be regarded as a rational integer isobaric function of 
the coefficients which is a differentiant both in regard to x and y, but it may 
be best defined as a differentiant (meaning in one of the variables as x) to 
a given form or form-system whose weight (in respect of the selected variable) 
is the greatest possible that its order in the coefficients admits of. [The 
doubleness of the character and the symmetry, direct or skew, of a differentiant 
satisfying this condition of maximum then become matter of deduction from 
the definition.] To each covariant corresponds but one differentiant (in a 
given variable), and vice versa, to each differentiant will correspond only one 
covariant. In fact, D being the differentiant in x, the covariant taking its 
rise in D is

Dxe + ∩. Dxe~^l y + y—2 (Ω fDxe~2yi + ...,

where ∩. represents the operator,

(i-⅛ + 2A-⅛ + 3A-^ + ...)
∖ dκ ah dg )

if D belongs to a simple quantic, and

ς(zs+24+∙∙∙)
if it belongs to a quantic system, and where e is i'j — 2w for a single quantic, 
and 1ij — 2w for a quantic system, i representing the degree of any one 
form in the variables, J the order of the differentiant in the corresponding set 
of coefficients, and w the weight of the differentiant. As e can never become 
negative, we see that the maximum value of w, when each i and its 
corresponding j is given, will be ⅜⅛}' for one form, and ⅛X(j for a form system. 
By the weight of any covariant I shall understand the weight of the 
differentiant in which it may be regarded as originating. Precisely as 
algebraists find their advantage in using covariants when invariants alone 
might be made to suffice, chemists find theirs in the use of organic or 
inorganic compound radicals, as unsaturated forms capable of becoming 
saturated by the addition of the right number of monad elements to the 
unsatisfied atoms, that is, those through which a sufficient number of bonds 
do not pass to exhaust their valency. Thus, for example, Hydroxyl H - 0 - 
is the linear covariant of the quadratic form oxygen, and the linear form 
hydrogen ; this, combined with the linear form potassium, expresses the 
invariant potash denoted by H — O — K.
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24] the New Atomic Theory 153

As the free valence of a single atom corresponds to the degree of a single 
quantic, so the free valence of a molecule formed by an aggregate of atoms 
will express the degree of the corresponding covariant. Let us understand 
by the toti-valence of a molecule the sum of the absolute valences of the 
separate atoms of which it is composed. This toti-valence will obviously 
correspond to the sum, 2y, above mentioned. Since every bond or connecting 
line in the graph passes through two atoms, this toti-valence must be equal 
to the free valence of the molecules increased by twice the number of bonds; 
but X() is the toti-valence, and e (the degree of the covariant) is the number 
of unsatisfied bonds, and we have already stated in effect that e increased by 
twice the weight of the root differentiant (which for brevity we call the weight 
of the covariant) is equal to Xιj'; hence the weight of a covariant (meaning 
that of its root differentiant), represented by any chemicograph, is the number 
of bonds or connecting lines between the atoms.

Let us consider an invariant or a covariant belonging to a type containing 
only one numerical parameter, which I shall call a monadelphic form*. Then 
this is either decomposable into factors or not; in the former case it may be 
termed composite, in the latter case prime. When prime its graph will also 
be prime, when composite its graph will be composite in a sense which will 
be made more clear by one or two examples. Let us take as a first example 
a graph composed of four triadic atoms of the same name, as in Fig. 6, where 
each atom, for instance, represents boron and in ordinary chemical symbolism 
would be denoted by the same letter B, but where for facility of reference 
1 use four different letters to mark the positions of the several atoms. This 
corresponds to a covariant of a cubic for which the complete type, if we use 
the weight or number of bonds, is [4: 3, 4], or, if we use the free valency, is 
[3, 4: 4]. Now for a cubic the fundamental types, expressed in terms of the 
order and degree alone, omitting the constant number 3, which refers to the 
given degree, are

1 . 3 
4.0
2 . 2 
3 . 3.

Consequently, there is but one covariant corresponding to the given graph, 
and that is the product of the primitive by the covariant whose order and 
degree are each 3, the well-known skew covariant of (a, b, c, (B§x, y)3 whose 
root or base is the differentiant ad2 — ⅜abc + 2δ3.The type itself may also be termed a monadelphic type: so I shall speak when necessary of diadelphie, triadelphic, <fec. types and designate any forms contained under such types as diadelphic, triadelphic, &c. forms. A family comprising many brothers, or any member of such a family, may each without doing violence to the laws or usage of language be termed 
P°lyadelphic.
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154 On an Application of [24

It must be well understood that the bonds are not rigid, but capable of 
being curved or bent into any desired form. In this case the mode of decom
position is self-evident; for the skew co variant is represented by the triangle 
of Fig. 7, and we have only to draw out the elastic bond AC into the position 
ADC and place the atom D anywhere upon it to obtain the given graph. On 
the contrary the skew covariant itself is indecomposable and its graph ABC 
is obviously so too. Now let us consider the graph of Fig. 8. If the atoms 
at the angles are all triadic, there is no free valency, and the figure represents 
the invariant to a cubic form corresponding to 4.0 in the above table. It 
will be found, on trial, impossible to decompose it. But now suppose the 
atoms to be tetradic, the graph will represent a co variant of the fourth order 
and of the fourth degree to a quartic, each atom having one degree of valency 
unsatisfied. The fundamental derivatives of a quartic, of which all others 
are algebraical combinations, are represented in the following table of order 
and degree

1 . 4
2 . 0 
3.0 
2.4 

3.3.

The complete covariant answering to the graph will therefore be ∖U + μV, 
where, λ, μ being arbitrary numbers, U is the product of the primitive (1 .4) 
by the cubinvariant 3.0, and V the product of the Hessian 2.4 by the 
quadrinvariant 2.0. Since, on making either λ = 0 or μ = 0, the covariant 
breaks up and in two different w’ays into factors, we ought to expect that 
the graph should be capable of two corresponding modes of decomposition, 
and such we shall easily see is the case. For 1°, the invariant 3.0 may be 
represented by the graph of Fig. 9. blow imagine the three points E, F, G 
to come together and blend at D, and at D place a fourth atom. The given 
graph is thus recovered. Observe that this could not be done for the case of 
triads (corresponding to a cubic form) because, in the figure last referred to, 
the valence at each atom A, B, G is quadrivalent. Next, for the decomposi
tion corresponding to the case of λ = 0 where the covariant breaks up into 
2.0 multiplied by 2.4, the decomposition will be more easily followed by 
considering the graph to be pulled out into the form seen in Fig. 10. 
may conceive this as the superposition of two carbon graphs, one in which the 
carbon atoms are at A and B connected by the four bonds AB, ACB, BDA, 
ACDB denoting the quadrinvariant, and another in which the carbon atoms 
G, D are connected by the two bonds CAD, CBD, leaving two degrees of 
valence free at each atom and thus representing the quadro-quart-invariant 
or Hessian of the primitive.
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I will now pass to the very interesting case which corresponds to one of 
the proposed graphs for benzole (or rather for the compound radical obtained 
by striking off its hydrogen atoms), a sextivalent hexad molecule of carbon— 
not the one proposed by Kekule and which I believe still commands the 
general assent of chemists, but that suggested by Ladenburg* and put by him 
under the form of a wedge or prism. As, however, the question is one purely 
of colligation or linkage in the abstract, it is sufficiently described as a hexagon 
in which the three pairs of opposite angles are joined, or, if we please, as two 
triangles in which each angle of one is connected with a corresponding angle 
of the other. In regard of the atomicity theory, all these modes of colligation 
are identical, and the supposition that there is any real difference between 
them, or that figures in space are distinguishable from figures in a plane (as 
I heard suggested might be the case by a high authority at a meeting of the 
British Association for the Advancement of Science, where I happened to be 
present), is a departure from the cautious philosophical views embodied in the 
theory as it came from the hands of its illustrious authors and continued to 
be maintained by their sober-minded successors and coadjutors, and affords 
an instructive instance of the tendency of the human mind to the worship, 
as if of self-subsistent realities, of the symbols of its own creation.

The order (or number of atoms) being 6 and the unexhausted valences 
(one at each atom) also 6, we must turn to our table of fundamental deriva
tives to the quartic and shall find that the combination 6.6 is not amongst 
them, but that it can be obtained, and in only one way, by composition of 
the combinations therein contained. It is, in fact, the product of the cubic 
invariant 3.0 by the skew covariant 3.6, which has the very same root 
a2d — 3αδc + 2b3 as the skew covariant to the cubic and accordingly has the 
same graph, namely a simple triangle. (It may be well to remark here 
incideutally, that it follows as an immediate consequence from the conditioning 
partial differential equation, that a root-differentiant to any quantic or system 
of quantics of given degree or degrees remains such to every other system in 
which one or more of those degrees is augmented.) On the other hand the 
cubic invariant has for its graph a triangle in which each line is doubled or 
looped. I shall show that Ladenburg’s graph for the radical to benzole may 
be obtained by the superposition of these two forms. Let ABGyβa represent 
a sextivalent tetradic hexad (Fig. 11); ABC, with the three loops Aa,yG, GyβB, 
BβaA, will represent a saturated triple atom of carbon, or the cubinvariant 
of a binary quartic. Again, ayβ taken alone will represent a sextivalent 
compound atom, or the fundamental skew covariant of the quartic, and the 
superposition of the two figures obviously gives the graph as it stands.

Another form of the product of the same two graphs would be a triangle 
inscribed in another, as in Fig. 12. Here aβy, as before, is the sextivalent

* Berichte der deutschen chemischen Gesellschaft, 1869, 141. I am indebted for this reference t° my able colleague, Professor Ira Remsen.
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molecule and ABC with the additional bonds AβC, ByA, GaB, the saturated 
one.

A simple hexagon of triadic atoms (Fig. 13) being sextivalent will serve 
to represent a derivative from a cubic of the sixth order and sixth degree. 
Such a covariant, in its most general form, will contain two parameters and 
be represented by ∖Us + μV2 where U is the Hessian 2.2 and Vthe skew cube 
covariant 3.3, and it is easy to see that this figure may be decomposed either 
into 3 bivalent, or 2 trivalent graphs. Thus AB, CD, EF, with the additional 
bonds BCDEFA, DEFABC, FABCDE, will represent the former; two 
atom groups such as A, C, E (with the bonds ABC, AFEDC, CDE, CBAFE, 
EFA, EDCBA) and B, D, F (with the bonds BCD, BAFED, DEF, DCBAF, 
FAB, FEDCB) the other. The first method of regarding the hexagon as 
a combination of three dyads may perhaps be admitted to throw some light 
on what Dr Frankland styles the two distinct molecular weights of sulphur. 
When two atoms of sulphur, regarded as bivalent, are combined by two loops, 
we have a representation of an isolated element of it as “a diatomic molecule.” 
When three of these letters, regarded now as submolecules, are combined, or 
multiplied together into the hexagon, we have a representation of the isolated 
element as “ a hexatomic molecule.” More generally, let μ, be the number of 
solutions of the equation in positive integers 2# ÷ 3y = m, then μ, arbitrary 
parameters will enter into the most general representation of a covariant to 
a cubic of the order m in the coefficients and the degree m in the variables. 
Its graph will be a simple polygon of m sides and this will be capable of being 
decomposed, in μ essentially distinct ways, into elementary graphs consisting 
either, of binary groups or, ternary groups exclusively or, the two sorts of 
groups intermixed.

It may be easily shown (see Appendix 3) that every covariant of a binary 
form multiplied by a suitable power of its primitive, is capable of being 
represented by a rational integer function of covariants consisting, in addition 
to the primitive, of covariants exclusively of the second and third orders in 
the coefficients. I have already given an example of the mode in which a 
graph may be augmented by an additional atom corresponding to the 
multiplication of a covariant by the primitive.

The important proposition above referred to (given in Clebsch’s Bιnaren 
Formen) amounts then to affirming that any homogeneous graph augmented 
by a suitable number of atoms of the same, may be decomposed, in one or 
more ways, into bilooped dyads and single-sided triangles. Such a proposition 
ought to admit of graphical proof. The theorem has considerable graphical 
importance because it enables us, in some cases at least, to discriminate the 
true from the spurious graphs, or as we might say, pseudographs, representing 
a given type. Thus, it serves to show that Fig. 14 and not Fig. 15 is the
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graph to the discriminant of a cubic; for, in accordance with Clebsch’s 
theorem, this discriminant, namely

a2d2 + 4αc3 + 4>db3 — 3b2c2 — 6abcd,
multiplied by a2 becomes equal to the square of a2d — 3α5c + 263, together 
with four times the cube of ac — b2, and consequently its graph, after 
combination with two additional points, should be decomposable, at will, into 
3 double-looped lines, or into 2 single-lined triangles, which is the case with 
Fig, 14, inasmuch as its combination with two points gives rise to a simple 
hexagon, but not with Fig. 15.

If we call the apices of the two figures, 14, 15, a, b, c, d, the true graph 
(on substituting negative signs for bonds and prefixing a sign of summation) 
reads as

2 (α — b)2 (c — d)2 (a — c)(b — d),
which is the cubinvariant of the quartic whose roots are a, b, c, d, so that a 
graph to an invariant of the type [3, 4: 0] gives the algebraical expression 
in terms of the roots of an invariant of the reciprocal type [4, 3 : 0]. On the 
other hand, the pseudograph treated in the same way reads as

'Z(a-b)(b- c)(c — d)(d- a)(α -c)(b- d),
the value of which is zero; a similar remark may probably be found to be 
true of reciprocal graphs of invariants in general. This is abundantly con
firmed by subsequent investigation; see remarks at end of Appendix 1.

So again, if we take the graph of Fig. 42, which represents an invariant 
to the type [3, 2; 1, 2: 0], it reads off into

t(B1-B2)2(B1-H1)(B2-H2),
belonging to the reciprocal type [2, 3; 2, 1: 0], and the 2 is in fact the 
discriminant of one binary quadratic multiplied by the connective between 
it and another.

So if we take the graph represented in (a), Fig. 45, 
Σ(01-02)(01-tf)(02-tf)

will represent an invariant to the type [2, 2 ; 1, 1; 1, 1: 0]. If, however, we 
were to substitute H1, H2 in lieu of H and K, so as to form the hydroxyl 
graph of Fig. 45 (δ), it would not be true that 2 (01 — 02) (01 — H1) (02- H2) 
would represent an invariant to the type [2, 2; 2, 1: 0]; on the contrary it 
would be zero. But hydroxyl is not an invariant, for to the combination of 
a quadratic and a linear form there appertains no invariant of the second 
degree in the coefficients of each of them. This may be easily proved by the 
rule I have given at the commencement of this paper. I have gone through 
this calculation for the benefit of those new to the subject and to show how 
the arithmetical “rule of multiplicity” is to be applied. Had I been writing
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solely for algebraists it would have been unnecessary to prove so familiar 
a fact. We have here

i = 2, j = 2, i' = 1, j' = 2, w = = 3.A
To find (w : i, j ; i', j') we have to count the combinations

2.1 0.0
2.0 0.1
1.1 0.1
1.0 1.1;

the number of these is 4. Again to find (w — 1 : i, j·, i'; j') we have to 
count the combinations

2.0 0.0
1.1 0.0
1.0 0.1
0.0 1.1,

of which the number is also 4. Hence
Δ (3 : 2, 2; 1, 2) = 4 - 4 = 0.

So that hydroxyl, being of the type [3: 2, 2 ; 1, 2], cannot be an invariant.

So far then the supposed law is safe ; but I think I see other difficulties 
in the way of its application to heteronymous types, so that if it shall be 
capable of being made universally applicable, other parts of the graphical 
theory, as it has been laid down, will possibly require reconsideration. What 
I advance is to be regarded not as dogmatic but as tentative and open to 
correction.

