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A thermodynamic derivation of non-history dependent constitutive 
relations for elastic, viscoelastic, fluid, and perfectly plastic bodies 

D. G. B. EDELEN (BETHLEHEM, PENNSYLVANIA) 

CoNSTITUTIVE relations based upon a general solution of the Clausius-Duhem inequality are 
applied to isotropic bodies under the requirements of invariance under superimposed rigid 
body motions and invariance under orthogonal transformations of the reference state. Under 
the assumption that the powerless part of the constitutive relations vanishes, it is shown that 
the theory models elastic, viscoelastic, and fluid behavior in the presence of heat conduction. 
Constitutive relations for perfect plastic bodies are also obtained under a straigh-tforward 
relaxation of certain differentiability conditions. 

R6wnania konstytutywne, oparte na rozwi'lzaniu og6lnym nier6wnosci Clausiusa-Duhema, 
zastosowano do cial izotropowych zakladaj'lc niezmienniczosc wzgl~dem naloi:onych ruch6w 
ciala sztywnego oraz wzgl~dem ortogonalnych transformacji ukladu odniesienia. Zakladaj'lc 
znikanie tych czlon6w zwi'lzk6w konstytutywnych, kt6re nie S'l zwi'lzane z wykonywaniem 
pracy, stwierdzono, i:e teoria ta modeluje ciala spr~i:yste, lepkospr~i:yste i ciekle uwzgl~dniaj'lc 
zarazem zjawiska przewodnictwa cieplnego. Otrzymac moi:na taki:e zwi'lzki konstytutywne 
dla cial doskonale plastycznych drog'l prostego oslabienia pewnych wymagan dotycZ'lcych 
r6i:niczkowalnosci. 

Onpep;eJI.HIOrn;He ypaBHeHH.H, ocHoBaHHbre Ha o6w;eM perneHHH uepaaeHCTBa Kna3Hyca-.Uro
xeMa, npHMeHeHbl ,IJ;JI.H OnHCaHH.H H30TponHhiX TeJI, Ha I<OTOphie HaJiomeHbl Tpe6oBaHH.H HH
BapHaHTHOCTH no OTHOIIIeHHIO I< meCTI<HM ,ll;BH)I(eHH.HM H HHBapHaHTHOCTH no OTHQllleHHIO 
I< opToroHaJihHhiM npeo6pa3oBaHH.HM Hcxop;Horo cocro.HHH.H. 11oi<a3aHo, qTo, a npep;nonomeHHH 
Hcqe3aHH.H qacrH onpep;eJI.Hrow;ero ypaaHeHH.H, TeopH.H onHChiBaeT ynpyroe, B.H3I<oynpyroe 
H )I(H,ll;I<OCTHOe noaep;eHHe MaTepHaJia npH HaJIHqHH TennonpOBO,ll;HOCTH. IJpH Hei<OTOpOM 
OCJia6JieHHH yCJIOBHH p;mpcf>epeHIJ;HpyeMOCTU TIOJiyllaiOTC.H Tai<me onpep;eJI.HIOIIJ;He ypaBHeHH.H 
,IJ;JI.H H,IJ;eaJibHO TIJiaCTHqeCI<HX MaTepHaJIOB. 

1. Introduction 

ONE of the basic endeavors of modern work in continuum mechanics is the derivation of 
constitutive relations for real material bodies from fundamental thermodynamic con
siderations. The results that have been reported to date in this area stem from two distinct 
schools of thought concerning non-.equilibrium thermodynamics and the forms and inter
pretations of the second law of thermodynamics. One school has followed the pioneering 
work of ONSAGER [1] and has obtained useful and important results for linear pheno
menological problems [2, 3, 4]. Extensions of the Onsager theory have also been made, 
so as to include general non-linear phenomenological problems [5, 6, 7, 8, 9]. This has 
led to significant increases in both the generality of the theory and the scope of problems 
which can be handled within the framework of the Onsager theory. In particular, VERHAs [7] 
has used the non-linear Onsager theory to give the first thermodynamic derivation of con
stitutive relations for a perfect plastic solid of the v. Mises type. 

