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Interaction of material damping and monogenic-polygenic forces 
in viscoelastic system 

R. N. KAPOOR (TORONTO) and H. H. E. LEIPHOLZ (WATERLOO, CANADA) 

IN GENERAL, the elastic systems are always damped and possess polygenic as well as monogenic 
loads. Selecting a system, for which the authors have already shown the material damping to 
change the mode of instability from flutter to divergence, a detailed study is made of the inter
action between the ratio of the two types of loads and the material damping. The results, obtained 
here, attain added significance in view of the increasing use of damping coatings and materials 
with high energy absorbtion coefficients in turbine blades, machine tools, aircraft components 
and several other systems, where the monogenic and polygenic forces invariably exist. 

Uklady spr~zyste s~ z reguly tlumione i zawieraj~ obci~zenia typu poligenicznego jak i mono
genicznego. Opieraj~c si~ na ukladzie, dla kt6rego auter wykazal juz, :le tlumienie materialowe 
zmienia charakter wyboczenia z flatteru na dywergencyjny, przeprowadzono szczeg6low~ analiz~ 
wsp6ldzialanie mi~dzy stosunkiem tych dw6ch rodzaj6w obci~zen oraz tlumieniem materialowym. 
Otrzymane wyniki maj~ istotne znaczenie wobec wzrastaj~cego zastosowania material6w wibro
izolacyjnych o wysokich wsp6lczynnikach pochlaniania energii do konstrukcji lopatek turbi
nowych, obrabiarek, konstrukcji lotniczych oraz wielu innych uklad6w, w kt6rych niezmiennie 
wyst~puj~ sily poligeniczne i monogeniczne. 

Y rrpynre CHCTeMbi I<ai< rrpaBHJIO o6Jia~aiOT saTyxaHHeM H co~epmaT Harpysi<H Tal< rroJIHreHHoro, 

I<ai< H MOHOreHHoro THIIOB. 0rrHpa.HCb Ha CHCTeMy, ~JIH I<OTOpOH paHLIIIe aB TOp IIOI<a3aJI, qTo 

MaTepHaJILHoe saTyxaHHe H3MeiL<JeT xapai<Tep rrpo~o.!ThHoro H3rH6a H3 <t>JiaTTepa B ~rmep
reHTHhiH, IIpOBe~eH IIO~p06HbiH aHaJIH3 B3aHMO~eHCTBHH Me»<~y OTHOIIIeHHeM 3THX ~BYX 
THIIOB Harpy30I< H MaTepHaJibHbiM 3aT)'XaHHeM. lloJiyqeHHbie pe3yJILTaTbi HMeiOT C~eCTBeH
HOe 3HaqeHHe H3-3a B03paCTaiO~ero IIpHMeHeHHH BH6pO-H30JIH[\HOHHbiX MaTepHaJIOB C BbiCO

I<HMH I<03<f><l:>Hl.\HeHTaMH IIOrJio~e:mm 3HeprHH ~JIH I<OHCTPYI<l.\HH Typ6HHHbiX JIOIIaTOI<, CTaH

I<OB, aBHa[\HOHHbiX I<OHCTpyi<l.\HH, a Tai<»<e MHOrHX ~pyrHX CHCTeM, B I<OTOpbiX HeH3MeHHO 

BbiCTyiiaiOT IIOJIHreHHbie H MOHOreHHbie CHJibl. 

1. Introduction 

IN THE STUDY of systems possessing monogenic as well as polygenic [1] forces, one field 
of research has been the investigation of conditions under which the mode of instability 
may change from flutter to divergence or vice-versa. DzHANELIDZE [2], KONIG [3], CONTRI 

in [4], IIERRMANN and BuNGAY [5], ZYCZKOWSKI and GAJEWSKI [6], and HussEYIN and 
PLAUT [7) have, by taking various undamped mathematical models, shown that depending 
on the ratio of the two types of forces, instability may occur in the form of either flutter 
or divergence. BOLOTIN and ZHINZHER [8] considered a viscoelastic cantilever with sub
tangential end force and obtained a similar result. The authors [9, 10] extended the investi
gation to a class of viscoelastic systems acted upon by a more general type of monogenic 
and polygenic forces and studied the combined influence of the load distribution pattern, 
material damping, as well as the ratio of the two types of forces. It was shown that for 