It is obvious that not every chemico-graph, potential or even actual, 
corresponds to an invariantive derivative. Of this I have already given 
examples. Were the case otherwise we should have surprised the secret of 
nature, for, as we know how to obtain all possible fundamental forms to 
binary quantics, we should know à priori all possible compound radicals. As 
a matter of fact the cases of algebraical invariance in nature seem to be rare 
and rather the exception than the rule. Thus while muriatic acid (H — Cl), 
is an invariant, self-saturating hydrogen (H — H), is a non-invariant, there 
being a linear invariant to two linear forms but not to a single one. In like 
manner ozone (Fig. 16) is also non-invariantive, there being no cubic inva
riant to a quadratic form. But there is an essential difference to be observed 
between the two cases. A graph consisting of a single or an odd number of 
bonds between two atoms of the same kind can never, for any species of such 
atoms, be invariantive, because no covariant of the second order in the coeffi
cients can have an odd weight. If that were possible, then, by the theorem
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of reciprocity, a quadratic function could have an invariant or covariant of 
an odd weight, which is, of course, not true. Whereas a triangle of w-ads, 
although it does not picture an invariant when n = 2, does do so when n = 3 
or any higher number. When an homonymous graph is given in weight (the 
number of bonds) and in order (the number of atoms) two of the elements 
of its type (w: i, j) say w, j are known and the third i is left indeterminate. 
For all values of i which make Δ (w: i, j) greater than zero, there will be one 
or a plurality of such graphs according to the value of Δ. If no value of i 
makes Δ greater than zero, there will be no such graph possible, but it is not 
necessary, to ascertain this, to make an indefinite number of trials, for it is 
obvious that for all values of i equal to or greater than w, Δ has the same 
value, namely Δ (w: ∞ , j), since the condition that a number w shall not be 
made up of numbers greater than i, when i is equal to w, becomes nugatory.

It will be instructive to consider the case of w = 5, j = 3, and consequently 
the free valence e = 3t — 10 ; this implies that i must be at least equal to 4. 
But if we take ⅛ = 4, e = 2, as there is no covariant to a binary quartic whose 
order is 3 and degree 2, we may be sure that Δ (5: 4, 2) = 0. Hence we 
have only to consider the case of i = w = 5, e = 5. Δ (5 : 5, 3) is the number 
of co variants of the fifth order and fifth degree to a cubic of which there is 
but one, formed by the multiplication together of the Hessian and skew- 
covariant. If now we proceed to form the graph corresponding to the type 
[5: 5, 3], we have the choice of two figures, 17, 18. In the former figure 
there are three degrees of vacancy from saturation at A and one at each of 
the points B, C. In the latter, one at A and two at each of the points B 
and C. The graph, we must recollect, is to correspond to a cubic covariant 
of the fifth degree to a fifthic which is unique and indecomposable. This 
enables us to fix upon the true representation. It cannot be the graph of 
Fig. 17, for that may be considered as generated by the combination of one 
isolated nitrogen atom with two atoms of nitrogen, B, G, connected by five 
bonds; two of these being subsequently welded together and bent out into 
the angle having A at its vertex. [The hypothetical nitrogen pair exists in 
chemistry but not as an algebraical invariant.] Hence the true figure can 
but be that given in Fig. 18, where the free valence is separated into the 
parcels 2, 1, 2, and not as in Fig. 17 into the parcels 1, 3, 1. And it should 
be observed that, for all higher values of i beyond 5, this will continue to be 
the one and only true graph to the corresponding covariant. It thus appears 
that every given homogeneous graph has an intrinsic character of capability 
or incapability of respondence to algebraical in- or co-variance, irrespective 
θf the particular valence assigned to its atoms, and it is natural to suppose 
that there must be some immediate intrinsic criterion for determining this 
character, so as to dispense with the necessity of any algebraical considerations 
to establish it; but if such criterion exists, I have not yet been able to make
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out what it is*. In common with this view we may consider the theory of 
reciprocity of algebraical derived forms. It has already been stated that to 
every τη-ad of w-ad atoms having a given number of bonds corresponds an n-ad 
of τw-ad atoms with the same number of bonds. As for example, to a quasi 
carbon-ad (so to say) of sulphur will correspond a quasi sulphur-ad of carbon, 
the number of bonds and consequently the amount of free atomicity remaining 
the same in the two molecules. This suggests the possibility of there being 
some mode of passing from a graph to its reciprocal (this reciprocity being 
seemingly of quite a different kind from that which connects correlated girders 
or frameworks in graphical statics). I offer the subjoined instance of such 
transformation tentatively and with a view to stimulate inquiry, rather than 
as possessing any assurance of the validity of the process employed.

Suppose the case of i = 4>, j =2, w = 4; the one and only corresponding 
graph will be a system of 4 bonds connecting two atoms A, B. If now we 
take a pair of these bonds, stretch them out, weld them together and form 
a knot between them at C, and in like manner convert the other pair of bonds 
into a pair knotted at D, we shall have a graph consisting of a simple quadri
lateral which will correspond to the case of i = 2, j = 4.

Again, suppose i = 6, j = 4, w—12. We may consider either of the 
graphs quasi in Figures 19, 20. In the first of these figures we may take 
four bonds connecting respectively A C, CB, AD, DB, stretch and weld them 
together and form a knot between them at a new point E which will then be 
attached by four bonds to the atom ABGD. I mean that we may stretch out 
AC, CB, to meet in E (Fig. 21) and have EC common, and in like manner 
stretch out AD, DB to E and have ED common and then knot together the 
four bonds of the strings at E. In like manner we may form another knot 
F with bonds through AB, BC, AD, DC, and shall thus obtain the reciprocal 
graph of Fig. 21, where now i = 4, j = 6, w = 12. So again it will be found 
that we may distort Fig. 20 (if I can trust to my recollection of the result 
of previous work) in two different ways into a reciprocal graph.

At the risk of provoking the ire or ridicule of my chemical friends 
and the chemical public, I will venture to throw out a few remarks on the 
substructure, so to say, of the accepted theory of atomicity and to offer 
a suggestion as to a possible mode of getting rid of some imperfections under 
which it appears at present to labour. First there is the inconsistency of 
admitting the isolated existence of single atoms of mercury, cadmium and 
zinc, as monads with their bonds or tails absorbed or suppressed or else 
swinging loose and unsatisfied in direct opposition (as it seems to me) to the 
fundamental postulate of the theory. Next, one cannot get over a somewhat 
uncomfortable feeling at the representation of isolated oxygen in the state* The law of reciprocity, however, exemplified above can obviously be made to supply the criterion in question.
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of ozone by a triangular graph, which, although conceivable, is supported 
by no analogous case unless that of baric peroxide, or any similar graph, be 
regarded as such. Thirdly, there is the vague and unsatisfactory (not to say 
unthinkable) explanation of the variability of the valence of a given atom 
by what Dr Frankland calls “the very simple and obvious assumption that 
one or more pairs of bonds belonging to the atom of an element can unite 
and having saturated each other become, as it were, latent.”

Now these stumbling-blocks to the acceptance of the theory may be· 
removed by one simple, clear and unifying hypothesis, which will in no wise 
interfere with any actually existing chemical constructions. It is this: leaving, 
undisturbed the univalent atoms, let every other n-valent atom be regarded 
as constituted of an n-ad of trivalent atomicules arranged along the apices of a 
polygon of n sides. Thus, sextivalent, quinquivalent and quadrivalent atoms 
in their state of maximum valence will be represented by Figures 22, 23, 24, 
where the letters denote trivalent atomicules. When the valence is reduced 
by two we need only conceive any one of the side loops doubled or a new loop 
as formed by the coalescence of a pair of free bonds or tails, and when in the 
Figures 22 and 23 the valence is reduced by 4, we may in like manner either 
suppose existing loops doubled, or fresh ones inserted, or both changes to go 
on simultaneously, by the coalescence of two pairs of tails. We have thus 
a conceivable and conformable-to-analogy method of accounting for the 
variability in question. So likewise, a trivalent atom with maximum state 
of valence will be represented by Fig. 25, and when univalent by Fig. 26. 
Again, an isolated zinc element will have for its graph Fig. 1 (δ), the two 
letters Z signifying the zinc atomicules, and so in like manner isolated 
cadmium and mercury may be represented. On the other hand 02, isolated 
oxygen in its ordinary state, will be represented by the graph of Fig. 27, 
whilst ozone will have for its representative graph the well known Kekulean 
hexad (which, in its importance to chemistry, would seem to vie with Pascal’s 
mystic hexagons to geometry) represented in Fig. 28, where as in Fig. 27, 
each letter 0 represents an atomicule of oxygen. So an isolated element 
of carbon would be represented by the graph of Fig. 29.

This hypothesis of atomicules, if unobjectionable on other grounds, would 
not be open to the charge of having any tendency to disturb or complicate 
the existing graphology; for we should still be at perfect liberty to substitute 
for the graphs (a) of Figures 30, 31, 32 the abridged notation (6), and should 
naturally do so when considering the relations of atoms to each other. The 
beautiful theory of atomicity has its home in the attractive but somewhat 
misty border land lying between fancy and reality and cannot, I think, suffer 
from any not absolutely irrational guess which may assist the chemical 
enquirer to rise to a higher level of contemplation of the possibilities of his 
subject. I have therefore ventured to make the above suggestion.

s. in. 11
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Chemical graphs, at all events, for the present are to be regarded as 
mere translations into geometrical forms of trains of priorities and sequences 
having their proper habitat in the sphere of order and existing quite outside 
the world of space. Were it otherwise, we might indulge in some specula
tions as to the directions of the lines of emission or influence or radiation or 
whatever else the bonds might then be supposed to represent as dependent 
on the manner of the atoms entering into combination to form chemical 
substances. Such not being the case, what follows is to be considered as 
having relation to mere algebraical atoms, or atomicules (quantics) and their 
bonds which may be regarded as represented by the linear factors of such 
quantics.

Let us consider a symmetrical trivalent atomicule whose three bonds or 
rays make angles of 120° with each other. Calling τ, τ', τ", the tangents 
of the angles which the axis of y makes with its rays, we have

, _ τ + √(3) „ _ τ - √(3)
τ 1 —√(3)τ, T l + √(3)τ,

so that its equation will be easily found to be
(1 — 3τ2) a? + (9τ — 3τ3) x2y + (9τ2 — 3) xy2 + (τ3 — 3τ) y3 = 0,

which may be identified with the standard form
cwr3 + ⅜bx2y + ⅜cxy2 + dy3 = 0

by writing α = 1 — 3τ2 = — c, b = 3τ — τ3 = — d.
Suppose the three atomicules to become condensed into a single atom after 
the manner of the graph of Fig. 25. The combination will be represented by 
the cubic covariant (see Tables des Invariants et Covariants, Table V, annexed 
to Faa de Bruno’s Theorie des Formes Binaires)

(a2d — 3abc + 2δ3) xs + (3abd — bac2 — 3δ2c) x2y
+ (36c3 + 6b2d — 3αciZ) xy2 + (3bcd — ad2 + 2c3) y3,

which, for the present case, becomes
2(1 + τ2)3 [(3τ — τ3) x3 + (9τ2 — 3) x2y + (3τs — 9τ) xy2 + (1 — 3τ2) y3∖.

Hence the neΓW ray-directions will have for their equation 
— da? + 3cx1y — 3bxy2 + ay3 = 0,

or the pencil of the atom will be identical with that of each of the separate 
atomicules, but accompanied with a rotation (whatever that may mean) of 
the whole pencil of rays through a right angle in its own plane. Again, 
suppose that only two atomicules are brought into connexion as in (a) of 
Fig. 30. The quadricovariant which expresses the atom (Faa de Bruno 
ante) is

(αc — δ2) x2 + (ad — be) xy + (bd — c2) 
which here becomes — (1 + τ2)3 (x2 + y2).
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Hence the ray-directions will be given by the equation 
2∕2 + α∙2 = 0, y = ± λ√(- 1),

which we may, if we please, according to the usual convention concerning the

sQuare root of minus unity, explain by supposing that the original rays are 
sduated in planes perpendicular to the joining line XX, and that these are

11—2
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replaced by two rays lying in opposite directions along the line XX, where 
the atomicules are condensed into one atom. But it would be idle to pursue 
this speculation further.

The most remarkable point in the theory which I have endeavoured to 
unfold in the preceding pages is the relation between it and that of reciprocal 
types.

We have seen that the graph to an invariant of one type read off as 
it stands (each bond being construed as the sign minus') with the sign 2 
prefixed expresses an invariant of the reciprocal type.

This rule may be extended from homogeneous to heterogeneous graphs, 
provided only that the reciprocity be total, by which I mean that every i and 
every j in the type [», j; i,, f∖ i", j"...: 0] are interchanged. It may be 
observed, in passing, that in the case of types to which resultants belong, the type 
is identical in form with its total reciprocal. As, for example, boric anhydride 
(consisting of two of boron and three of oxygen) is of the type [3, 2; 2, 3: 0].

On referring to “ System of Cubic and Quadratic,” Salmon’s Lessons, 
third edition, p. 179, it will be seen that besides the resultant there is another 
invariant represented in Dr Salmon’s notation by “Δ (0, 2) × J (2, 1)”; a 
linear combination of these two with arbitrary multipliers will express the 
most general form belonging to the type in question.

From the property of these types being their own complete reciprocals, 
it follows that a complete set of independent graphs of any such type will 
represent the constitution of a complete set of independent forms belonging 
to the type. Thus, in the case suggested by boric anhydride we have the 
two independent graphs of Figures 33, 34. Hence the complete representa
tion of the invariants appertaining to the self-reciprocal diadelphic type 
[3, 2; 2, 3: 0] is ∖U + μV, where U is the resultant

(α - a) (a - β) (a -f)(b- a) (b -β)(b- 7) 
and V is 2 (a — 7) (a — β') (b — a) (6 — 7) (δ — a)(β — a).

U is derived from the graph of Fig. 33 by replacing the several O,s by α, β, 7> 
and the B’s by a, b, and V in like manner from the graph of Fig. 34. This 
latter graph is replaceable by the disjoined graph of Fig. 35, to which, by 
the rule for combination of graphs, it is easily seen to be equivalent.

Hence, instead of λZ7 + μV we may write ∖V + μV, where 
V, = 2 (α - β)2 (a - δ)2 (a - 7) (δ - 7);

a, b of course will be understood to be the roots of a general quadric and 
a, β, 7 of a general cubic. A very good similar instance of this kind of 
equivalence is afforded by the quadrinvariant of a quartic whose type ιs 
[4, 2: 0]. The reciprocal of this, namely [2, 4: 0], may be represented, 
either by the connected graph of Fig. 36, or by the disjoined one of Fig. 37,
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and accordingly the noted quadrinvariant ae — 4>bd + 3c2 may be expressed 
(to a numerical factor pres) either by the symmetrical function

X (α — c) (α — d) (b — c) (6 — d)

corresponding to the first, or by X (α — δ)2 (c — d)2 corresponding to the second 
graph. Again, let us consider the contrary types [4, 3: 0], [3, 4: 0]. The 
former has for its graph Fig. 38, and admits of no other representation. 
This gives X (α — ∕3)2 (∕3 — γ)2 (7 — δ)2 for the discriminant of the cubic which 
belongs to the contrary type. The latter may be figured chemically by the 
graph (consisting of two molecules of boron) of Fig. 39, or by the equivalent 
Fig. 27 (capable of being derived from it by the mechanical rule for conversion 
of graphs). These two latter, algebraically speaking, will be pseudographs, 
because X (α — ∕3)8 (7 — δ)3 and X (α — β~) (β — 7) (7 — δ) (δ — α) (α — 7) (∕3 — δ) 
are each zero. The graph of Fig. 27 may be mechanically converted, in the 
manner shown in the preceding case, into the graph of Fig. 40; but the type 
of the colligation remains unaltered by this conversion and whichever of the 
two we employ, we obtain X (α — β)2(7 — δ)2(α — 7) (β — δ) as the representa
tion in terms of the roots, of the cubic invariant to the quartic, namely to 
a numerical factor pres ace — b2e — ad + 2bcd — c3.

Thus we see that the graphical method suggested by the theory of atom
icity is a real instrument not merely for the representation but also for the 
calculation and comparison of algebraical results. The important bearing 
upon it of the principle of contrary or reciprocal graphs, renders it desirable 
that I should put the algebraical theory or law of reciprocity, in its most 
complete form, before my readers; it will form the subject of Appendix 2.

I might have noticed explicitly at the commencement of this paper, 
instead of tacitly assuming it as I have done, that the chemical fact of a 
compound molecule playing the part of an atom with a valence equal to the 
free valence of the radical, is the precise homologue to the algebraical fact 
that every invariant or covariant of a covariant, or set of covariants, to a 
quantic, or system of quantics, is itself an invariant or co variant to such 
quantic, or system of quantics; and again that Regnault’s chemical principle 
of substitution and the algebraical one of emanation* are identical; and again, 
the modern notion of two semi-molecules, simple or compound, combining or 
uniting to form a chemical substance is tantamount to the construction of an 
invariant, the connective (or in Professor Gordan’s language, the final “Ueber- 
schiebung”) of a quantic, or of the derivee of a quantic or a set of quantics,

* By which I mean in this place the operation upon an invariant or covariant of the symbol (α'δa + δ'δ6 + ...) performed any number of times in succession ; α, b, for instance, may refer to Hydrogen (ax + by) and a', b' to Chlorine (a,x + b,y), and then the emanantive operator, according to a notation used, if I mistake not, by Professor Clerk Maxwell in his theory of poles, might be denoted by Clδs.
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with itself. So again, it will hereafter be seen* that Hermite’s law of re
ciprocity applied to quantic systems and stated in its widest terms, amounts 
to affirming in chemical language that in any compound an arbitrarily selected 
group of m w-adic atoms may be replaced by a group of n m-adic atoms, but 
how far this law of replacement has objective validity in the chemical sphere, 
I am not able to say.