The second school bases their development on the Clausius-Duhem inequality and the 
principle of equipresence (see [10] for a report on some of the results obtained by this 
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line of investigation). Use of the principle. of equipresence, however, leads to significant 

mathematical complexities in order to obtain results which may serve as a basis for modeling 

viscoelastic and fluid behavior. On the other hand, we have given [11] a complete solution 

of the Clausius-Duhem inequality without adherence to the principle of equipresence, 

and have thereby obtained a very simple thermodynamic theory which is adequate for 

modeling elastic, viscoelastic, and fluid bodies with heat conduction. The purpose of this 

paper is to show that this same thermodynamic theory is also capable of modeling perfect 

plastic behavior. Thus, a unified thermodynamic derivation of the constitutive relations 

for elastic, viscoelastic, fluid, and plastic bodies is provided. 

2. Summary of previous results 

The work reported in this paper is a direct extension of a general thermodynamics 

(primitive thermodynamics) which was obtained in [11]. Since this thermodynamics is 

based upon a general, rather than a particular, solution of the Clausius-Duhem inequality, 

it exhibits a number of features which are absent in most treatments given in the current 

literature. We therefore give a summary of our previous results for the convenience of the 

reader and for reference in later sections. 

The reduced dissipation inequality is obtained in the standard way by using the energy 

balance equation to eliminate the energy source per unit volume in the Clausius-Duhem 

inequality. For a one-component nonpolar material body referred to a material description, 

we have 

(2.1) 

where 

(2.2) 

and all field variables are considered as functions of the reference configuration coordinates, 

X'\ and the time, t. Here, and throughout, we use the notation OA = ofoxA, Oj = ofoxi, 
where xi are the coordinates of the current configuration. We also assume, in the interest 

of simplicity, that the reference and the current configurations are referred to Cartesian 

coordinate covers. The symbolism used in the above equations and throughout this paper 

for designation of physical quantities follows that of TRUESDELL and TouPIN [12]. 

Under the explicit assumption that the Helmholtz free energy density can be written 
in the form 

(2.3) 

where na(X·\ t), rx = I, ... , q, are q additional arguments which may be present as con

sequences of nonstatic conditions, the reduced dissipation inequality can be written in the 
equivalent form 

(2.4) X·J ~ 0. 

Here, X and J are vectors, in a (q+ 13)-dimensional vector space with inner product A· B, 
which are identified atcording to the scheme 

(2.5) 
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(2.6) 

and w is a vector, in a (q+ 10)-dimensional vector space, which is identified according 
to the scheme 

(2.7) 

Thus, for instance, (2.3) and (2.7) give P = P(w). The general solution of the reduced 
dissipation inequality is thus given by all functions J(X; w) such that 

(2.8) X· J(X; w;;:::: 0. 

The basis for obtaining the general solution of the inequality (2.8) is the following 
decomposition theorem which was established in [13]. Every vector field J(X; w), which 
is of class C1 in X and of class C0 in w, admits the unique decomposition 

(2.9) J(X; w) = Vx<l>(X; w)+ U(X; w), 

where the vector U(X; w) is such that 

(2.10) X· U(X; w) = 0. 

This theorem allows a significant simplification of the reduced dissipation inequality, 
since (2. 9) and (2.10) give X · J (X; w) = X · V x <t>(X; w); that is, the problem is reduced 
from that of finding vector functions J(X; w) such that X· J(X; w) ;;:::: 0 to the problem 
of finding scalar functions <l>(X; w) such that X· Vx<l>(X; w);;:::: 0. In fact [13], if J(X; w) 
is known, then <l>(X; w) is given by 

(2.11) 

I 

<l>(X; w) = j X· J(-rX; w)d-r. 
0 

With the aid of the identifications (2.5) through (2.7), it is now a simple matter to show 
that a J (X; w) which is of class C1 in X and of class C0 in w satisfies the reduced dissipation 
inequality if, and only if, 

(2.12) 
a'P a<t> 

'YJ = -aif- ao -U, 

aP a<t> 
-=---U 
iJ-np aic« ' 

(2.13) 

(2.14) -1 A aP a<t> A 
eo Ti = -a(aAxi) + acaA.XI) + ui ' 

(2.15) ( e-l)f A a<t> A eo 1 = 8(8A(}) +U, 

(2.16) OU+n u«+cAx1Ut+aAeuA = o, 
I 

(2.17) r d-r 
<1> = P(-rX; w)----, 

. i 
0 
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for some scalar function P(X; w) of class C1 in X and of class C0 in w such that 

(2.18) P(O; w) = 0, P(X; w) ~ 0 

(see Section 3 of [11]). If these conditions are satisfied, the "dissipation" X· J(X; w) 
is given by 

(2.19) X· J(X; w) = P(X; w). 