.. 
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230 R. N. KAPOOR AND H. H. E. LBIPHOLZ 

a prescribed pattern of load distribution, the material damping could change a flutter 
system into a divergence system. If the load distribution pattern was otherwise, the mode 
of instability remained insensitive to damping. By taking a system, Fig. I, with the appro
priate value of n such that it falls in the former category, the object of this paper is to study, 
in detail, the interaction between~, the ratio of the monogenic and polygenic forces, and y, 
the damping coefficient of the Kelvin-Voigt material. It is shown that the influence of y, on 

X X 

W( x,t) 

FIG. 1. The system. 

X 

MONOGENIC LOAD 

q =e-q (l-x)" 
V 0 

the critical load and the mode of instability, is quite different in the subdomains 0 < 
< ~ < ~D, ~D < ~ < ~F and ~F < ~ < oo, where ~D and ~F are the critical values of;. 
The above subdomains are classified in gradually reducing proportion of polygenic forces. 

2. The system and characteristic equations 

The differential equation of small vibrations for the system, in Fig. 1, is obtained [9] as: 

(2.1) EIWxxxx+YWtxxxx+qo(n+ 1)-1 {[(Jn+ 1 -.x11+ 1
) 

+~(l-x)n+ 1]Wxx-~(n+ 1) (1-x)nWx} +eWu = 0 

along with the boundary conditions 

W(O, t) = Wx(O, t) = 0, 
(2.2) 

EIWxxU, t)+ yW,xxU, t) = EIWxxx(l, t)+yW,xxAI, t) = 0, 

where e is the linear mass density, E the Young's modulus, I the second moment of the 
cross-section and the subscripts denote the variables with respect to which the partial 
derivatives are taken. Introducing the nondimensional parameters 

1 1 1 

(2.3) 
'YJ = x(l)-t, r = (EI)2(el4 f2t, G = (eEI14 f 2y, 

F = q0 fn+ 3 [(n+ l)E/]-1 
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INTBRACI10N OF MATERIAL DAMPING AND MONOGENIC-POLYGENIC FORCES IN VISCOELASTIC SYSTEM 231 

and seeking the standing wave solution in the form 

(2.4) 

where w = wR + jw1 is the complex frequency of vibration, yields the following non-self
adjoint boundary eigenvalue problem 

(2.5) (1 + wG)(/)'Ifl11'1 +F {[(1-1}~+ 1)+ ~(l-1]}"+ 1 ] f/J'l'l- ~(n + l) (l-1J)"f/J'~} +w2 f/J . = 0, 

(2.6) f/J(O) = f/J'l(O) = f/J'l'l(l) = f/J'1'1'1(1) = 0. 

In the absence of the existence of a closed form solution for the above fourth-order system, 
we seek the solution 

ex 

(2.7) f/J('YJ) = 2: A,VJ,('YJ), 
r=l 

where VJ,('YJ's) are the orthogonal eigenfunctions of free vibrations of the system, obtained 
from Eqs. (2.5) and (2.6) by putting F = G = 0. Applying the Galerkin's method by 
substituting Eq. (2.7) in Eq. (2.5), taking ex = 2 and seeking nontrivial solution in A, 
yields the characteristic equation( 1): 

(2.8)* w4 +fl~w3 +fl!w2 +fl~w+f1% = 0 . 

3. The instability boundary 

The complex frequency of vibration, w, decides on the state of the system. Inequality 
w.IL < 0 implies asymptotic stability and wR > 0, instability. The condition wR = 0 re
presents entirely different phases for the damped and undamped systems. For the former 
it implies "instability boundary" and for the latter '4stable domain or instability boundary". 
The imaginary component of the frequency, w1 , governs the vibrational behaviour of the 
system. The conditions, w1 i= 0 and w1 = 0, imply oscillatory and non-oscillatory motions, 
respectively. If at (J)R = o+ Wr is also zero, the system fails by divergence. If at WR = o+' 
w1 i= 0, the system fails by flutter. Therefore, the nondimensional critical load, Kcr, of 
the system, for a prescribed ~. G and n, given by 

(3.1) Kcr =(I +~)F 

is obtained, when the infinitesimal increase in F results, in the condition wR = o+, for 
the first time. 