Attention might also have been called to the fact that every chemico- 
graph may, for anything that has been shown to the contrary, and probably 
in all cases does admit of algebraical interpretation, provided that each given 
atom however often repeated in a graph counts as a distinct quantic with 
its own distinct set of coefficients. I do not know whether chemists are 
of opinion that every chemico-graph exists or is capable of existence in 
nature; if this is not the case, the condition of the possibility of such 
existence (should it be discovered) must admit of being stated in mathematical 
terms. The condition for its existence in algebra may be gathered from what 
precedes, to be certainly for monadelphic types and probably in all cases, as 
follows, namely: if the difference between every two letters of an algebraically 
existent graph be raised to the power whose index is the number of bonds 
connecting them, the permutation sum of the product of those powers must not 
vanish. Finally, an irreducible covariant is the homologue of a compound 
radical. Thus we see that chemistry is the counterpart of a province of 
algebra as probably the whole universe of fact is, or must be, of the universe 
of thought.

APPENDIX 1.

Remarks on Differentiants Expressed in Terms of the Differences 
of the Roots of their Parent Quantics.

Since the preceding matter was written, in dwelling upon the law of 
reciprocal graphs, I came to what appeared to be a formidable difficulty W 
the way of its reception, a very lion in my path, so formidable that, for a 
time, I thought that it would be necessary, either to abandon this law, or 
else to admit the unwelcome conclusion that not every type of invariant was 
susceptible of graphical representation.

But further consideration has shown me that this apprehension was* In Note D to Appendix 2. The proposition stated in the text results from the joint effect of the law of substitution or emanation combined with Hermite’s law extended to quantic systems.
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entirely groundless owing to an algebraical fact on which I had not previously 
reflected, but which this difficulty forced upon my notice. The difficulty in 
question arose out of the expressions given by M. Hermite and le phre Joubert 
respectively for the skew invariants of the binary quintic and sextic. I shall 
first address myself to the consideration of the former. Following Dr Salmon’s 
notation (Lessons, Third Edition, p. 230), let ot, β, y, δ, e be the roots of a 
quintic, and let

F = (a - β) (a - e) (δ - y) + (a - y) (a - δ) (∕3 - e)

G = (a - β) (a - y) (e - δ) + (a - δ) (a - e) (∕3 - y)
H = (a - β) (a - δ) (e - y) + (a - y) (a - e) (δ - β).

Then it will be found as will presently be shown that the product F .G .H is 
a symmetrical function of the four roots β, y, δ, e, consequently, on forming 
four other similar products symmetrical in respect to α, y, δ, e: a, β, δ, e: 
a, β, y, e: a, β, y, δ respectively, the product of these five products will be 
symmetrical in respect to α, β, y, δ, e and being a function of the differences 
of the roots of order 18 and of weight 45, that is of the type [45: 5, 18], 
must be (paying no attention to a mere numerical factor) I, the skew 
invariant to the quintic.

Now consider the type reciprocal to this [45 : 18, 5] (monadelphic like the 
preceding), and expressing the invariant of the fifth order to an octodecadic. 
Suppose this has a graph. It will follow from the law of reciprocal graphs 
that I may be expressed under the form

X (α — ∕3)α(α — y)δ(α — δ)c(α — e)d(∕3 — y)e(β — δ)^(∕3 — e)9(y — δ)λ(y — e)fc(δ — e)z,

where a+5 + c+... =45 and each letter α, β, y, δ, e is conditioned to appear 
the same number of times, which at first might seem contradictory to what 
has just been established, but in reality is in perfect accordance with it. For 
imagine the product of the 15 quantities

FGHF'GΗ'F"G"H"F'"G'"H"'FιvGιvHιv

to be actually written out giving rise to 2ιs, or 32768 terms, and to each of 
these terms prefix the sign X indicating that the sum is to be taken of the 
120 values which it assumes on permuting the five letters α, β, y, δ, e. The 
sum of all these partial sums is 120Z; hence some, at least, of them cannot 
vanish. Let X71 be any one that does not vanish. Then XZ1 is a function 
of the differences of the roots of the same weight and order as the entire 
expression; it is therefore to a numerical factor pres identical with I, just as 
every fragment of a mirror is itself a mirror, or as every particle of diamond 
dust, a diamond.

Thus, as many distinct non-vanishing forms as there may be of XT1, so 
many different graphs to the quint-invariant of a binary octodecadic shall
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we be able to construct agreeing respectively with the different representations 
of I of the form

X (α - β)a{a, — γ)z,(a — δ)c...
and it is probable that the virtual equivalence of all these several graphs 
may admit of being made out by inspection, as we saw was the case with 
the two graphs (one dissociated, the other connected) corresponding to the 
two algebraical representatives of the quadrinvariant of a quartic. Thus, 
what seemed, at first sight, to be fatal to the admissibility of the algebraico- 
graphical theory only serves to set in a clearer light its value as an instrument 
of research.

If we analyse M. Hermite’s form of the skew invariant* to the quin tic 
we shall see that it depends upon this simple but not obvious fact, that 
writing

F = (c, iZ) (α - b) + (a, b) (c — d)

G = (b, cZ) (a-c) + (a, c) (d — δ)

H = (δ, c) (a — <Z) + (a, d) (δ — c)

and interpreting any such quantity as (a, b) to mean either 1 or (α + 6) or 
ab the product FGH is a symmetrical function of a, b, c, d, because on 
interchanging any two letters (say for example c, d) that one of the three 
quantities F, G, H (in this example H) in which those two letters are affected 
with the same sign, will remain unaltered in value whilst the other two 
(here G and F) change, each into the negative of the other.

Consequently we may interpret (α, δ) to mean (e — α)(e- b) and then 
the product of the five products corresponding to FGH is a function of the 
coefficients which expressed in terms of the differences of the roots will be of 
the weight 15 and of the order 1.6 + 4.3 or 18 because in one of the five 
products each letter will enter in six dimensions and in each of the other four 
products in three dimensions; thus in FGH, eβ will appear, but in each of 
the other four products e3 will be the highest power of e. Hence the quin- 
denary product is the invariant in question. No further step is necessary, 
the proof is complete as stated.

This remark will enable us to illustrate the process of transformation, 
which I have compared with grinding a diamond into dust, by an example* I am wont to compare in my mind this symmetrical and translucent form to the Pitt Diamond and Pere Joubert’s to the Koh-i-Noor. In Note D to Appendix 2 a method is given whereby these forms may be transmuted into one another subject, however, to the bare possibility that the one, put into the algebraical alembic at a certain stage of the process, instead of passing into the other may, so to say, evaporate and be reduced to nothing. In the theory of forms, all- embracing Zero is the source and reconciler of contradictions, because, algebraically speaking, 
everything is contained in nothing, and so in a morphological sense “ nought is everything though not “ everything is nought.”
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that can be completely pursued to the end. For let us now regard α, b, c, d 
as the roots of a binary quartic; then

{(α — b) + (c — c∕)} {(α — c) + (d — b)} {(a — d) + (b — c)}

will be a differentiant thereto of weight three and order three; it will, in 
fact, represent the root-differentiant of the skew sextic covariant.

Imagine this multiplied out without disturbing the marks of coupling 
so as to give eight terms or fragments analogous to the 32768 fragments 
spoken of in the preceding case. These terms will be of only four different 
patterns, one of the pattern (a — b)(a — c)(a — d), three of the pattern 
(a — b)(a — c) (b — c), three of the pattern (α — &) (b — c) (d — b~) and one of 
the pattern (c — d)(d- δ) (b — c). Prefixing X to each of these pattern terms 
to signify the sum resulting from the 24 permutations of a, b, c, d, we know 
a priori that not all of these can be zero since a linear function of them will 
be 24 times the differentiant in question, and on examination we find that 
the second and fourth X will vanish, but that the first and third will not. 
Accordingly, we shall have two new expressions

X (α — δ) (α — c) (b — c), X (a -b)(b — c) (δ — d),

each of which represents a differentiant of the same type as the original one, 
and this type being monadelphic or henparametric, the original product and 
these two sums will only be different representations of the same differentiant. 
Thus we see that each independent form belonging to a given type is 
susceptible (when expressed as a function of the differences of the roots) 
of a number of distinct phases, or, as we may express it, an algebraical form, 
in this theory, is in general polyphasic and accordingly its Icon or linkage 
exponent will be in general polygraphic, and each phase will have its own 
appropriate graph. It is a work of some difficulty, in general, to recognize 
the substantial identity of the different phases of the same algebraical form, 
and in like manner it may not, in all cases, be easy to recognize the substantial 
identity of the different graphs of its Icon, but sufficient has been shown to 
indicate the possibility and method of establishing such identity. The more 
I study Dr Frankland’s wonderfully beautiful little treatise the more deeply 
I become impressed with the harmony or homology (I might call it, rather 
than analogy) which exists between the chemical and algebraical theories. 
In travelling my eye up and down the illustrated pages of “the Notes,” I feel 
as Aladdin might have done in walking in the garden where every tree 
was laden with precious stones, or as Caspar Hauser when first brought out 
of his dark cellar to contemplate the glittering heavens on a starry night. 
There is an untold treasure of hoarded algebraical wealth potentially con
tained in the results achieved by the patient and long continued labour of 
θur unconscious and unsuspected chemical fellow-workers.
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We have seen that M. Hermite’s beautiful expression for the skew 
invariant of the quintic proves its own character. A similar analysis may 
be applied to père Joubert’s equally beautiful and even more remarkable 
expression for that of the sextic. M. de Bruno’s statement of this, Table IV10, 
contains two very perplexing typographical errors, namely, 4th line from foot 
of page, in Fo, x-ix2 (zroo + x0 — x3 — x2) should read xix2{xχ + x0- x3- x4), 
and 3rd line from foot of page, in TF0, x2xi(x2 + x3 — xιχ — x0) should be 
i⅜zr4 (x1 + x3 — xoo — x0). Moreover, the form in which the expression is 
presented in M. de Bruno’s pages tends to mask its true nature and to 
suggest an analogy, which has no existence in fact, between it and M. Hermite’s 
form ; the latter is intrinsically a quinary group of triadic products, but such 
representation in the case of M. Joubert’s form is purely conventional and 
confusing, it really being a single indecomposable quindenary product. Call 
a, b, c, d, e, f the six roots of a sextic, and let ab ; cd ; ef be any one of the 
15 duadιc synth ernes* which can be formed with them, and

ab. (c + d — e — ∕)1 
Jτ= + - + ccZ. (<?+/ — a — δ)[

+ ef. (a + b — c — d) J
The external sign is arbitrary, but must be considered as determined once 
for all for each of the 15 values of F. The product of these 15 values is 
a symmetrical function of the roots. For suppose any two letters, as a, b, to 
be interchanged ; then three of the factors F in which a and b are coupled 
will undergo no change, but the remaining twelve will evidently be resoluble 
into six pairs reciprocally related, so that each F of a pair is transformed 
either into the other or into its negative and on either supposition the product 
of the pair remains unaltered in value. Also this product is a differentiant, 
for Xδα operating on any one factor evidently reduces it to zero. It is also of 
the weight 45 and of the order 15. Hence the product of the fifteen values 
of F is the skew invariant to the sextic.

It seems desirable to make the differ entiantive character of the form self- 
apparent. This may be done by virtue of the remark that + F may be 
replaced by the form *

∕ (α -d) (b-f) (c -e) + (a-f) (b -d) (c -e) ∖
J + (α - c) (6 - e) (d-f) + (a- e) (b - c) (d -∕) ι

I + (a — c) (b — f ') (d — e) + (α -∕) (b — c) (d — e)
{ + (a-d)(b-e) (c -∕) + (α - e) (d- b) (c -∕)

* A duadic syntheme of 2n letters is a combination of n duads containing between them all the letters. In it the order of the duads and of the letters in each duad is disregarded. Hθ∏ce
H2?ithe number of such is --„ or 1.3.5...(2n - 1). For an odd number of letters simple syu- 2ra∏nthemes do not exist but in lieu of them we may construct diplo-synthemes containing every letter taken twice over.
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This sum contains 64 terms, of which 48 are the terms in F taken 4 times 
over, and the other 16 are the 8 quantities ace, bdf, acf, bde, bee, adf, bcf, ade, 
each appearing twice with opposite signs. If we expand the product of the 
15 values of F, we shall obtain 35,184392,568832, or upwards of 35 billions of 
terms distributable among a certain number of patterns; on prefixing Σ to 
one of each pattern a certain number of such sums will be zero, but the 
remaining ones of which there must be some (and there will probably be 
a very large number) will all be (except as to a numerical multiplier) identical 
with each other and with pere Joubert’s formula. We see by these examples 
that there is a sort of polymorphism or pheno-polymorphism, as it may be 
termed, which is of a much more superficial character than and ought to be 
carefully distinguished from true polymorphism, eteo-polymorphism as we 
may call it, and this distinction as it has a marked bearing upon the theory 
of algebraical linkages, it is reasonable to expect may not be without 
importance in the study and construction of chemical graphs. Although 
I have been dealing, in what precedes, with particular cases, the reasoning 
is general in its nature and leads to conclusions which I will proceed to 
express in exact terms.

Let us understand by a permutation-sum of a function of letters 
belonging to one or more sets (n, n', n",... being the number of letters in 
the respective sets) the sum of the ∏n∏∕i'∏z("... values which the function 
assumes when the letters in each several set are permuted inter se^, and 
let us understand by a monomial differentiant one which (with the usual 
convention as to α= 1) may be expressed as a permutation-sum of a single 
product of differences of roots of the parent quantic, or quantic system ; 
then in the first place it has virtually been proved, in what precedes, and 
is undoubtedly true that every monadelphic differentiant is monomial, and it 
may easily be proved in like manner that a differentiant of multiplicity k may 
be represented by the sum of k monomial differentials.

For greater simplicity let us confine ourselves to the case of monadelphic 
invariants and let us consider any two such belonging to reciprocal types; 
then the algebraical value of either one, in terms of the roots of its parent 
quantic or quantic system, will be represented by the permutation-sum 
of the product of the differences of every two letters in the other taken 
as many times as there are connecting bonds between them, such letters 
being for this purpose regarded as the roots in question. Hence also we 
may derive the rule previously given for determining whether or not any 
given graph, in which the number of bonds is equal to half the toti-valence, 
represents or not an algebraical invariant—the condition of its doing so 
being that the permutation-sum of the product of the differences between 
the connected letters (each bond giving one such difference) shall be other 
than zero. This rule will stand good whether the type of the graph be 
monadelphic or not.
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A very simple instance occurs to me of the monomial law for monadelphic 
types. Let α, β, 7 be the roots of a cubic. It will easily be found that the 
type (4 : 3, 4) to which

{(α - ∕3)2 + (a - 7)2 + (β - 7)2}2
belongs is monadelphic; prefix to it the sign of summation, which is merely 
equivalent to multiplying it by 6. It will not be a monomial permutation- 
sum as it stands, but it may be replaced by 2∑ (a —∕3)2 (a — 7)2 or X(a —∕3)4 
each of which monomial sums is a half of

{(α - ∕3)2 + (a - 7)2 + (β - 7)2}2.

Postscript. Subsequently to the printing of the foregoing sheets I have 
seen in an editorial notice in the English Journal Nature (Feb. 14, 1878) 
a statement of the claims of Dr Frankland to be the discoverer· and first 
promulgator of the law of atomicity, and I appear unconsciously to have done 
injustice to this great English chemist by attributing the discovery to Kekule. 
1 derived my impression on the subject from the popular belief and from the 
account of it given by Wurz in his Histoire des doctrines chemiques. If 
the facts of the case are as set forth in Nature and admit of no qualifying 
statements, I am unable to understand how such a discovery as that of valence 
or atomicity, which furnishes the master-key to our knowledge of the trans
formations of matter and raises chemistry to the rank of a mathematical and 
predictive science (it was previously only arithmetical), can have escaped 
receiving the award of a Copley Medal from the society in whose Transactions 
it appeared. I can hardly imagine that, if the first announcement and proof 
of universal gravitation or the circulation of the blood had been communicated 
to the world in a paper inserted in the Philosophical Transactions in these 
days, its author would have failed to receive for it the highest mark of 
recognition in the power of the Royal Society of London to bestow, and in 
my humble judgment the lawτ of atomicity in its far-reaching importance and 
the labour, and mental acumen required for its discovery, stands fully on a 
level with either of these great landmarks in the history of natural science. 
It seems also from the same article in Nature that my distinguished friend, 
Professor Crum Brown, to whose personal teaching at Edinburgh I owe the 
very slight acquaintance with the subject I can lay claim to, was the first to 
use the admirable method of chemico-graphs.