The vector 

(2.20) 

whose components occur in the relations (2.12) through (2.15), is the nondissipative part 
of the vector J = VxW+ U. This follows from the observation that the dissipation obtained 
from the vector U is given by X · U, while (2.16) shows that X · U = 0. Explicit nonzero 
forms for the vector U have been given in [11 and 13]. Clearly, the occurrence of the vector 
U provides for a wide range of new possibilities. For instance, there is a choice of V for 
which a fluid will flow perpendicular to the gradient of its thermodynamic pressure, while 
for another choice of U, the balance of energy for a rigid heat conducting body becomes 
a hyperbolic partial differential equation for the determination of the temperature field 
whenever V()· V() "# 0 (see Section 4 of [11]). In view of these results and (2.12), we set 
two additional restrictions in the analysis given in [11]. A thermodynamics is said to be 
simple if, and only if, U = 0; a thermodynamics is said to be regular if, and only if, W is 

independent of the argument 0. The following results are then obtained in Section 4 of [11]. 
A J(X; w) of class C1 in X and of class C0 in w gives a simple and regular solution of the 
reduced dissipation inequality if, and onty if, 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

'l' = 'l'(O, a A xi) = 'l'(w), 

a 'I' 
r; = -80, 

( O)-lhA ()(/> 
(!o = iJ(iJA())' 

W =: {(), OAXi}, 

:X= {oAxi, aAo}, 

1 

J
o A A dr w = P(rX; w)r, 

0 

for some function P(X; w) of class C2 in X and class C0 in w such that 

(2.28) P(O; w) = 0, P(X; w) ~ 0. 
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We also have the reciprocity relations 

(2.30) 
a 14 a B 

a(aBxl) Ti = a(aAxi) T1 • 

(2.31) 
a A 1 a 8 

a( aBO) Ti = 7i a( a A xi)--1z ' 

(2.32) a hA a B 

-a(aBo) = a(aAo) h · 

These relations constitute a non-linear generalization of Onsager's relations, the form of 
which was first obtained by GYARMATI [5, 6]. We also have the relations 

(2.33) 

(2.34) 

which are the nonequilibrium form of the Maxwell relations obtained from the cross 
derivatives of the Helmholtz free energy. The assumption of simplicity reduces (2.12) 

to the form 'YJ = ----. , and hence e = P+O'Y) = P-0 -+-. Is a function aP a<P ( aP a<P ) . . 
(J() (}() (}() (}() 

of w, X and 0 unless o<PjoO = 0. It is for this reason that we assume the thermodynamics 
to be regular. A simple and regular thermodynamics thus preserves the thermostatic rela
tions J} = -olJ'foO, e = P-OolJ'jofJ in the dynamic case. 

3. Invariance and symmetry requirements 

The results reported in the previous Section were strictly thermodynamic in nature 
and hence they do not reflect the invariance and symmetry properties of real material 
bodies. The natural invariance properties of material bodies require that all scalar valued 
functions of the field variables be invariant under superimposed rigid body motions [14, 15], 
while symmetry properties pertain to specific properties of the bodies such as isotropy, 
homogeneity, etc. The consequences of the invariance and symmetry requirements will 
be obtained in this Section after the constitutive relations are rewritten in terms of a spatial 
description. 

A straightforward substitution of the material constitutive relations (2.23) and (2.24) 
into (2.2) gives 

j - a i( aP aP ) 
11 

- e Ax o(oAx1) + a(aAx1) ' 

. . a<P 
h' = efJoAx' o(oAO) . 

(3.1) 

If we define a new function 4> by 

(3.2) 
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then (3.1) yields the constitutive relations 

. . aP oc/J 
(3.3) tf = eoAxJ o(oAx') + e o(ojx') , 

(3.4) 
• {j oc/J 

h' = eu acaio) ' 

where 

(3.5) 
p = P(O, oAxi), 

cfJ = c/J(ok:Xi, ako; o, aAx1
), 

and (2.27) and (2.28) become 

(3.6) 

(3.7) 

where Pis of class C2 in (okx1
, okO) and of class C0 in (0, oAxi). 