For the undamped system, fJT = fJJ = 0 in Eq. (2.8), and the divergence loads KcrD' 
corresponding to w = 0, are given by 

- 1 

(3.2)* KcrD(t, l) = (1 + ~) Mt[- 1 ± (1 - M2)2]. 

The flutter loads of the undamped system Kcr F, corresponding to w 2 -+ complex, gives 

- 1 

(3.3)* KcrF(t,l) = (l+~)M3[-1±(1-M4)2] . 

e> Henceforth, equations superscripted ( )* involve complicated mathematical expressions, in this 
case f3r, which for the sake of brevity are omitted here but explained in [9]. 
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232 R. N. KAPOOR AND H. H. E. LEIPHOLZ 

The criteria for the existence of the divergence and flutter loads of the undamped system 
are obtained as 

(3.4)* 

and 

(3.5)* 

respectively. 
For the damped system, the inequality 

(3.6) flt(JJ~ {1~- fl! fl:)- /11 2 > 0 

decides on the flutter loads, Kcrp, which are obtained as 
1 

(3.7)* KcrF(l, l) = (1 + c;) Ud -1 ± (1- Uz)2]. 

The divergence load of the damped system, kcrv' is given by the inequality 

(3.8) p: > 0, 

which leads to the same values as given by Eqs. (3.2) and (3.4). The criterion for the existence 
of flutter loads of the damped system is obtained as 

1 

(3.9) ~F(1,2) ~ L1fo[-1±(1-L1TtY2J. 
The lowest flutter and divergence loads for the damped system are given by KcrF(t) and 

Kcrv(t), respectively; and the type of instability is governed by the lower of these two 
critical values. The transitional value of Kelvin-Voigt material damping G,, at which the 
transition from flutter to divergence, if any, takes place, is obtained from the condition, 
- -
K crF(t) = KcrD(t)' which yields the transition governing condition 

- - !I - . - ! 
(3.10)* flt (c;, G) { -1 + [1- /12 (c;, G))2} - {13 (c;) { -1 + [1- /14 (c;)p} = 0. 

4. The numerical analysis and discussion of the results 

The authors have already shown [9, 10] that a change in the mode of instability from 
flutter to divergence for this class of systems, purely as the result of material damping, 
may be possible if the load distribution exponent satisfies the inequality 

(4.1) 2.006 < n < oo. 

Taking the illustrative system as a viscoelastic steel cantilever of diameter 1 inch, length 
50 in., and n = 4, results obtained on the IBM 360 computer of the University of Waterloo 
are plotted in Figs. 2-10. These shall be discussed at length. 

4.1. The undamped system 

The divergence and flutter boundaries of the undamped system, in the Kcr- c; plane, 
as obtained from Eqs. (3. 2) and (3.3), are plotted in Fig. 2, where c; v = 3.292747 and 
~F = 4.175263 are the positive critical values obtained from Eqs. (3.4) and (3.5),respectively. 
The following features are observed in Fig. 2: 
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A Kcr O (I ,Zl = 384·829 

DIVERGENCE 

BOUNDARY 

FIG. 2. The flutter-divergence boundaries of the undamped system. 

i) Range 0 ~ ~ < ~ D• There exist two flutter loads such that K r < K 
c Fll) crF(2) 

ii) ~ = ~ 0 . The introductory divergence load Kcr < > = 384.829 appears at A such 
D l, 2 - -

that KcrF(t) < Kcrp( 2) < KcrD(t, 2 ) • 

iii) Range ~0 < ~ < ~F· There exist two flutter and two divergence loads such that 

KcrF(l) < KcrF(2) < KcrDil) < KcrD(2)' 

iv) ~ = ~F· There is coalescence of the two flutter loads at D such that Kcr = 120 223 
_ F(l, 2) ' • 

Besides, there exist two divergence loads, the lower being KcrD(l) = 124.131. 

v) ~ = ~F+L1~. The flutter loads vanish and there is a transition in the mode of insta

bilitv from kinetic to static. During this transition, the critical load jumps from K 
J - crF(l,2) 

= 120.223 to Kcro(t) = 124.131. This jump(2) is represented by the vector DC. 

vi) Range ~1· < ~ < oo. The system is purely divergent and kcrD(t) is decisive for the 
critical load. 

e) The rare case where such a jump vanishes, occurs when n has the lower bound value in Eq. (4.1), 
[9, 10]. 
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234 R. N. KAPOOR AND H. H. E. LEIPHOLZ 

Conclusion I. The ratio of polygenic and monogenic forces ~ influences the mode of 
instability of the undamped system. An increase of~ transforms the initial flutter system 
into a divergence system. This transformation occurs at ~ = ~F, accompanied by an 
abrupt increase of the critical load. 