The conception of hydro-carbon graphs as “ trees with nodes, branches 
and terminals ” and the indispensable notion of constructing them by starting 
from “ an intrinsic central node or pair of nodes, so as to get rid of the 
otherwise unsurmountable difficulty of having to recognize equivalent forms 
appearing several times over in the same construction,” are exclusively my 
own and were used by me in my communications with Professor Crum Brown 
on the subject and stated by me in a letter to Professor Cayley, who has
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adopted them as the basis of his own isomerical researches. In the account 
of this method given in German chemical journals I am informed that all 
reference (or at least all adequate reference) to my name as the author of it 
“ fine by degrees and beautifully less,” has at length entirely evaporated. 
M. Camille Jordan was led by quite a different order of considerations and 
with quite a different object in view to a discovery of the same centres before 
me, but I was not acquainted with this fact when I rediscovered them and 
made the application above mentioned. The idea of this application stands 
in the same relation to Professor Cayley’s perfected use of it, as his idea of 
the use to be made of the equation Δ (w: i, J) = the number of linearly 
independent covariants of the type ∖i,j'. ij-i2,w] stands to my completed 
method founded thereon, for obtaining the scale and connecting syzygies of 
the irreducible covariants to a quantic, laying me thereby under an obligation 
which I should take it in very ill part if any translator of my papers on the 
subject failed to acknowledge in unmistakable terms.

The hydro-carbon graphs, it may be noticed, belong to the limiting case of 
chemico-graphs; where no cyclical system of bonds connects any groups of 
atoms in a graph, it becomes an arborescence.

I have found it a profitable exercise of the imagination, from a philo
sophical point of view, to build up the conception of an infinite arborescence 
and to dwell on the relations of time and causality which such a concept 
embodies. An example of the good to be gained by these limitless mental 
constructions (new tracts and highways, so to say, opened out in the all- 
embracing “grand continuum” which we call space) is afforded by the 
valuable applications to the theory of local probability and the integral 
calculus in general made by Professor Crofton (my successor at Woolwich) 
of his new idea of an infinite reticulation (warp and woof), every finite 
portion of which contains an infinite number of meshes, being formed by the 
crossings of two sets of parallel lines ail infinitely extended in both directions 
and those of the same set equidistant and infinitely near to each other. So 
the largest idea of an arborescence is that of an infinite number of nodes with 
an infinite number of branches proceeding from each of them.

APPENDIX 2.

Note on M. Hermite’s Law of Reciprocity.

I take for granted that the treatise of M. Faa de Bruno represents this 
theory as it at present stands, in which case it seems to have made no advance 
since it was first promulgated by M. Hermite in his well known paper in the 
Cambridge and Dublin Mathematical Journal, 1854. It will be seen, however, 
I think from what follows, that it admits of being presented in a somewhat
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simpler and more general form. It rests essentially on the proposition of 
reciprocity in the theory of partitions that {w : i, j) = (w : j, i), from which it 
follows as an immediate consequence that the number of arbitrary constants 
in the general covariant (or invariant) whose type is [w: f,J], is the same as 
that whose type is ∖w : j, f] since that number will be Δ {w: i,j) = Δ (w : j, i) 
for each. Let now φ (a, b, c,... Z) be any differentiant of the order j in the 
coefficients, and of the weight w to a binary quantic F (x, y) of the degree i in 
the variables; then φ is the root of a single covariant whose order is j and 
degree in the variables ij — 2w. Let φ be expressed (as from the definition of 
a differentiant must necessarily be possible) as a function of the differences 
of the roots α1, a2,...ai of F when y is made unity. For any difference

aυ — aa substitute . ------ -----. ~, and let φ be converted into <⅛ by this* dxp dyq dxq dyp r τ j
substitution. Now operate with φ upon the product of the i forms G(xi, y1), 
G (x2, y2), ∙∙∙G (xi, yi), G (x, y) signifying the general form of the degree J in 
the variables, and after the operation has been performed turning each 
subscript x into x and each subscript y into y, after the manner of Professor 
Cayley’s original method of generating invariants or covariants as “ Hyper
determinants;” we shall thus obtain an in- or co-variant to a form of the 
degree j which will be of the order i in the coefficients and of the degree 
ij — 2w in the variables, for there are w factors in φ and each factor is of the 
second dimension in two of the x’s and the corresponding two y’s. Thus we 
shall have passed from a form of the type [⅛, j: ij — 2w] to another of the type 
Jj, i: ij — 2w], or which is the same thing, from one of the type [w: i, y] to 
another of the type [w: j, ⅛'].

This latter may be called the image of the first. For facility of reference, 
let the number of arbitrary parameters in the one and the other type be 
called the multiplicity. If we repeat upon this image the process by which 
it was deduced from its primitive, we shall obviously get back the original 
type, but it by no means follows that if the multiplicity exceed unity, we 
shall get back the primitive form itself. It may be possible to revert to the 
same type without reverting to the same individual specimen of it *; and 
such, we shall presently see, is what in general happens.

Before proceeding further I shall give a very simple methodical rule for 
finding the image to any given invariantive form. Since, for any given value 
of i, the form and its image are each given when their root-differentiants are 
respectively given, it will be sufficient to assign the law for passing from the 
differentiant of the primitive to that of its image.* Just as, if I rightly understand the explanation given of fluorescence, a ray of light may give birth to some other form of motion and that again to another ray of light but of a different colour from the first. The theory of reciprocity treated of in the text is, in fact, a theory of alternate generation.
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For this purpose, let the given in- or co-variant be expressed in terms of 
symmetrical functions of the roots of the quantic when the leading coefficient 
(a), is made equal to unity. Then it will consist of terms, any one of which, 
apart from its numerical coefficient, will be of the form

2 (α1 α2... aλ)θ (β1β2... βμ)1 <7ι7a ∙ ∙ ∙ 7p)2 (δ1 δ2... δπ)3... 
a1a2...aλ, β-iβ2...βμ, 7172...7,,, &c. being all distinct and comprising between 
them all the i roots and of course ∕χ + 2ι∕ + ⅛τr + &c. will be equal to the 
weight ; to pass from a differentiant expressed in terms of roots of a given 
quantic to the expression in terms of coefficients of the allied quantic of its 
image it will be found that the only thing necessary is to change any such 
factor as αλ (where α is any root of the given quantic) into 0λ, the coefficient 
of the term containing yκ in the allied one. This rule is a consequence 
(obtainable by ordinary algebraical processes) from the method above 
explained, where it is to be borne in mind that in order to obtain the image 
from the given form we have only to substitute for each root ακ which

dococcurs in φ, the fraction -~ and to multiply the result by such a power of

dy ’ dÿ ' " dy ’ aS jUSt serve tθ ma^e it integral. A much simpler 
demonstration of this rule will be given in the sequel, and it will be shown 
that it not only holds good for deriving the leading term of the reciprocal 
(in the case of a covariant) from that of the primitive (that is, the root- 
differentiant of the one from the root-differentiant of the other) but that 
it is applicable to deriving the whole of one expression from the whole of the 
other.

As an example, take the differentiant whose type is [3: 3, 3], the root 
or base of the skew covariant to a cubic (a, b, c, dÿx, y)3. Its value is 
d2d — 3abc + 2δ3 ; expressed in terms of the roots α, β, γ, making a = 1, 
this becomes

rιε> 3 (α + /3 + 7) (α∕3 + α7 + ∕3γ) o (a + β + γ)3 
pγ 9 ^t^ 27 ’

°r À { - 9 (a + β + 7) (a∕3 + a7 + β7) + 2 (a + β + 7)3 J-,

θr J? ∣2Xa3 — 32a1∕32 + i2ajS7j-, that is, J? j2Saθβ073 — 3∑a0β172 + 12a1∕3171j. 

Applying the rule, this becomes converted into
i ÿc.’C, - 18C,<71C, + 12C1] ,

or, reverting to the letters a, b, c, d, the image becomes the primitive affected θ
with the factor — and may be seen to be its own conjugate. Or again, let 
the primitive be the discriminant of a cubic, that is,

À (α - ∕3)2 (α — 7)2 (β — 7)2 or (α2∕3 + β2y + 72a - aβ2 - βy2 — 7a2)2 ;
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this is equal to
2 (a2βi + 22oc∕32γ3 — 2∑α3∕33 — βa2∕32γ2 — 2Σa∕Sγ4).

Hence, by our rule, the image will be

2γ (6C0C2C4 + ∑2C1C2C3 6(√0C3* 6c.∕ θC12C4),

or, using a, b, c, d, e in lieu of c0, c1, c2, c3, c4, we obtain the form 
6— ~= (ace + 2bcd — ad2 — c3 — b2e),A I

2Dthat is,----—, where D is the well known quadrinvariant to a quartic
y

a b c 
bed. 
c d e

Treating this quadrinvariant as a function of the roots of a biquadratic form 
and proceeding as before to form its image, we shall obtain a second image 
which will be a numerical multiple of the original invariant.

But now let us consider the case of polyadelphic forms belonging to 
reciprocal types and for greater brevity, as the calculations are necessarily 
long, take a quantic of the self-contrary type [w : i, √J, as, for example 
[6: 4, 4] which belongs to the covariant of the fourth order and fourth 
degree to a quartic. This will be diadelphic; its general form is a linear 
combination of two products, one of the quartic itself by its cubinvariant, the 
other of the Hessian by the quadrinvariant. It will therefore have for its 
leading coefficient the differentiant

λα (ace + 2bcd — ad2 — c3 — δ2e) + μ (ac — b2) (ae — ⅛bd + 3c2), 
say λZ7+ μV. Let us first find the image of U. Expressed in terms of the 
roots a, β, 7, δ, it is

∣ (aβ + ay + a8 + βy -jr β8 + 7δ) (aβy8)

+ Tu(a + β÷7 + ^) (αβ + ay + αδ + βy + βδ + 7δ) (aβy + aβδ + 0t7δ + ∕3γδ)

— ~ (aβy + aβδ + αγδ + βyδ~)2 — (aβ + ay + a8 + βy + β8 + 7δ)3

- (α + β + 7 + δ)2 aβyδ, 

which is
[6] (aβy282'} [24] (a∕3273) + [48] (aβy282) + [12] (a2β2y2) + [12] (cr∕3yδ3)___ + 48

[4] (a2β2y2} + [12] (aβy282)_
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[6] (α3∕33) + [90] (α∕3y3δ2) + [72] (α∕92y3) + [24] (α2∕32y2) + [24] (α∕3yδ3) 
216

[4] (ot∕3yδ3) + [12] (α∕3y2δ2)
16

where any term, as for example [48] (α∕3y2δ2), means the sum of the 
quantities of the type α∕3y2δ2 each taken a sufficient number of times to 
make up 48 combinations, so that it is identical in meaning with 82 (αβy2δ2) 
in the common notation. This convention is useful in saving the unnecessary 
labour of performing divisions in this first part of the process which have 
to be exactly reversed by multiplications in the transformation process 
which follows. The value of the above sum is, for purposes of transformation, 
equivalent to

∣3α∕3y2δ2 + 6α∕32y3 — 4α2∕32y2 — 4a∕3yδ3 — a3∕33j-, 

which gives for the image of U

(3b2c2 + 6abcd — 4αcs — 4cZδ3 — α2cZ2)

θr 36 ^), whθre it be observed that (V — TP) is identical with the

discriminant to (a, δ, c, <P^x, y~f. Let us now proceed to find the image of 
(JJ — F). Using σ to denote the sum of the combinations of α, β, y, δ taken 
i and i together, where α, β, y, δ are the roots of the general quartic, we have

7T_ V= θ^l2σ-a2 i θ'lθ'2θ^3 σ* °^3°^l8 σ*
192 16 54 64 16

= (θσ^l2σ22 + lθ8σ1σ2σ3 — 32σ23 — 27σ3σ13 — 108σ32).
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Hence, using I to denote “ image of,”
IU = I I bi + α2c2 — 2αcδ2 ∣ = ∣ F.

Again r=(⅞-⅞7

= ^-2 j 3α2 + 3∕32 + 3γ2 + 3δ2 — 2 (aβ + ay + aδ + βy + ∕3δ + yδ)∣,

which, for purposes of transformation, will be found equivalent to 
j 36α4 + 132a2∕32 - 48a2∕3γ - 144a2β + 24a∕3γδ J-.

Consequently
∕F = —I 3a3e + Ha2c2 — 4aδ2c — 12a2δZ + 2δ41 

= j-~ I 3a2 (ae — ⅛bd + 3c2) + 2 (δ2 — ac)21

= ⅛(3^÷2r)∙

Let now λ : μ be so chosen that
I(∖U + μV) = p (λCr + μF).

This gives ^+Q+Δ)r = p(χiλ + j,K),

or 64 96 2 °,

that is, 3μ2 — 2∖μ — 96λ2 = 0.
1 θThe two values of derived from this equation are 6 and —The A O

corresponding values of p will be 6 and — . There are thus two definite

systems of λ : μ, and no more, which will make λC∕ + μV self-conjugate and 
it is obvious that there will be no other values of λ : μ which will make

Z2 (∖U + μV) — p (∖U -∖^ μF),
for, Z2 U and Z2 V being determinate linear functions of δζ V, we shall have 
a quadratic equation for determining λ : μ, but the two values of λ. : μ which 
make ∖U + μV self-conjugate must satisfy this equation, and hence there 
can be no others. Reverting to the preceding example of the type [6: 4, 4], 
we have found

ιu= i- u- l vr 36 36
91 1I (U_ F)= _ u----γk ’ 432 432
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9 11Hence TV =___— U__ — V432 432 ’
and making I (∖U + μV) = p (∖U + μV),
the equation for finding p will be

42 _ _ 12
432 p ’ 432

= 0,
9 _ n__

432 ’ 432 p

whence Pi = ~ > ^2=∏45

also'since (⅛λ-4g2*t)=',λ>

we shall have — — r- θ- — = 3.
μ1 28 μ2

What intrinsic peculiar properties are possessed by the principal forms* is a 
question as to which we are at present quite in the dark, as are we also with 
regard to the general character of the equation in p. It were much to be 
wished that some one would work out the case of a triadelphic type, as for 
example the type of covariants of the 6th order in the coefficients and the 
6th degree in the variables, to a sextic. It might be supposed from the two 
preceding examples that the values of p are necessarily rational, but it will 
be shown hereafter that such is not the case.

It is easy to see that the relation between any form belonging to a given 
type of multiplicity 2 or 3 and its second image may be geometrically 
represented by means of a quadric curve or surface. Thus suppose the 
multiplicity is three, and that the three values of p are A, B, C. Construct
an ellipsoid or hyperboloid whose semiaxes are , —ι- , . Draw r any

VA V B V (J d

radius vector making angles a, β, 7 with the principal axes, p a perpendicular 
from the centre upon the tangent plane at the point where r meets the
quadric, making angles λ, μ, v with these axes. Then if 

K (cos aU + cos βV + cos 7 IF)
be any given form of the system for which U, V, W are the principal forms,

— (cos λlir + cos μV + cos vIT) pr z
will be its second image. And we may say that, if a form lies in the* By a principal form (in general), as hereafter stated in the text, I mean one which is the reciprocal of its first image in the sense that it bears a numerical ratio to its second image. The numerical quantity by which it must be multiplied to give the second image, I call a principal multiplier.

12—2
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direction of the axis of instantaneous rotation, its second image will lie in the 
perpendicular upon the invariable plane : or more simply if by the direction 
of a form ∖U + μ,V + vW we understand that of a straight line whose direction 
cosines are as λ : μ : v and by its modulus √(λ2 + μ2 + ι∕2), we may say that 
if a radius vector of the ellipsoid (or other quadric) represent the direction 
and modulus of an in- or co-variant the corresponding radius vector of the 
polar reciprocal to the quadric will represent the direction and modulus of its 
second image.

The true nature of the reciprocity theorem, in the general case where i, j 
have any values whatever, is now obvious. Let i∕^1, U2,... Uq be independent 
forms belonging to the type [w : i, y], whose multiplicity is q, and 
F1, V2,... Vq as many forms belonging to the reciprocal type [w : j, ⅜]∙ We 
may, by virtue of the transformation process, express each IU in terms of 
linear functions of the forms V and vice versa, so that each PU will be 
a known linear function of all the U,s. For clearness sake suppose q = 3 
and let

PU-i = aU1 + bU2 + cU3 

PU2 = a'U1 +b'U2 +c'U3 
PU3 = a"U1 + b"U2 + c"U3.