Since all quantities are determined in terms of the scalar valued functions P and ifJ (and 
P), isotropy and invariance under superimposed rigid body motions obtain if, and only if, 

(3.8) P = P(O, tr(C), tr(C2
), tr(C3

)), 

(3.9) cp = c/J(tr(d), tr(d2
), tr(d3

), o10oi0g1i, d1ioi0oi0, d~dki()iOoiO; 0, tr(C), tr(C2
), tr(C3

)), 

where 

(3.10) 

is the strain tensor and 

(3.11) 

is the rate of strain tensor (see [14, 15, 16] for the details). The form of the function cp is 
not completely arbitrary, however, in view of the requirements expressed by (3.6) and 
(3.7); 

1 

(3.12) cfJ =JP( rtr(d), r 2 tr(d2
), r 3 tr(d3), r 2 oiOoiJgii,r3d1ioiOoiO, 

0 

4 i k · {j {j. {j 2 3)) dr r dkd J()iuoiu, u,tr(C), tr(C ), tr(C -, 
i 

(3.I3) 

If cp is taken to be independent of the rate of strain tensor, then (3.3) and (3.4) give 
the customary constitutive equations for an isotropic, elastic, heat conducting body. 

If P depends only on tr(C), tr(C2
) and tr(C3 ) through the form 

. I 3 I 21 3 (3.I4) det(oAx') = 6 tr(C) -- 2 tr(C)tr(C )+3 tr(C ), 

and 
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then (3 .3) and (3.4) give the customary constitutive equations for an isotropic, non-linear, 
heat conducting fluid. In fact, the contribution to the stress from the rate of strain tensor 
assumes the form A of+ Bd/ + Cdikdki and the signs of the coefficients A, B, and C derive 
from the positivity requirement expressed by (3.12) and (3.13). For a linear body, we have 
).d;o{ +2[td{, and the positivity condition (3.13) gives the standard results 11 ~ 0, 

3J.+2ft ~ 0. 
The general case, wherein the only restriction is the positivity condition (3.13), gives 

the constitutive equations for isotropic, viscoelastic bodies with heat conduction. In partic
ular, there are possible contributions to the stress from tensors of the form 

oc/J 
o(dkmaJJam()) aioajo' 

2 - a (d!-ri!~kOorO) dir arOoiO. 

We thus conclude that simple, regular thermodynamic systems, which satisfy the 
conditions imposed by invariance under superimposed rigid body motions and isotropy, 
encompass a wide range of physical properties of material bodies. The one outstanding 
exception is the lack of a basis for the representation of plastic material behavior. 

4. The perfect plastic solid 

The general form of the constitutive relations for an isotropic fluid which we obtained 
in the last Section is 

(4.1) 

where 

(4.2) lJf = P(O, det(oAxi)) , 

(4.3) cp = c/J(tr(d), tr(d2), tr(d3), aiOoiOgii; 0, tr(C), trC2
), tr(C 3

)). 

We thus have 

(4.4) 

where 

(4.5) 

is the thermostatic pressure. 
The theory given above is based on the assumption that the function P, which occurs 

in the relations (3.12) and (3.13), is of class C2 in the rate of strain variables. Thus, the 
coefficients which occur in ( 4.4) are continuous with continuous first derivatives as a con
sequence of (3.3) and (3.12). We will now show that the continuity conditions on the 
function P, and hence on the function 4> can be relaxed for simple thermodynamic systems. 
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The vector U vanishes for a simple thermodynamic system, and hence the vector J is 

given by 

(4.6) J(X; w) = Vxf/J. 

The reduced dissipation inequality X· J ~ 0 thus takes the equivalent form 

X·Vxf/J~O, 

so that we must have 

(4.7) 

with 

(4.8) 

X· Vxf/J = P(X; w) 

P(X; w) > 0, P(O; w) = 0. 

The important thing is thus the continuity of X· J(X; w) = P(X; w), not the continuity 
of J(X; w). In fact, it is clear that whenever the vector U vanishes, it is sufficient to require 
P(X; w) to be continuous such that (4.8) is satisfied. In particular, P(X; w) need not be 
differentiable at X= 0. It is thus clear that Vxl/J = J(X; w) can have a jump discontinuity 
at the origin and still satisfy the reduced dissipation inequality. This observation provides 
us with the added generality which is needed in order to model perfect plastic bodies as 
we shall now show. 

If we introduce the abbreviations 

(4.9) 
j = tr(d), ex = tr(d2

), fJ = tr(d3
), 

t = ( (t/)) , E = ( ( t5/)) , 

the constitutive Eqs. ( 4.4) take the equivalent form 

(4.10) ( 
a4> ) a4> a4> 2 

t = -p+e aj E+2e aex d+3e a{J d . 