4.2. The damped system 

The interaction between~ anq y influences Kcr' the critical load of the damped system, 
as well as the mode of instability. 

Figure 3 shows the mode separation curve DAEF, the vanishing flutter curve DBECG 
and the introductory divergence line HEJ, in the ~-y plane. The introductory divergence 

{ G 

ITEM SYMBOL AREA ABOVE AREA BELOW 

MODE MODE OF MODE OF 
SEPERATION ----- INSTABILITY • INSTABILITY • 

CURVE FLUTTER DIVERGENCE 
INTRODUCTORY DIVERGENCE NO DIVERGENCE 
DIVERGENCE LOAD LOAD 

LINE EXISTS EXISTS 

VANISHING NO FLUTTER FLUTTER 
FLUTTER ' LOAD LOAD 
CURVE EXISTS EXISTS 

@ 
® 

o'@ {. 3·50 

3 ® 

J ** 1}' =31,790 
K I I 

I I ~ 
2 4 6 y 

FIG. 3. The subspaces R1 , ... , R5 of the damped system. 

line, region above, which guarantees the existence of a divergence load, is obtained from 
Eq. (3.4). The vanishing flutter curve, region below, which guarantees the existence of 
a flutter load, is obtained from Eq. (3.9). The mode separation curve, regions above and 
below, which represent the divergence and flutter instability modes, respectively, is obtained 
from Eq. (3.10). The entire ~- y plane is divided into five subspaces, Rh which have distinct 
characteristics as explained in Table 1. The iso-~ and iso-y curves in the Kcrp- y and 
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Table 1. The interpretation of subspaces Rl 

Existence of critical load 
Subs pace Range of~ 

F D 

Rt 0 < ~ < ~D Yes No 
R2 ~D < ~ < ~F Yes Yes 

RJ ;D < ~ < ~F Yes Yes 

~ ;D < ~ < 00 No Yes 

Rs ;D < ~ < 00 Yes Yes 

F = Flutter; D = Divergence 

Mode of 
instability 

F 
F 
D 
D 
D 

KcrF-; planes, as obtained from Eq. (3.7), and which ultimately lead to the optimal 
stability envelope, are shown in Figs. 4 and 5, respectively. The critical loads of systems 
with different ; in the Kcr- y plane, as obtained from Eqs. (3. 7) and (3.8), are shown 
in Figs. 6-10. The damped systems in ranges 0 <; < ; 0 , ; 0 <; < ;F and ~F < E < oo 
are discussed separately. 

i) Range 0 <; < ; 0 • This range, in Fig. 3, is represented by the rectangle OHJK, 
where only flutter instability is possible. The following features are observed in Figs. 4 and 5: 

0 

9 

..J 
<{ 
c..> .,_ 
a: 
c..> 

A 

* r • 51,015 

FIG. 4. The iso-~ curves of the damped system. 

a) in the range 0 < y < y*, represented by the area OABCD (Fig. 4), an increase in~ 
raises the iso-; curves. Hence the increase of; increases the critical load. 

b) in the range y* < y < oo, represented by the area DCEFG (Fig. 4), an increase in; 
up to a certain critical value increases the critical load, further increase in~ lowers the critical 
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load. At;-+ ;n, line CF, the flutter load attains its minima, icrF = 384.829. For every y, 
there exists a critical value of ; which yields the maximum critical load. The optimal 
stability envelope contains all such maxima. 

c) in the range 0 < y < y*, represented by the area OAPQ (Fig. 5), all the iso-y curves 
have a positive gradient. Hence, the increases of ; increases the critical load. 

d) in the range y* < y < oo, represented by the area above curve AP (Fig. 5), every iso-y 
curve has an extremum. All such extrema are contained in the optimal stability envelope. 

FIG. 5. The iso-y curves of the damped system. 

