14.

with the degree of the co-variant in the variat

CHEMISTRY AND ALGEBRA.

[Nature, XVII. (1877-1878), pp. 284, 309.]

IT may not be wholly without interest to some of the readers of Nature to be made acquainted with an analogy that has recently forcibly impressed me between branches of human knowledge apparently so dissimilar as modern chemistry and modern algebra. I have found it of great utility in explaining to non-mathematicians the nature of the investigations which algebraists are at present busily at work upon to make out the so-called Grundformen or irreducible forms appurtenant to binary quantics taken singly or in systems, and I have also found that it may be used as an instrument of investigation in purely algebraical inquiries. So much is this the case that I hardly ever take up Dr Frankland's exceedingly valuable Notes for Chemical Students, which are drawn up exclusively on the basis of Kekulé's exquisite conception of valence, without deriving suggestions for new researches in the theory of algebraical forms. I will confine myself to a statement of the grounds of the analogy, referring those who may feel an interest in the subject and are desirous for further information about it to a memoir which I have written upon it for the new American Journal of Pure and Applied Mathematics, the first number of which will appear early in February.

The analogy is between atoms and binary quantics exclusively.

I compare every binary quantic with a chemical atom. The number of factors (or rays, as they may be regarded by an obvious geometrical interpretation) in a binary quantic is the analogue of the number of *bonds*, or the *valence*, as it is termed, of a chemical atom.

Thus a linear form may be regarded as a monad atom, a quadratic form as a duad, a cubic form as a triad, and so on.

An invariant of a system of binary quantics of various degrees is the analogue of a chemical substance composed of atoms of corresponding valences.

www.rcin.org.pl

The order of such invariant in each set of coefficients is the same as the number of atoms of the corresponding *valence* in the chemical compound.

A co-variant is the analogue of an (organic or inorganic) compound radical. The orders in the several sets of coefficients corresponding, as for invariants, to the respective valences of the atoms, the free valence of the compound radical then becomes identical with the degree of the co-variant in the variables.

The weight of an invariant is identical with the number of the bonds in the chemicograph of the analogous chemical substance, and the weight of the leading term (or basic differentiant) of a co-variant is the same as the number of bonds in the chemicograph of the analogous compound radical. Every invariant and covariant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph. But not every chemicograph is an algebraical one. I show that by an application of the algebraical law of reciprocity every algebraical graph of a given invariant will represent the constitution in terms of the roots of a quantic of a type reciprocal to that of the given invariant of an invariant belonging to that reciprocal type. I give a rule for the geometrical multiplication of graphs, that is, for constructing a graph to the product of in- or co-variants whose separate graphs are given. I have also ventured upon a hypothesis which, whilst in nowise interfering with existing chemicographical constructions, accounts for the seeming anomaly of the isolated existence as "monad molecules" of mercury, zinc, and arsenic-and gives a rational explanation of the "mutual saturation of bonds."

I have thus been led to see more clearly than ever I did before the existence of a common ground to the new mechanism, the new chemistry, and the new algebra. Underlying all these is the theory of pure colligation, which applies undistinguishably to the three great theories, all initiated within the last third of a century or thereabouts by Eisenstein, Kekulé, and Peaucellier.