We thus have 

(4.11) 

One of the characteristic properties of a perfect plastic body is that the mean pressure, 
-tr(t), is a function of the arguments() and det(a .. xi) only. Since pis a function of() and 
det(a .. xi) only, (4.11) shows that tr(t) will have the required property if, and only if, 4> is 
a solution of the partial differential equation 

a4> . a4> a4> i 
(4.12) 3 aj +2J aex +3ex a{J = h(O, det(a .. x )). 

The general solution of this partial differential equation is given by 

1 A 

(4.13) 4> = Tjh+l/J, 

where~ depends on the argumentsj,·ex, fJ only through the functions 

(4.14) ( d2) 1 '2 exo = tr o = ex- T J , 

(4.15) 
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where 

(4.16) 0d = d- _!_jE 
3 

259 

is the deviator of the rate of strain tensor. However, the function 4> must be nonnegative 
for all d as a consequence of (3.12) and (3.13). An inspection of (4.13) shows that this 
can be the case if, and only if, h(O, det(8Axi)) = 0, in which case we have 

(4.17) 

and 

(4.18) 

(4.19) 

(4.20) 

where 

(4.21) 
1 

0 t = t- 3 tr(t)E = t+pE 

is the deviator of the stress tensor. 
A second characteristic feature of perfect plastic solids is the existence of a (positive) 

yield stress, a, which is independent of the rate of strain tensor (i.e., a can depend on 
the arguments (), tr(C), tr(C2

), tr(C3)) and a yield function Y(a, b) such that 

(4.22) 

One of the simplest yield functions is Y(a, b) = a-K, where K is a positive function of 
the arguments (), tr(C), tr(C2), tr(C3). This gives 

(4.23) 

which is the ·v. Mises yield condition if a and K are constants [17, 18]. Substituting (4.19) 
into (4.23), we obtain 

(4.24) 4cco(~-)2+12f3o 84> -~-+ 2cc~( --81_)2- a2K 
8cto 8cto 8f3o 3 8f3o - e2 

which is an equation for the determination of cf>. One solution of this equation which 
vanishes with cc0 and {30 is given by 

(4.25) 
(] I - -

ljJ = - - }1 K(10 . 

e 
6 Ar~h . Mech. Stos. nr 2/74 
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This solution is admissible in the thermodynamic sense, since 
1 1 

J (] .. ;- dr f (] w~-- · -- dr cp = -y Kr2 rx0 - - = - y Ktr(r2
0 d2

)-, 

0 (! i 0 (! i 

i.e. , P(rx0 , {30 ; •.. ) = ~ y Krx0 and Pis real and nonnegative, since K is positive and rx0 is 
(! 

nonnegative. As a function of the rate of strain tensor, however, the function cp given by 
( 4.25) is continuous, but not differentiable at d = 0. A substitution of ( 4.25) into ( 4.18) 
now gives 

(4.26) I= -pE+a, j ~0d = -pE+a{K y' od • V rxo tr (0d2 ) 

The only other irreversible thermodynamics which gives this result is that obtained by 
VERHAS [7] as an application of GYARMATI's principle [6]. However, Verhas' derivation does 
not allow the coefficients a and K to depend on the temperature and the invariants of 
the strain tensor. 

There are numerous other yield functions which can be examined from the standpoint 
of the method given above. A simpler procedure is obtained, however, by simply selecting 
the dissipation function cp by means of the prescription 

(4.27) 4> = ~ y(y rxo, V fJo, oJ)iJj()gii; (), tr(C), tr(C2
), tr(C3

)) 

1 

= jP(r.ll rx0 , rj/{30 , r2 iJ;OiJi()gii; · ... ).c!...i_, 
0 i 

where Pis a nonnegative function which vanishes with rx0 , {30 and o;O. When (4.27) is 
substituted into (4.18), we obtain 

(4.28) 
i!y od i!y ( od

2
-} aoE) 

t = -pE+ ay rxo Y~o + ajl fJo il {J~ --. 
This general form of the constitutive relations for a perfect plastic solid gives the desired 
property that the dependence on the rate of strain tensor which is not governed by the 
function y is in terms of the two forms 

which are homogeneous of degree zero in the deviator of the rate of strain tensor. In 
addition, since the arguments of the function y include the variables (), tr(C), tr(C2

) and 
tr(C3

) in addition to the argument o;OiJi()gii, a wide class of material behavior can be 
modeled with the constitutive relations ( 4:28) obtained from the general thermodynamic 
theory given in this paper. We also note that the function y is only required to be contin
uous in the arguments(), tr(C), tr(C2), tr(C3), so that there is no problem with modeling 
stresses which are not differentiable with respect to these arguments. 
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