Now make
I2(∖U↑ PpU., + vU3) — p (λ,Z71 + μU2 + r t∕3).

We shall have for finding p the equation
(α - p), b , c

a' > (δ' - p∖ g = θ,

α" , b" , {c" - p)
and then the three systems of values of λ : μ : v, which make the second 
image of λ U1 + μ U2 + v U3 coincide to a numerical factor près, with itself, 
will be rational functions of the respective roots. So, in general, when the 
multiplicity of the type [w : i, y] is q, there will be in general q special forms, 
and no more, which have reciprocal forms belonging to the type [w : y, ⅛], and 
if the interchangeable elements, i,j are equal, then these q forms will all be 
self-conjugate. It is conceivable that in certain cases the equation in 
p may have equal roots ; in that event each such equality would introduce 
a corresponding indeterminateness in the forms admitting of conjugates. For 
example, if the multiplicity were 2 and the two roots of p equal, that would 
signify that every form belonging to the type would have a conjugate—a fact 
analogous to an ellipse becoming a circle, or an ellipsoid a spheroid—and so 
in general.

A form having a conjugate, that is, whose second image is a numerical 
multiplier of itself, may be called a principal form. If the multiplicity of the
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type is q, there will be q such. All but these will give rise to an endless 
succession of images such that any q + 1 of an even order (the form itself 
included among these) will be connected by a linear equation. That the 
succession is endless is clear from the consideration that if an image, say of 
the (2p)th rank, is identical (to a numerical factor près) with the form, we 
have an equation of the çth degree for finding the values of the systems of 
multipliers λ, μ, v of U, V, W ; therefore there are only q such systems, but 
the systems which satisfy I'2F = pF must also satisfy I2pF = p'F, and conse
quently there are no others.

To illustrate this, suppose
FU=aU+bV 
PV=cU + dV-

then IiU = (α2 + be) U + (ab + bd) V
IiV= (ca + ad) U + (cb + d2) V.

If now we put
I a — p, b

= 0,
I c , d — p

to find the values of λ : μ which make I2 (∖U^ + μV) = p (λLr + μV) we have 
(α — p) λ + cμ = 0.

In like manner, if we make
α2 + be — p, ab + bd

= 0,ca + ad , cb + d2 — p
to find the values of A and M which make Ii(λU + MF) = R (A.U + MF), 
we have

(α2 + bc — R) A ÷ (cα + ad) M = 0, 

and it will be found that
a - ρ = °--c' + I √{(α - d)- + 46c} 

a2 + be — R = —g— ± —— √{(α — d)2 ÷ 4bc},

so that the values of λ : ∕x and A : M are the same, and such we know à priori 
must be the case.

It ought to be noticed that the method explained in the preceding pages 
furnishes a complete solution of the problem following. Given any in- or co
variant, say of the yth order in the coefficients to a form Q of the zth degree, 
to find the process of differentiation which performed upon the product

Q (iρι> yi) ∙ Q(λ½>2/2) ∙ ∙∙∙ Q(+j> Uj)
shall produce the y-partite-emanant of the in- or co-variant so given, and it 
proves incidentally that every binary in- or co-variant may be represented as
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a hyperdeterminant. To make this clear, let us call the above product, 
or rather that product divided by (∏⅛)j, the y-ary norm of Q and denote 
it by NQ. Again, let G be any given differentiant to the type [w: j, i], say 
G(p1, p2,∙∙∙ Pj) which is necessarily identical with

(p2-pι),, (ps-pi); ∙∙∙(pj-pι)}∙ 
d d d dFor pκ — p1 write j—. -=∙-----j—. -v- and let the quantity so formed be calledaxκ ay κ ax^

the hyperdeterminant to G and be denoted by HG. Then if E be any 
principal form to the type [w: i,j], of the multiplicity q and belonging to 
a quantic Q, and G be its first image, we shall have

{HG) (NjQ) = pF,
where p is one of the roots of a known equation of the <∕th degree in p. 
Consequently, since any form belonging to the given type is a linear function 
of its q principal forms, every such form may be expressed by means of the 
hyperdeterminant

λ-3 pλ

the given form being supposed to be expressible by ΣCχFk, where F is 
any one of the q principal forms.

It follows from what has been shown above that in*general from any one 
particular given form belonging to a type of multiplicity q may be deduced 
the (q — 1) others (by taking the successive second images) and thus the 
general form obtained; the exception is when the given form happens to be 
a linear function of less than q of the principal forms. A further consequence 
is that any in- or co-variant given in terms of the roots of its quantic may 
be converted by explicit processes into a function of the coefficients. Thus, 
for example, suppose that the multiplicity of the type is 3; call the given 
form Ro and the successive second images R1, R.2, Rs, Ri. These latter will 
be all known by the rule of transformation and we shall have Ri a known 
linear function of the three preceding forms, say equal to

o,Ri -+- βR2 -f- fyA!3.

Hence if we put Ro = ∖R1 + μR2 + vR3,

we must have R1 = ∖R2 + μRs + v (aR1 + βR2 + qR3) ;

hence v = -, μ = -f \ =
a a a

and thus Ro, given in terms of the roots, becomes known in terms of the 
coefficients of its quantic. And so in general, q being the multiplicity» 
(q + 1) forms deduced from the' given function of the roots will serve to 
determine its value as a function of the coefficients. In fact by regarding 
Ro as a linear function of the principal forms, it is easy to see it and all its
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successive secondaries (that is, second images) form a recurring series, the 
scale of relations being

¾-x-¾ + x-2b2-s -3⅞ + ... = o,
P P P

where 1 : p is the ratio of any principal form to its immediate secondary. 
Thus Eo being given in terms of the roots and consequently E1, E2,... Eq, in 
terms of the coefficients, Eq becomes known in terms of the coefficients and
of the quantities X -, ∑ ι, ...; these latter are identical with the quantities 

P P
previously mentioned and furnish the simplest means of forming the 
equation in p, which (if we agree to call p1, p2,...pq the moduli of the 
several principal forms F1, F2, ... Fq, that is, the ratios of their respective 
second images to themselves) may be termed the modular equation for any 
given type*.

It might have been useful, had I thought of it in time, and may be useful 
when the subject comes again under consideration, to treat a form and its 
second image, in which the type is restored as antecedent and consequent, and 
to describe the first image as the alternate form to the primitive, inasmuch 
as we pass, by what biologists term alternate generation, from one type to 
the other. It has been shown, in what precedes, that the transformation by 
images at each second step leads back to the original type, but, contrary to 
what might have been supposed, does not in general imply the resuscitation 
of the individual form.

The theorem of reciprocity has been seen to be, in its essence, a theorem 
of differentiants, and ought therefore to admit of being proved by means of 
the necessary and sufficient partial differential equation to which differentiants 
are subject. This may be done as follows. If we call e0, e1, e2,... er ⅛e 
successive elements to a binary quantic expressed in its customary form, 
so that er is the coefficient of the term containing yr divested of its numerical 
binomial coefficient, and if we write

d d d 
da ^*^ dβ ^*^ dy+

where a, β, y,... are the roots of the quantic, it is very easily proved that 
Uer = - rer-1f.

Let C∑arβsyt... be any term in a given differentiant F, the indices r, s,t,... 
being any whatever with no condition as to their being distinct from each* But it will be better to adhere to the previous convention and to designate the p’s as the principal multipliers and the equation in p as the principal equation.+ In fact it may easily be proved by the ordinary rule for the change of one system of independent variables into another that, if α1, α2, ∙∙∙ <⅞ be the roots of (e0, e1, e2, ... e$x, y)z,

d ι=i d ∑ —= - Σ qeβ-ιy- .da q==0 deq

www.rcin.org.pl



184 On an Application of [24

other, and let N (r, s, t, ... ) signify the number of combinations comprised 
in X ; also let GN(r, s, t,...) . ereset ... be called the image ρf the term above 
written and G the image of F, that is, the sum of the images of the several 
terms in F‘, where it must be observed that the e quantities do not necessarily 
refer to roots the same in number or name as the roots α, β, 7,.... Now 
suppose that we have any term, such as Q∑alβmyn ... in UF, where U refers
to the given roots α, /3, 7, ... and means ~ + -⅛ + -1- + .... This term must 

da dβ dy
arise from terms of the several forms

A½al+1 βm yn ... ∖

B Hal βm+1 yn ... - in F',

G tal βm yn+1 ... .
&C. &c. ...

corresponding to these there will be the images
AN (I + 1, m, n,...) ez+1. em .en .... ∖

BN(l,m+l,n, ...) ¾ .em+1.en .... [in(r,
CN (I, m, n+ l, ...) el .em . en+j....J

&c. &c. ...
where G belongs to a quantic whose type is reciprocal to that of F, and it is 
clear that the effect of operating upon F with U will be to give

Q = ApN (Z + 1, m, n,...) (I + 1) + BpN(I, m + 1, n,...) (τn + 1)
+ GpN (I, m, n+ 1, ...)(w+ l) + &c. ...

p being a number easily determinable, but which there is no occasion to 
express. Again if Rel. em. en.... be the correlative term in G, we have by 
virtue of the formula Uer= — rer~1, where the operator U refers to the roots 
of the quantic of reciprocal type,

(-)wR = AN(Z + 1, m, n, ...)(Z + 1) + BN(Z, w⅛ + 1, w, ...) (ra + 1)
+ GN (I, m, n+ 1, ...)(n +1) + &c....

Consequently, since on account of the identity F=0, we must have Q = θ 
for every term QΕtal. βm .yn ..., we must also have R = p~1 Q = 0 and therefore, 
this being true for all the arguments e^. ewι.en...., we must have UG — G 
Hence, when any quantity F is a differentiant of a given quantic, its image 
(as defined in the text) is also a differentiant to a quantic of reciprocal type 
to the given one. This is the simplest method of establishing the theorem, 
but still the method originally employed in the note is valuable as serving to 
establish the important proposition that every in- or co-variant of a binary 
quantic is a hyperdeterminant.

I will proceed to show that for a system of two or more quantics of degrees 
i, i', i",..., we may pass from a covariant of the type [w: i, j ; i', j' ; i'',j" ; ∙∙∙J
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to one of the type [w : j, i ; i', j' : i", j" ;...] by taking its image in respect to 
the quantic whose indices, i, j, are to be interchanged precisely according 
to the same rule as if there were no other quantic present. As regards the 
law of reciprocity, a combination of quantics is analogous to a mixture of 
gases, according to Dalton’s view, each playing the part, as it were, of a 
vacuum in respect to the other.

Let [w: i,j∙, i',j'∙,...~∖ be the type, ∖w∙.j,i', ΛJ, >■··] onθ °f thθ antitypes, 
(e0, e1, e2,... e^x, y)i the general form of the Jth degree, a, β, y, ... its roots 
when e0 = 1. Let ηr = (-)rer ; then, since

~da6' = ~rer→ 
v d
t daηr~rηr~1'

Let D be any differentiant of the given type, a, b, c, ...the roots of the 
quantic of degree i, a', b', c, ... the roots of the quantic of degree i,, with 
the usual convention as to the leading coefficients becoming unities. Let 
talbm ..., talb'm'... X ... be the arguments of any term in

(∑-^ + χ∕z + ..ή D,
∖ da da ∕

say UD, then the coefficient of the term last written will arise from operating 
with U upon

A . tal+1 .bm .... ta'l' b'm' . &c. ...
+ B . tal . bm+1.... Xα'r b'm' . &c. ...
+.......................................;....... ;............... I
+ A, tal .bm .... ta'l+1b'm . &c. ...
+ B' tal .bm .... Xα r b'm+1. &c. ...

&c. ... &c. ...
and the value of the coefficient will be

A (I + 1) df (l + l,m,...) dT(Γ,m',...........)...
+ B (m + 1) Ar (Z,zn+1,...) N(l∕,m',...........)...
+ ..................................................................................
+ A, (l' + 1) AT <7, m, .........) Ar(Z' + l, m', ...)... f

+ B' (m' + 1) di (I, m, ....... ) N(l', m'+l,
+ .................................................................................. ,

÷ di (I, m, ...) di(l', m', ...y)...
To these feeders or contributory terms will correspond, in the image,

Adi (l+l, m, ...) ηl+1.ηm ....ta'1' .b'm' ....
+ BN (Z, m + 1, ...) ηl .ηm+1. ... ta'l' .b'm' . ...
+ ......................................................................................
+ A'di(l,m, .......)ηl .ηm . ... ta'l'+1 .b'm' . ...
+ B'di(l,m, ....... ) ηl .ηm ....ta'l∖ .b'm'+1....
+ ............................................................................................
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and it is obvious that by operating upon this with the 77 corresponding to its 
roots we shall obtain the argument ηι. ηm.... ⅜a'l’. b'm'. &c.... affected with 
the very same coefficient as that above written, except that in its denominator 
the factor, J∖r {l, m, ...), will not appear. Hence, when D is a differentiant 
of the given type, its image (obtained by expressing the i set of coefficients in 
terms of roots and then replacing every power, pq, of any such root, p, by ηq, 
leaving all the other coefficients unchanged) will also be a differentiant of the 
type transformed by interchanging i with its conjugate J*.

When there is but one quantic the effect of substituting eq instead of ηq 
will evidently only be to introduce a common factor (—)w into each term, 
which is immaterial and we may accordingly in that case reflect p5 into eq. 
Of course, in the general case, if all the letters i are simultaneously inter
changed with the letters J, a similar conclusion follows.

As an example, let us take the two quadratics, 
ax2 + 2bxy + ct∕2, 
az»2 + 2βxy + yy2,

their resultant (αγ — cα)2 + 4 (aβ — δa) (cβ — ba), belongs to the type 
[4: 2, 2; 2, 2] which is its own reciprocal whichever of the interchangeable 
elements we permute. This resultant, treating a as unity, will be equal to

(αp12 + 2βp1 + 7) (ap22 + 2βp2 + 7)

= a2∕⅛2 + 2∕3a (p1ap2 + p1p22) + 4∕32p1p2 + ay (p2 + p22) + 2βy (p1 + p2) + 72 

the image of which will be
α2e22 — 4a∕3e1e2 + 4∕92e12 + 2a7e0e2 - 4β7e0e1 + 72e02, 

or as we may write it,
α2c2 — 4aβbc + 4∣β2b2 + 2ayac — ⅛βyab + a272,

which is (ca — 2bβ + ay)2, the square of the well known connective. Again, 
if we combine ax? + 3bx2y + 3cxy2 + dy3 with ax + βy, we have the invariant

aβ3 — '3baβ2 + '3ca2β — da3, say I,* Thus the rule of images for passing from a differentiant of a given type belonging to a single quantic to one of the opposite type is extended to the case of passing from a differentiant of a given type belonging to a system of quantics to any associated type, that is, to any type in which one or more of the numbers i chosen at discretion is or are interchanged with the corresponding numbers j, and it will presently be seen that this implies the extension of the rule without any alteration from differentiants or invariants to covariants of a quantic or system of quantics. In Note A it will further be shown that for any inversions whatever (or, to speak more accurately, for any cycle of inversions leading back to the original type), although the principal multipliers change their values as the cycle of inversion changes, the principal forms themselves 
remain the same,—a surprising conclusion but very easily proved. In other words, however many quantics there may be in the parent system, there is never more than one single set of principal forms of derivatives to it of a given type. A cycle of arbitrarily intercalated pairs of reversals (here of successive i'e and y’s), by which a type returns to itself, comes under the category, “ Verschlingung,” or “ Knotting” of Gauss, Listing and Tait.
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belonging to the type [3: 3, 1; 1, 3]. Write α = 1, β = — p ; this becomes 
— ap3 — 3δp2 — 3cp — d,

of which an image, say J, belonging to the type [3: 3, 1; 3, 1], 
cι∈3 — 3δe2 4^ 3ce1 — cZeθ

is the connective of
f αic3 + 3bx2y + 3czn∕2 + dy3 I 
[ e0zc3 + 3e1tf2y + 3e2aψ2 + e3y3 J

Similarly (a?d — 3abc + 263)β3... + ... + (d2a — '3dbc + 2c3)α3,
say I, belonging to the type [6: 3, 3; 1,3], will have for a reciprocal 

(a2d — 3abc'+ 2b3) es+ ... (d2a — 3dbc + 2c3) e0,
say J, belonging to the type [6: 3, 3; 3, 1]. The graph of I will be that of 
Fig. 41 and the graph of J, that of Fig. 42, where I use B and G (the initials 
of boron and gold, instead of Au for the latter) and H (the initial of hydrogen) 
to represent the algebraical atoms (that is quantics) of valencies (that is degrees) 
3, 3, and 1 respectively. Prefixing X to the I graph and substituting Gy, G2, G3, 
the three roots of G, for H, H,, H" and Bγ, B2, B3 for B, B,, B" we obtain

X (B1 - B2) (J51 - B3) (B.2 - B3) (B1 - Gi) (B2 - G2) (Bs - Gs), 
which by inspection is the root representative of J, and prefixing X to the J 
graph and substituting H for G, we obtain in like manner

X (Λ - Bβ2 (B2 - B3) (tf - B1) (H - B3f, 
as the root representative of I.

It may be observed that Fig. 43 is, algebraically speaking, a pseudograph 
of J, for its reading would give zero for the value of I.

It follows as an immediate consequence from the preceding extension of 
the law of images to quantic-systems, that the rule for deducing the first term 
of the reciprocal to a covariant from that of the covariant itself by writing ηr 
for ar holds good as a rule for deducing each term of the one from the corre
sponding term of the other. To see this we have only to recall that every 
covariant to a quantic or quantic system may be regarded as an invariant of 
a new system containing the given quantic or system augmented by a linear 
quantic whose coefficients are y and — x.

Note A to Appendix 2.

Completion of the Theory of Principal Forms.

In the case of a derivative from a system of k parent quantics, it at first 
sight would seem that since reversion (the act of forming the second image, 
or process, as we may term it, of double reflexion) may be effected in regard 
to each system of coefficients separately, the method in the text ought to
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furnish in general k distinct systems of principal forms, but this is a mere 
mirage of the understanding which disappears as soon as the question is 
submitted to close examination. There is always an unique set of μ forms 
(μ being the multiplicity of the type) which revert unchanged (barring a 
numerical multiplier) whichever system of coefficients undergoes double 
reflexion. But a caution is necessary for the right interpretation of this 
statement. U, V, W... may be the principal forms in regard to one set 
of coefficients, ∖U + μV, W..., or ∖U^ + μV + vW..., where λ, μ, v are 
indeterminate, in regard to some other. In any such case we may still 
say that U, V, W... is the principal system in regard to both sets and so 
in general. We have an example of this if we take any covariant to a 
single quantic Q and translate it into an invariant of Q and a linear form L. 
If U, V, W... are principal forms in respect to Q, ∖U + μV + vW + ... (that is 
the absolutely general form of the type) may be easily shown to undergo 
reversion in respect to L unaltered. U, V, W... may consequently still be 
seen to be a principal form system in respect to Q and L, as each of these 
quantities is unaltered by reversion in respect either to Q or to L.

Suppose now a diadelphic system of which U, V are the principal forms 
qua one set of coefficients. Let R denote a reversion qua this set, R' qua 
some other set. LetRU= aU, RV= bF and suppose R'U= aU + βV. Then

R'RU=aaU+bβV and RR'U = aaU + bβV.
But by the nature of the process of reversion RR' = R'R; hence aβ = bβ. 

If a = b, every linear combination of U, V is a principal form qua R. Hence 
the principal form qua the R' set, is such for both sets. But if a is not equal 
to b, we must have /3 = 0. Hence U will be a principal form qua R' as well 
as R, and the same will be true of V. For if

R'V=yU+SV 
RR'V=ayU+bbV 
R'RV= R'bV=byU + bδV.

Therefore ay — by and y = 0. Thus U, V will each of them be common as 
principal forms to each set. I have gone through the same somewhat tedious 
process of proof for triadelphic forms and with the same result. The very 
beautiful conclusion follows that whatever the multiplicity of a type may 
be and whatever number of sets of coefficients it involves, there is always 
a single system of principal forms common to all the sets*.* Suppose there are k quantics in the parent system and that a derivative type μ is given. Each simple inversion of a pair of permutable indices (f, j) will give rise to a distinct principal equation; there will therefore be k such equations. Let p be a root of one of these, σ a root of any other. Then a principal form may be expressed as a linear function of any μ independent special forms connected by coefficients which are rational integer functions of ρ. Hence σ may be found as a rational function of ρ; but in like manner p may be found as a rational function of σ. Hence p, σ must be related by an equation of the form

ALpo" -j- 1jp -}- (J<τ 4~ D — 0,
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Note B to Appendix 2.

Additional Illustrations of the Law of Reciprocity.

Acetic aldehyde contains two atoms of carbon, one of oxygen and four 
of hydrogen* *. It thus corresponds to the quartic covariant of a quadratic 
and quartic, linear and quadratic in respect to the coefficients of the first and 
second respectively; such a form exists algebraically {Higher Algebra, third 
edition, p. 200) and may easily be proved to be monadelphic. Let us treat 
it as an invariant: if we were to take for its graph a triangle of which G, C, 0 
were the apices and attach two atoms of hydrogen to each G, the permutation- 
sum of the product of the differences of the connected letters is zero; this 
then is a pseudograph. A true graph of it is given by the figure

H∙C∙0∙H

HG∙H
where each single dot between two letters means a single bond and the two 
dots between the upper and lowτer C’s stand for a pair of bonds between 
them. This belongs to the invariantive type [4, 2; 2, 1; 1,4: 0], the 
complete reciprocal to which is [2,4; 1, 2 ; 4, 1 : 0]. The constitution of 
the latter in terms of the roots is found from the above graph by writing 
0 for G, G for H and H for 0 and is accordingly

X (0 - Of {0 -G)(0- O') (O' - C") (O' -H)(H- C), 
where the factor (0 — Of may be put outside the sign of summation. We 
may therefore take for its graph a detached molecule of oxygen + a molecule 
of formic acid, which latter contains two of oxygen, one of carbon and two 
of hydrogen

H∙G∙0∙H

0

and thus we see that all the k principal equations are homographically related, that is, that each may be obtained from any other by a substitution of the form
Cσ + D 

p~Aσ + B'In a word, the multiplicity μ (whatever the diversity k) determines the number of principal forms; and the lc sets of principal multipliers are given by fc algebraical equations of the μth degree, homographically transformable into one another.* I originally took chloral as the subject of this investigation, being interested in examining its algebraical constitution in consequence of having had personal experience of its use as an escharotic. But for greater simplicity I have substituted acetic-aldehyde of which chloral is a third emanant, three hydrogen atoms of the former being replaced by three of chlorine in the latter.
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will be a graph of it, from which, turning 0 into C, H into 0 and C into H 
we obtain

2 (C - Of (C" - H) (C'" - O') (C," -H){H- 0) 
as the value, in terms of its roots, of the algebraical equivalent to acetic 
aldehyde. The graph for formic acid, it may be noticed, exists algebraically 
{Higher Algebra, p. 300).

Instead of the dissociated molecules of oxygen and formic acid, we may 
exhibit them combined in the graph

C-O-O-O-II

0
which will give another form to the value of the reciprocal in question, namely 

Σ {C - H)i {H -0){H- G') (C, - C") {G" - G,") {G"' - 0)

which, not being zero and the type being monadelphic*, must be in a pure 
numerical ratio to the sum above written.

Chemistry has the same quickening and suggestive influence upon the 
algebraist as a visit to the Royal Academy, or the old masters may be supposed 
to have on a Browning or a Tennyson. Indeed it seems to me that an exact 
homology exists between painting and poetry on the one hand and modern 
chemistry and modern algebra on the other. In poetry and algebra we have 
the pure idea elaborated and expressed through the vehicle of language, in 
painting and chemistry the idea enveloped in matter, depending in part on 
manual processes and the resources of art for its due manifestation.

A peculiar case might possibly arise in applying the theory of principal 
forms to a self-reciprocal type [w: i, i∖ which it is proper to mention. For 
greater simplicity suppose the type to be diadelphic and let A∕, H be forms 
of the type which satisfy the equations

IM=pM, IN = p,N-* As an exercise the reader may satisfy himself that this type is monadelphic by the direct application of the rule for finding the multiplicity. It corresponds to a quadratic covariant of the type [2, 4 ; 4, 1 : 2], which is the same (introducing the weight —------------------in lieu of thedegree) as the type [5 : 2, 4 ; 4, 1] and has the same multiplicity μ by the law of reciprocity as the type [5: 4, 2; 4, 1], namely, the difference between the number of modes of composing 5 and of composing 4 with two of the numbers 0, 1, 2, 3, 4 and with one of a distinct set of the same numbers. The arrangements for the weight 5 will be4. 1: 0, 4. 0: 1, 3. 2: 0, 3. 1: 1, 3. 0: 2, 2. 2: 1, 2. 1: 2, 2. 0: 3, 1. 1: 3, 1. 0: 4, and for the weight 4,4. 0: 0, 3. 1: 0, 3. 0: 1, 2. 2: 0, 2. 1: 1, 2. 0: 2, 1. 1: 2, 1. 0: 3, 0. 0: 4.The numbers of the combinations in the two sets of arrangements are respectively 10 and 9. Hence p,=10-9-1, or the type is monadelphic. The same result of course follows from the known fundamental scale for a quadro-biquadratic system.
www.rcin.org.pl



24] the New Atomic Theory, etc. 191

the M and N have tacitly been defined to be the principal forms for such a 
type. Now in general this definition merges into and is coincident with the 
definition of principal forms for the general case, namely, that I2M and I2N 
must be multiples of M and N and the latter condition might be substituted 
for the former. But this is not always true, for if p + p, = 0, we shall have

I2M=p2M, I2N = p2N, 
and consequently, I2 (M + λAr) = p2 (M + λJV^),
so that if we were to follow the general definition the principal forms might 
become indeterminate, whereas by following the definition special to the self- 
reciprocal case they are determinate. Thus for example, suppose that P, Q, 
two particular forms of the type, satisfy the equations

IP = pQ, IQ = σP; 
the principal forms will then be

√(σ)P + √(p)Q and √(σ) P - √(p) Q,
and the two principal multipliers become √(pσ) and — √(pσ), so that the 
principal forms according to the general definition would be indeterminate, 
but according to the definition proper to self-reciprocal forms strictly 
determinate.

Let us, as a final example of self-reciprocal type, consider the type 
[10: 5, 5] which is the same as [5, 5: 5] and corresponds to the covariant 
of the fifth order in the coefficients and of the fifth degree in the variables 
to a quintic. This is diadelphic, as may be found by consulting the table of 
irreducible forms for the quintic, which will show that it can arise only from 
the multiplication of the parent quantic itself by its quartinvariant or from 
that of the quadratic quadricovariant by the cubic cubo-covariant or from a 
linear combination of the two products. But without this, the same conclusion 
may be arrived at by direct calculation of the value of (10: 5, δ) — (9: 5, 5) 
and the multiplicity will be found to be 18 — 16, or 2 as premised. Let us 
take as our special forms,

P = (ae — 4bd + 3c2) (ace + 2bcd — ad2 — c3 — b2e),
Q = a (a?/2 — Phιbef+ 4acdf+ 16ace2 — 12ad2e + lβδ2i∕∕ + 9δ2e2 — 12bc2f

— ΙQbcde + 486cZ3 + 48c⅛ — 32c2cZ2),

where — is the quartinvariant J given by Salmon, p. 207 (third edition), CL
being in fact the discriminant of the quadricovariant whose root-differentiant 
is ae — 4bd + 3c2. Call α, β, γ, δ, e the five roots of the quintic and make 
α=l. Q contains the term f2 which is the image of α5∕35 which can only 
arise from combinations of the coefficients into which d, e, f none of them 
enter. But all the terms of Q contain d, e, or f, moreover P has no term 
containing ∕2, therefore JQ does not contain Q but is simply a multiple of P. 
Again ce2, which enters into P, is the image of combinations of the form
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α2∕3474, and the only term in Q which can give rise to such combinations is
- 32c2d2, or

-^4(S^)2(∑α∕37X

and each such combination will have unity for its coefficient and their number 
is 30. Hence

τ(∖ _ _ θθ ∙ 32 p __ p 
⅛ 10000 125

Again, Q contains — 10δe∕, and bef is the image of such root-combinations as 
a5βi<y (60 in number) the only terms in P capable of producing which are 

106c3cZ and — 3c5 or Xot (∑α∕3)3 2αy3γ - (∑α∕3)5. And bef does

not appear in P, hence one part of IP will be

V-Aoooo + ιooooooJ or “ 10000
Again, ce2 is the image of such combinations as α4∕34γ2 (30 in number) and the
only terms in P giving rise to such are — 3c5 — 3b2cd2 + 10δc3d — 3c2d2; — 3c5

3 3 20 30
is - 1θ0000 (∑α∕3)e and will give rise to - γθθθ00 ce2 in IP ; - 3b2cd2 is

ο 2 8 80
- 25θ-j-θ(Xα)2(∑α∕3)(Sα∕37)2 and win givθ risθ to ~ 25000 in 1P’ lθδc^
is rzLxL· ∑α (∑αβ)3 Σαβ7 and will give rise to -÷⅛,j√θ ce2 in IP; -3c2d2 is 50000 x o o0000

3 3 30
- pjθQθ (faβ^)2 (faβy)2 and will give rise to - 1"θθθθ ce2 in IP. Hence the

total coefficient of ce2 in IP is
9 12 21 9 _ -90 - 96 + 210- 45 _ 21

“ 500 625 + 500 1000 “ 5000 “ 5000 ’

and consequently, since P contains the term ce2 and Q the term 16ce2, if

ip = ip-10000«·
, 3.16 _ _ 21 3
ΰ 10000 5000’ sθ 5000’

and therefore IP = ~θθ P - 1 ιnζil ft

and thus the equation for finding the principal multipliers ρ is
3 _ 3 

5000 p, 10000
= 0,

12
125 ’ p,

λ f _ 3σ I 2 - σ> - 1 _ n’ 1 p 10000 ’ I - 320, — σ θ'
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Thus σ2 — 2σ — 320 = 0, the roots of which are irrational. I have thought 
it advisable to set out the work in this example with some explicitness in 
order to remove an impression that might otherwise arise from the examples 
which precede, that the principal multipliers and consequently the principal 
forms, for self-reciprocal types, necessarily contain only rational numbers.

The work is very much longer for the case of non-self-reciprocal types 
The simplest example of such that presents itself to my mind is that of the 
sextinvariant of a quartic and the quartinvariant of a sextic, for either of 
which the type is diadelphic. The discussion of this case forms the subject 
of the annexed Note, for all the calculations of which I am indebted to the 
labour and skill of Mr F. Franklin, Fellow of Johns Hopkins University. For 
the sake of brevity the steps of the work have been suppressed and only the 
final results set out.

Note C to Appendix 2.

On the Principal Forms of the General Sextinvariant to a Quartic and 
Quartinvariant to a Sextic.

Let
Z = (αe-46d + 3c2)3 = Σ (α - ∕3)2 (y - δ)2 ∖ 

a, b, c 2 = (ace + 2bcd — ad2 — b2e — c3)2

b' Ï d =Γ⅛∑(α-W(7-8),(≈-7)(-8-8)ι-
c, d, e Lz , 0 J

P ≈= (a# — 6δ∕+15ce — 10d2)2 = - 3-75 2 (α - βf (y - δ)2 (e - <∕>)2 ,

a, b, c, d ( aceg — acf2 — ad2g + 2adef
∩* b, c, d, e J — ae3 — b2eg + b2f2 + 2bcdg

c, d, e, f I — 2bcef- 2bd2f + 2bde2 — c?g
d, e, f, g ∖ + 2c2df + c2e2 — ⅛cd2e + di

=2<⅛T5^∙2 <a - (y - s>4 <e 7 ≠)4 - 2S7‰< 2 (“ - <v - δ>a <e -

* M. Faà de Bruno, in the tables at the end of his Théorie des Formes Binaires, designates Q and Σ (α - ∕3)4 (7 - δ)4 (e - φ)i by the same symbol J4 ; a misleading circumstance which gave rise m this instance, and might in others to a large amount of useless labour. As can easily be seen from the above, the true value of Σ (α - ∕3)4 (7 - δ)4 (e - ≠)4 is
120 (71P + 900 Q) = 120 (71a2g2 - 852abfg + S030aceg - 900b2eg - 2320ad2g + 1800bcdg - Q00cig 

- 900ac∕2 + 3456δ2∕2+ 1800ade∕- 14580δce∕+ 6720δd2∕+ 1800c2d∕- 900ae3+ 1800Me2 
+ 16875c2e2 - 24000cd2e + 8000d4).It should also be observed that in the expression for Q (the catalecticant) given in the same table, the signs of the terms -2bd2f+2bde2 have been interchanged.

s in. 13
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ττ P~θQ nr P-33QThen IL = , IM =---- — ,

rn Z + 2J∕ τn VL-1A2M
77 24∙δ ’ 26∙32∙δ3 ’

7614Z + 23868J∕ 201P +216271/
72y~ 211∙36∙53 ’ 1' 211∙3β∙δ3 t*

In order that ∖L + μM shall be a principal form we must have 
(7614 - 2n ∙ 36 ∙ δ3p) λ + 201∕z, = 0,

23868λ + (2162 - 2π ∙ 36 ∙ δ3p) μ = 0,
7614 - 2li ∙ 36 ∙ δ>, 201 _

23868 , 2162 — 2u ∙ 3β ∙ δ3p “ ’

or, putting σ — 28 ∙ 36 ∙ δ3p,
σ2 - 1222σ + 1822δ0 = 0,

where it may perhaps be worth noticing that the last term is 2 ∙ 36 ∙ δ3 and 
the coefficient of the second term 2 ∙ 13 ∙ 47. We obtain from this equation

611 ± √(191071)* 
p ^" 28 ■ 36 ∙ δ3

The principal forms in L and 71/ will then be found to be

201Z + {- 2726 + 8 √(191071)} M, 201L + {- 2726 - 8 √(191071)} M; 

and those in P and Q
101P + {- 11436 + 24 √(191O71)} Q, 101P + {- 11436 - 24 √(191071)} Q.
Or, if we please, the principal forms in the two cases may be taken as the 
factors of

20lZ2 - δ4δ2ZΛf - 238687l∕2 and 101P2 - 22872PQ + 20δ200Q2
respectivelyf. The question, what reduced quadratic forms can appear in 
the theory of diadelphic types, may one day or another become the subject 
of à priori investigation and form a new connecting link between the Calculus 
of Invariants and the Theory of Numbers. The linear functions of L and M 
and of P and Q, corresponding to the reduced forms of the above expressions 
n∣ight perhaps be termed the principal rational forms of the two types 
respectively.* The number under the radical sign is, I believe, a prime number, but I have not within reach the tables necessary for verifying this. Professor Newcomb, by an exceedingly ingenious combination of a table of squares with Crelle’s table of multipliers (a real stroke of genius), was able to ascertain by an inspection (the work of a few minutes) that 191071, if not a prime number, must contain a factor not greater than a certain moderate sized integer (137 if nιy memory serves me right) which reduces the trials necessary to be made to a very small compass.t These are reducible to(201, 68, - 60800JL', M)2, (101, -23, - 1089667JP,, Q)2, where L'=L-14M, p'=P-H3Q-

www.rcin.org.pl



24] the New Atomic Theory, etc. 195

It may be well to notice that if IiU = pU, then 72 ∙ IU = I ∙ I2U = pIU, 
and consequently the principal forms for two reciprocal types are images 
respectively of one another, and the principal multipliers are the same for 
the two systems.

Note D to Appendix 2.

On the Probable Relation of the Skew Invariants of Binary Quintics and 
Sextics to one another and to the Skew Invariant of the same Weight 
of the Binary Nonie.

The law of reciprocity extended, as it has already been in these pages, 
to systems of quantics, admits of an additional important generalization.

We know that Regnault’s law of substitution holds good for algebraical 
forms, and in fact when transferred to the algebraical sphere becomes identical 
with the method which I believe I was the first to employ (now familiar to 
algebraists through the use made of it by Professors Clebsch and Gordan) 
to which I gave the name of emanation (Faa de Bruno, p. 198).

The principle, stated in chemico-algebraical language, is that in algebraical 
compounds any number of atoms of a given valence may be replaced by the 
same number of new equi-valent atoms. [In algebra it is essential to lay 
a peculiar stress on the word new; for if the substituted atoms should be 
homonymous with the remaining atoms, there is a possibility of the trans
formed compound reducing to zero. As for instance in the algebraical 
compound ab' — a'b (the representative, say, of potassic iodide), if the atom 
of potassium should be changed into another of iodine (or vice versa), the 
compound, viewed algebraically, would disappear.)

The law of reciprocity as I have previously given it, translated into 
chemico-algebraical language amounts to saying that the total number of 
atoms of one kind (say rn zι-valent of one kind) may be replaced by n 
w-valent atoms of another kind ; but by applying the rule of substitution 
first and then that of reciprocity we may see that the condition of totality 
may be done away with and the proposition reduced to the simplified form 
that in any algebraical compound m n-valent atoms may be replaced by n 
m-valent ones. Whether this law has any application in the chemical sphere, 
I must leave to chemists to determine.

In addition to the well known fact that a qυintic possesses an invariant 
of the 18th order, and a sextic one of the 13th order, having obtained a 
complete scheme of the irreducible invariants for the binary quantic of the 
10th degree, I was put in possession of the neλv fact that this last form

13—2

www.rcin.org.pl



196 On an Application of [24

possesses an invariant of the 9th order and consequently that the nonie 
possesses an invariant of the 10th order*.

Now the weight of each of these skew invariants is the same number 45, 
and I was thus led to suspect that they coexisted in virtue of some secret 
connexion. What that connexion is I think that I am now (very unexpectedly) 
in a position to explain and to show (with a high degree of probability) how 
the values of these three invariants may be actually deduced and calculated 
from one another. This follows as a consequence of the combined laws of 
reciprocity and substitution otherwise called emanation. For suppose we 
have an invariant of a quantic of the -mth degree, of the order np in the 
coefficients. By the principle of emanation we may transform this into an 
invariant to a system of n quantics, each of the degree m and of the order 
p in each set of coefficients, and by the generalized law of reciprocity this 
may be again transformed into an invariant to a system of n quantics, each 
of degree p and of the order m in each set of coefficients. If now finally these 
n quantics be all made identical with one another, then the transformed 
invariant, provided it does not vanish, becomes an invariant of the order mn 
to a single quantic of the degree p, and accordingly we may pass in certain* I have calculated, with the kind assistance of Mr Halsted, the expression in its canonical form of the generating function to a binary quantic of the 10th degree. The coefficient of tm in this fraction developed, represents the number of parameters in the general invariant of the with order of the given decadic. Its denominator is(1 - i2) (1 _ t4) (1 -t6)2 (1 -t8) (1 - i9) (1 -t1θ) (1 -t14) and its numerator is the rational integer function1 + 2i6+... + 2t42+ 148,the successive coefficients being1, 0, 0, 0, 0, 0, 2, 0, 4, 2, 7, 6, 15, 13, 16, 25, 22, 31, 34, 40, 41, 47, 46, 49, 48, 49, 46, 47, 41, 40, 34, 31, 22, 25, 16, 13, 15, 6, 7, 2, 4, 0, 2, 0, 0, 0, 0, 0, 1,showing that the primary fundamental invariants are of the orders 2, 4, 6, 6, 8, 9, 10, 14, and that (by the law of “ Tamisage ” anglice siftage) the secondary (or as they might be better termed the auxiliary) ones are of the orders 6, 8, 9, 10, 11, 12, 13, 14, 15, 17 taken 2, 4, 2, 7, 6, 12, 13, 18, 21, 11 times respectively. Any other invariant of the decadic can be represented as a linear function of a limited number of combinations of the secondaries, having for its coefficients some combination of powers of the primaries.Suppose that the same numerical order occurs among the primaries and secondaries, as for example 6, which occurs twice among the former and twice among the latter. This will indicate in the first place that, calling A and B the quadric and quartic invariants, the general sextic one will be of the form

λA3 + μA B + v1Q1 + v2Q2 + v3Q3 + viQ4and that any two independent special values of J'ιQ1 + *'2Q2 + ,'3Q3 + ,'4Q4 may be taken as primaries and any other independent two as secondaries, and so in general; I mention this to prevent the false suggestion, which might otherwise arise, that the secondaries and primaries are different in internal constitution. This remark receives a beautiful illustration in an algebraical theory (recently developed by me) of chemical isomerism, which gives rise to a generating function precisely similar in character to that applicable to in- and co-variants and is subject to a similar law of interpretation, graphs taking the place of algebraical forms, and atomicules and the numbers of grouped atoms, of degrees and orders.
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cases from the type [m, np: 0] to the type ∖p, mn: 0]. So in all probability 
we may pass from the type [5, 18: 0] to the type [6, 15: 0] and to the type 
[9, 10: 0]. As there is only one invariant of the type [6, 15 : 0], or of the 
type [9, 10: 0], it follows that, if the passage from type to type is real and 
not nugatory, the three invariants of these second types may be deduced, 
any one from any other, by the explicit processes above described. There 
1s nothing at all doubtful in the course of the transformation except what 
arises from the possibility that in the last step of it the effect of rendering 
identical the different sets of coefficients—that is of finding the counter- 
emanant, so to say, of the invariant containing n sets of variables—may be 
to render the whole expression null. This of course would happen if we 
attempted to pass from the type [5, 18: 0] to the type [3, 30: 0], or to the 
type [2, 45: 0], which we know are void of forms. But there is no reason 
why we should expect this to happen when we pass from the given type 
to other types known to contain one or more forms. It would require no 
impracticable amount of labour to actually verify the fact of the transformation 
being effectual between the skew invariants of the sextic and quintic forms. 
The survival of a single known term in either of them, in the process of 
attempting to deduce it from the other, would be sufficient to establish the 
effectualness of the method, and that it will be found to be effectual, for 
reasons too long to dwell upon here, I scarcely entertain a doubt. The 
process to be employed may be summarily comprehended under the three 
rubrics of diversification, reciprocation and unification. The first is one of 
differentiation alone; the second involves the expansion of functions of the 
coefficients of an equation in terms of roots and the substitution of ηι for αl; 
the third consists merely in replacing distinct sets of letters (77) by a single 
set. In practice the two latter processes would be of course combined into 
one. It will be instructive to consider some simple example of this method 
of transformation of types.

Let us take (etc — δ2)3 regarded as belonging to the type [2, 6: 0]. 
I shall show how to pass from this to a form of the type [3, 4: 0]. Taking 
a third emanant of the given form, that is the result of the operation upon 

A °f j~2 3 ^a'^a + ^δ)3> we obtain

(tic' + ac — 25δ')3 + 2 (αc — δ2) (α'c' — b,'2) (ac + α'c — 266').

Let us call a, β, cl, β' the roots of the two forms [1, b, c], [1, b', c'] respectively; 
then the emanant last found (multiplied by 8) becomes

(2aβ + 2α'∕3' - aa' - aβ' - βa' - ββ,)

{(2a∕3 + 2a'∕3' - aa' - aβ' - βa' - ββj + (a - ∕3)2 ∙ (a' - β')*∖.
After performing all the multiplications and introducing the zero powers
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of ot, d, β, β' in such terms as do not contain one or more of these letters, 
all that remains is to substitute

αθ = α,° = β0 = β'0 = a,. 
a = d — β = β' = — b,
a.2 = α'2 = β2 = β'2 == c, 
a3 = a'3 = β3 = β'3 = — d,

the letters a, b, c, d for greater simplicity being used instead of e0, e1, e2, e3, 
that is ‰ — η1, η2, — η3. The result will not vanish. To show this consider 
the group of terms which change into a2d2. These are the binary combinations 
of α3, a'3, β3, β'3. 2aβ and 2dβ' in the first factor give rise to 8a3β3, 8d3β'3 and 
the remaining four terms to — 2α3α'3, — 2a3β'3, — 2β3d3, — 2β3β'3 respectively. 
Hence the term a2d2 will survive with the multiplier 8 + 8 — 2 — 2 — 2 — 2> 
that is, 8. So again the only terms introducing ac3 will be the ternary 
combinations of a2, a'2, β2, β'2. 2aβ and 2dβ' will be found to produce as 
many positive as negative terms of this kind, but — ad will produce 
4>a2d2β2 + ⅛a2β2β'2, giving rise to 8ac3, and as the same will be true for 
— aβ', — βd, — ββ', we see that 32αc3 will emerge in the result. Hence the 
given invariant becomes converted into

(a2d2 + 4>ac3 + ...),
that is the discriminant of the cubic whose type is [3, 4:0] as was to be 
shown.

I think it is little doubtful that wherever there exist forms contained 
under each of two types, the product of whose rank and order is identical, 
we may pass from the one to the other by means of the combined processes 
of emanation and reciprocation, as in the foregoing example*. [The case is 
much the same as with transvection. That process may produce a null form, 
but any actually existent form may be produced by it and exhibited as a 
transvect.] To pass from Hermite’s to Cayley’s skew form, we must first by 
emanation change [5, 18: 0] into [5, 6; 5, 6; 5, 6: 0] and then this latter 
into [6, 15: 0]; by means of the process last exemplified.* Call

(b2 - ac)3 = A, a2d2 + 4ac3+...=B, a'δa + b'δb + c'δc = E, aδa∣ + bδb> + cδc' + dδd' = H~1.Then it follows from the text that
B = ⅛H~2IE3A,where it may be observed that E3A is diadelphic, for it will be proved that (6: 3, 2; 3, 2) = lθ> and (5 : 3, 2 ; 3, 2) =14, so that any form whatever coming under the same type as E3A is a linear function of (ac,+ a,c-2bb,)3 and (ac, + a'c - 2bb') (ac-b2) (a'c'-b'2), say L and M (whose difference, L- M, is ⅛E3A), and operated on by H~2I would produce a multiple of B (whose type is monadelphic) with the sole exception of ∖L - 2μM, the result of operating upon which would be zero. Similarly we may see that in any given case the chances are infinitely in favour of the expectation that the process will not be nugatory by which it has been shown we may pass from one known type [m, np: 0] to another known one [p, nm: 0].
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APPENDIX 3.

On Clebsch’s Theory of the “Einfachstes System assocπrter Formen” 
(vide Bindren Formen, p. 330) and its Generalization.

Let (a, b, c, ... k, t§x, y)n be any binary quantic. Let the provector 
symbol (Zδ⅛ + 2∕⅛ + 3⅛δι,+ ... ) be denoted by il, and the re vector symbol 
(αδ6 + 2δδc + 3cδti + ...) by U. Let ‰. represent the quadrinvariant of the 
above form when n = 2i. Now let Ω and U be made to comprise the 2i + 1 
letters a, b, c, ... I, m; then α∩Q,i- 2δ‰* will be nullified by the operation 
of U and will therefore be a cubinvariant for the case of n = 2i + 1, which we 
may call ‰+1. Also let Q0 = a; then Qo, Q1, Q2, ... Qμ will be differentiants 
to all binary quantics of degree equal to or greater than μ. The above I call 
basic differentiants. Their distinguishing characteristic is that the highest 
letter in each of them enters into it only in the first degree multiplied by 
a or by α2 and by no other letter. Now let D be any given differentiant of 
degree μ and for the moment make a = 1. Then it is obvious that D may 
be expressed—by means of successive substitutions of its ultimate, its 
penultimate, its antepenultimate, etc. letters up to c inclusive, in terms of 
the corresponding basic differentiants and the anterior letters,—as a rational 
integer function of Q1, Q2, ... Qμ, b; or, restoring to a its general value, will 
be a rational integer function of Qo, Q1, Q2, ... Qμ, b, say F, divided by a 
power of a. But I say that b will have disappeared in the process. For 
UD=0∙, and GQθ = 0, UQ1 = 0 ... UQμ = 0. Hence, regarding each Q as 

a constant, F = 0, or F does not contain b.

Again, suppose we take a system of two quantics and let Qo, Q1, ... Qμ be 
the basic differentiants of the one, Qo', Q1', ... Q∕ of the other, and let D be 
any differentiant of the system. Then by the same method as before we 
shall find

d = F(Q0,Q2... Qμ∙.Q0',Q2 ... Qv'∙.b,b,) 
n am ∙ a'n

Also each Q will be nullified by U, and each Q' by U,, and therefore each Q 
and Q' as well as D will be nullified by the operator U + U'. Hence we 
shall have

(αs>+α'⅛)i,=0'

or F = φ (ab, — ab),* For by a well-known formula if D is a differentiant in x of the type [w: i,j],
UilD-(ij -2w) D.Consequently when Q2i is regarded as a differentiant in x of the type [2i: 2i + l, 2]DΩ‰=‰ also O‰=0 and Ub = a.

H(αΩ‰-2δ‰)=0.
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φ being a rational integral form of function. In like manner for a system of 
three quantics, regarding the several sets of its basic differentiants as con
stant, we shall have

F = φ (ab' — ab : ac, — ac : be' — b'c), 
where φ is a rational integral form of function, or

F — ψ(ab' — a'b : ac — ac : a, a'),
and so in general. Hence, remembering that any relation between differen- 
tiants must continue to subsist between the covariants of which they are the 
roots, and now, understanding by base forms the complete covariants of which 
the basic coefficients are the roots, we may pass from differentiants to in- or 
co-variants and obtain the following theorems.

(1) For a single quantic of degree i, any in- or co-variant is expressible 
by a fraction whose numerator is a rational integer function of its i base 
forms and whose denominator is a power of the quantic. This is Clebsch’s 
theorem.

(2) For a system of quantics, any in- or co-variant is expressible by a 
fraction whose numerator is a rational integer function of the separate base 
forms of its several quantics and of any complete system of (μ,-1) inde
pendent Jacobians of the quantics taken in pairs, and whose denominator is a 
product of powers of the quantics of the system.

Also it will be observed that these theorems will continue to subsist when 
the base forms have for their roots in lieu of the basic differentiants, as above 
defined, any ascending scale of differentiants in which the letters enter 
successively one at a time and each letter on its first appearance figures only 
in the first degree and combined exclusively with powers of a.

On the theory of basic forms may be grounded a method for obtaining, 
in propria persona, the fundamental in- and co-variants to a quantic or system 
of quantics in regular succession, by a process which continues so long as 
there are many more to be elicited and comes to a self-manifesting end as 
soon as the last irreducible form has been obtained, like an air pump that 
refuses to act as soon as the exhaustion has become complete. In a word, the 
cataloguing of the irreducible in- or co-variants is transferred to the province 
of, and becomes a problem in, ordinary algebra.

I have previously observed that any expression which represents a differ- 
entiant in regard to a quantic of a given degree necessarily does the same for 
quantics of all higher degrees. And I may take this occasion to remark, or 
to repeat, that a differentiant may be irreducible in respect to the quantic of 
minimum degree to which it can be referred, and yet not so for quantics of 
higher degrees. Thus, if we take the expression

α2d2 + 4αc3 + 4c½3 — 3δ2c2 — 6abcd,
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this referred to a cubic is irreducible (as is well known), but regarded as a 
differentiant of a quartic or higher degreed quantic, is reducible, being in 
fact identical with

(αc — δ2) (αe — 4>bd + 3c2) — a
a, b, c
b, c, d
c, d, e

Let us suppose a linear function yu — xv combined with a quantic into a 
system. Then it follows as a corollary from (2) at [p. 200], that if the quantic 
belongs to the form (a, b, c, ... l^u,v)i, or say more simply to the form 
[a, b, c, ... Z] any covariant of such quantic multiplied by a suitable power 
of a will be a function of y, ax + by and of the differentiants, or in a word, 
every covariant of the quantic expressed as a function of x and ax + by will 
have no coefficients but what are differentiants, or to use Professor Cayley’s 
term, semi-invariants. Thus, for example, the Hessian of the cubic 
(a, b, c, dtyx, y)3 may be put under the form

~21 (αc - ^*2) (ax ÷ ^,y)2 + ~ + 2Z>3) (ax + by) y + (ac — b2)2 y2 j∙.

So it will be found that the Hessian of the quintic, namely
(ae — 4>bc + 3c2) x2 + (af— '3be + 2cd) xy + (bf— ⅛cd + 3cZ2) y2

on writing ax + by = X, becomes

— ∣(αe — 4>bc + 3c2) X2 + (off— babe + 2acd + 8b2d — 6δc2) Xy

— (ac — b2) (ae — ⅛bd + 3c2) + 3α (ace + 2bcd — ad2 - b2e — c3) y21,

where all the coefficients are semi-invariants-in-Æ, the second coefficient being 
one of the basic differentiants and the latter part of the third coefficient, the 
catalecticant

a, b, c
b, c, d ,
c, d, e

and so more generally, it may be shown to follow from (2), that if there be 
any number of binary quantics

[α,0, c...], [a,b',c,,...], [a"ib",c", ...],
every covariant of such system, expressed as a function of y and of any one of 
the quantics

ax + by, o!x + b,y, ...
chosen at will, has differentiants-in√c exclusively for its coefficients.

It is easy to express the base-covariants in terms of the roots. Those of 
weight 2n and order 2 will be of the form

⅜F (a1, a2, as, ... a2f)(^ ^2n+1)", (·& — c⅛n+2)^ ∙∙∙
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where F may be expressed as
(®l (X2)2 (ft3 ~ il4)" ... (tt27ι-1 <¾ι)2,

OΓ, (ff1 tt2) (®2 G⅛) (fl⅛ ai) ... (tt2ii-1 ®2n) (®2n tl1),
or under a variety of other forms all equal to a numerical factor pres; for the 
type [2??,: 2n, 2] and the more general one [2zt: 2n + v, 2] are monadelphic. 
And again those of the weight 2n + 1 and order 3 may take, or at all events 
be replaced by, the form

S {(α1 - α2) (a2 -a3) ... (am-1 - a2n) (a2n - α1) (α1 - α2n+1) (x - α1) (x-a2)...
(x dzn+i) O' ¾n+a)3 O ^2n+s)3 ∙ ∙ ∙}∙

It is proper to notice that the type [2n + 1: 2n + 1 + v ; 3] is only monadel
phic so long as 2n + 1 is less than 9, so that we cannot, without an investiga
tion which might be tedious, determine whether the above representation 
coincides with the basic forms of the third order in the coefficients adopted 
in [p. 199J ; but such investigation would be a work of supererogation, for the 
only material character for any of the base-covariants in question to possess 
is, that its root dififerentiant-in-ic shall be not higher than of the third order 
in the coefficients and shall contain the element e2n+ι. Any formula having 
this property (which is enjoyed by the root function above given) is just as 
good as any other for the purposes of this theory*.

It will be seen to follow from the theorem I have given for differentiants 
from which Clebsch’s follows as an immediate consequence, that all the per
mutation-sums of any rational integer function of the differences of the roots 
of an algebraical equation of the nth degree are rational integer functions of 
(n —1) of them of the second and third order alternately; so, for example, 
all the coefficients in Lagrange’s equations to the squares of the differences of 
the roots of an algebraical equation in its ordinary form are rational integer* Writing the type under the form [2n + l: 2n+l + v, 3], the degree of the corresponding covariant in the variables is 2n+l + 3r, which is the degree in x of the symmetrical function assumed in the text; also each letter in this function occurs 3 times agreeing with the order 3 of the type, and the number of factors in the coefficient of the highest power of x is 2n +1, which is right for the weight. It is obvious also by inspection that the product a1. a2 ... a2n+1 will arise from each term of the assumed symbolical function affected always with the same sign, so that e2n+1 will occur (as required) in its expression in terms of the coefficients. Of course all the same conclusions will apply if in the formula

(«1 - a2)2 (a3 - at)2 ∙∙∙ (a2n-1 - ⅛)2

is substituted in lieu of
(αl ^^ a2) (a2 ~ a3) ∙ ∙∙ (a2n-l ~ a2n) (a2n ~ al),That the type to which Q2n+ι belongs is non-monadelphic from and after 2n + l = 9 is obvious from the fact that that type, when the degree of the parent quantic is made a minimum, is of the form [2n + l: 2zι+l, 3], the multiplicity of which is the same as that of [2zi+l: 3, 2∕t + l], or set out in full [2n + l: 3, 2n+l: 2w + l]; but cubics include covariants of orders and degrees 2: 2 and 3: 3 among their fundamental forms, and 9: 9 can be formed either by taking a triplication of 3: 3, or by combining 3: 3 with a triplication of 2:2, so that when 2n + 1 = 9 the type is diadelphic, and a fortiori, it is non-monadelphic for values of 2n +1 superior to 9.
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functions of (w—1) known quantities. Thus, for instance, the equation to 
the squares of the differences of a cubic equation will be

p3 + 18 (62 - αc) p2 + 81 (62 - αc)2 + 27Δ = 0, 
where the coefficients are given in terms of two differentiants (δ2 — αc) and Δ.

Throughout this paper the perspicuity of expression has been consider
ably marred by want of a complete nomenclature which the theory of graphs 
and types necessarily calls for and which I shall hereafter employ whenever 
I may have occasion to revert to the subject. It is as follows :

In the first place, w, the weight in respect to the selected variable, and j, 
the order in the coefficients, are terms well understood and need no change or 
further illustration ; i, the degree of the parent quantic, I shall hereafter call 
the rank of the type, ij — 2w which becomes the degree of a covariant got by 
expanding the ditferentiant of type [w: i,j] may be called the grade. The 
order and rank may be termed collectively the permutable indices.

When a ditferentiant is given algebraically its weight and order are 
given but not its rank; in addition to the weight and order a third number 
which may be called the range (and which I shall denote by a Greek e) is 
given, being the number less 1 of the letters which enter into it. The 
relation between rank and range is one of inequality. The former may be 
equal to, or greater than, but not less than the latter.

The multiplicity of the type to which a given ditferentiant belongs is a 
function of the weight, order and rank and is consequently not known until 
the rank is assigned. Thus, for example (αc — δ2)2, considered as having the 
lowest possible rank, namely 2 (the range} is monadelphic; its type is then 
[2: 2, 4], but if the rank 4 be assigned to it so that its type is [2: 4, 4], it 
becomes diadelphic. We have then, in general, 6 characters (not all indepen
dent) appertaining to a ditferentiant, namely, weight, rank, order, grade, range 
and multiplicity. The theory of types has never hitherto formed the subject 
of distinct contemplation, and that is why the necessity for the use of some of 
the above terms has not been previously felt. But it will have been observed 
that throughout the preceding memoir it has forced itself upon our notice, 
and in particular, that it is impossible to go to the bottom of the so-called 
law of reciprocity or that of the radical representation of forms without 
keeping in view the question of type and multiplicity.

I have also to remark that since the preceding matter was completed I 
have been surprised to learn that recent chemical research favours the notion 
of simple elements (hydrogen atoms in special) being distinguishable from 
each other in chemical composition. If this view is confirmed, the dis
crepancy, which I have pointed to, between the known conditions for the 
existence of algebraical graphs and the unknown natural laws which govern 
the production of chemical substances may become partially or wholly
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obliterated, so that, for example, the hydrogen molecule and the extended 
derivatives from marsh gas may exist in accordance with, and not in 
contradiction to, algebraical law, and thus it is possible to conceive that 
all the phenomena of chemistry and algebra may ultimately be shown to be 
identical.

Since the above matter was sent to press I have been led to study alge
braically what may be termed the direct problem of isomerism, that is to say 
the determination of the number of combinations subject to given conditions 
that can be formed between the constituents of groups each containing a 
given number of equivalent chemical atoms, the valences of the several 
groups being either independent or given linear functions of a certain 
number of independent parameters. In this problem the numbers of atoms 
are given and the valences left indeterminate. In the inverse problem the 
valences are given and the numbers left indeterminate.

The problem of the enumeration of the saturated hydro-carbons, investi
gated by Professor Cayley, is a simple example of the inverse problem. The 
direct problem admits of a uniform and unfailing method of solution by 
generating functions, the exposition of which may probably form the subject 
of an additional Appendix in the following number*. This method is* The principle employed in this method leads to the following theorem only a particular case of which comes into play in the general partition problem which covers the ground occupied by the allied invariantive and isomeric theories. Let there be given a product of a limited number of rational functions ofω1α*. m2°2 ... Mia<; M1af . up'... uia* ; etc., etc.,where all the indices are positive or negative integers, and let μ1, ∕x2, ...μi be given linear functions of y1, r2, ... vj (j being not greater than i), then it is always possible to find a limited product of rational functions ofrq^1. v∕2... vpj; vp .√<..√∕5 etc., etc.,where the indices are exclusively positive, such that the coefficient of v1v' .v22 ... vp, in their product developed according to ascending powers of v1, v2, ...vj-, shall be the same as the coefficient of u1μ^1u2fi*... up in the original product developed according to ascending powers of u1, u2, ... ui. Previous to the discovery of this principle the problem of isomerism, now completely solved potentially for the direct case, must have remained unattackable by any existing methods, such for example as were known to Euler, the inventor of the application of the method of generating functions to the theory of partitions. It renders supererogatory a large part of the methods devised by myself for the treatment of the problem of compound partitions contained in the printed notes of my lectures on Partitions, delivered at King’s College, London, in the year 1859t∙ As an example of the direct problem of isomerism, suppose that three atoms of the same valence j are to combine with e atoms of hydrogen which do not combine inter se; then the number of combinations which can be so formed is the coefficient of a^>xe in the development of the generating function

l + ax + a2x2 
(1 - a2) (1 - ax)2 (1 - ax3)

if the three atoms are all unlike, and of the generating function ____________________1___________________(1 - a2) (1 - ax) (1 - a2x2) (1 - αx3)
if they are all alike.

[+ Volume II of this Reprint, p. 119.]
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substantially the same as that which I have described* in general terms in 
the Comptes Rendus as applicable to the theory of ternary and other higher 
varieties of quantics but less difficult of application to the Isomeric Problem 
on account of the greater simplicity of the crude forms subject to reduction, 
which appear in it. Appendix 4 will contain the application of the theory of 
“ Associirter Formen” to the algebraical deduction of the irreducible forms of 
the quintic and certain other cases which but for the press of matter awaiting 
publication in the Journal would have, formed part (as announced) of the 
present Appendix.

As already stated in a previous footnote, the theory of irreducible forms 
reappears in the isomeric investigation, the general character of the reduced 
generating function to be interpreted in it being precisely the same as in the 
invariantive theory, which constitutes an additional and a closer and more 
real bond of connexion between the chemical and algebraical theories than 
any which I had in view when I commenced the subject of this memoir.

Note on the Ladenburg Carbon-Graph.

The reasoning by which I have + established, in the preceding number of the Journal, 
the validity of the Ladenburg graph (and the invalidity of the Kekulean one) as a repre
sentative of the root differentiant to a covariant of the 6th degree in the variables and of 
the 6th order in the coefficients to a quartic, is so peculiar and it may seem to some of my 
readers so far-fetched, that it appears highly desirable to confirm it by a direct demon
stration founded on the principle, that the permutation-sum of the product of the bonds in 
a valid graph interpreted as differences between the letters which they connect, shall not 
vanish. Previous to applying this principle to Ladenburg’s graph we must convert it into 
an invariant by attaching hydrogen atoms to the six apices. Let these apices be called 

a, b, c, d, e, f, and the hydrogen atoms a, β, y, δ, e, φ : then the permutation-sum under 
consideration is

Σ (α - δ) (α - c) (6 -c)(d-e) (d-f) (e -/)(«“ d~) (δ - e) (e -∕) (α -a'){b-β) (c - γ)
(d-δ)(β-e)(∕-φ)

where the 6 letters a, b, c, d, e, f are interpermutable, as are also the 6 letters 
α, β, y, δ, ∈, φ.

It may be well to observe at this point that if we struck off the hydrogen atoms and 
treated the graph as representing an invariant to a cubic form, the permutation-sum

Σ (α - δ) (α - c) (δ -c)(d- e) (d -f) (e -f~) (α - d) (d- c) (c -∕) 

would be found to vanish, as may easily be shown and as it ought to do, because there 

exists no invariant of the 6th order in the coefficients to a cubic form. Let a and d 
be interchanged in the term given under the sign of summation in the permutation-sum 

formed from the Ladenburg graph ; then the sum of this together with the original term 
becomes

(α-rf)(δ-e) (c-∕)(δ-c) (e-∕)(δ-∕3)(c-γ) (e-∈)(∕-φ)[* p. 100 above.] [t p. 155 above.]
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multiplied by

(αδ-<∕α) {a2-(δ + c) a + bc} {cP-(e+f')d+ef} - (d8-ad) {d2-(b+c~) d + bc}
{a2-(e+∕)a + e∕},

which last named multiplier will be found to contain the quantity (a3d2-a2d3) (a + 8). 
Again, in the multiplicand, let b and c be interchanged ; then, since

(δ - e) (c -∕) - (c- β) (δ -∕) = (ft -c) (e -∕), 

the sum of the original and permuted multiplicand will contain a term

(α — </)(& — c)2 (e -∕)2 be (e - ∈) (∕- φ), 

and accordingly the entire permutation-sum will contain the terms

(α + δ) (α - d) (a3d2 - a2d3) (b - c)2 (e -∕)2 δc∑ (e — e) (∕- φ).

The partial sum last written is

4e∕+4eφ-2 (e+∕)(e+φ).

Hence we may readily see that the total permutation-sum will contain inter alia a 
positive multiple of the combination aib3e3d2cfa and will not vanish, and consequently 
the graph is valid and not illusory ; I presume that the same method applied to Kekule’s 
graph regarded as a representation of the covariant to the type [9 : 4, 6 : 6], which 
is the same thing (except that the hydrogen atoms are suppressed) as the graph to the 
invariant [15 : 4, 6; 1, 6 : 0], would serve to show it to be illusory as previously inferred 
from other considerations.
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