For a prescribed y, the increase of;, up to a certain critical value ;*, increases the critical 
load. Any further increase of; reduces the critical load. Finally, as ; -+ ;n, all the iso-y 
curves converge at P, yielding the flutter load KcrF = 384.829. The intersection between 
the optimal stability envelope and the prescribed iso-y curve, P*, yields the correspond
ing;*. 

ii); = ;n-LJ;. In Fig. 3, these systems belong to the region just below the line HEFJ. 
Since the mode separation curve is common with the introductory divergence line along 
EFJ, the flutter systems in the range y** < y < oo are at the verge of becoming divergence 
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INTERACTION OF MATERIAL DAMPING AND MONOGENIC-POLYGENIC FORCES IN VISCOELASTIC SYSTEM 237 

systems. This region, in Fig. 6, is represented by the area SQRT. In striking contrast to 
the area OP'QS, where the flutter loads, as expected, are highly sensitive to the material 
damping, the flutter load in the region SQRT remains constant. 

iii). ~ = ~0• In Fig. 3, the line HEFJ represents this class of systems. In the range 
y** < y < oo, line EFJ, there exist both the divergence and flutter loads; and the mode 

400 

0 
<t 
0 
..J 

..J 
<t 
u 
~ 
0:: 
u 

200 

KcrF(2l 

{ c{
0 

-A{ =3·292742 

PRE INTRODUCTORY 
DIVERGENCE 

FLUTTER 

FIG. 6. The instability boundaries of the system ~ = ~0-L1~. 

of instability is under a process of transition from flutter to divergence. This is clear from 
!'ig. 7, where line QR represents the coincidental divergence and flutter loads, kcrD(l) and 

KcrD(l)" 

iv) ~ = ~0 +L1~. In Fig. 3, a line parallel to and just above HEFJ, represents this class 
of systems. It can be visualized that the latter half of this line lies above the portion EF 
of the mode separation curve, and therefore these systems undergo the transition from 
flutter to divergence at a certain damping, y = Yr· The following features are observed 
in Fig. 8: 

a) With the introduction of damping, the flutter load of the undamped system OP 
reduces to OP' due to the Ziegler's jump PP'. 
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Kcr 

p 

{ = { 0 = 3·292747 

INTRODUCTORY DIVERGENCE 

FLUTTER I DIVERGENCE 

'Yt < 'Y < CD 

Yt • 31.790 

r 
Fra. 7. The instability boundaries of the system ~ = ~D• 

0 
<{ 

g 
....J 
<{ 
u 
i= 
0: 
u 

Kcr 

200·-

p' 

( • ! 0 +6{ • 3 293044 

POST INTRODUCTORY 
DIVERGENCE 

DIVERGENCE 

Yt < 'Y < CD 

r 

FIG. 8. The instability boundaries of the system ~ = ;'D+At 

http://rcin.org.pl



INTERACTION OF MATERIAL DAMPING AND MONOGENIC-POLYGENIC FORCES IN VISCOELASTIC SYSTEM 239 

b) addition of damping, in the range 0 < y < y,, increases the critical load mono-
tonically. 

c) at y = y,, the flutter load KcrF(t) and the divergence load KcrD(l) are identical at Q. 
d) at y = y,+Lfy, the mode of instability changes from flutter to divergence. 
e) in the range y, < y < oo, area SQRT, the system continues to remain a divergence 

system with the critical ioad KcrD(t)' 

v) Range ~ D < ~ < ~F· This range in Fig. 3 is represented by the subs paces R 2 and 
R3 in entirety, and the lower half of the subspaces R4 and R5 • Since the portion DAE 
of the mode separation curve divides the subspaces R2 and R 3 in the range 0 < y < y**, 
it is possible for the material damping, in the above range, to change the mode of instability 
of the system from flutter to divergence. For example, the system with ~ = 3.50, repre
sented by the dotted line 0' ABC, is a flutter system in the range 0 < y < 0' A and a diver-

0 
<t g 
..J 
<t 
(.) 

t: 
a:: 
(.) 

D 

c 

e =3·5o 

{D < ( < {F 

POST INTRODUCTORY 
DIVERGENCE 

DIVERGENCE 
Yt < y <CD 

FIG. 9. The instability boundaries of the system ; = 3.50. 

y 

gence system in the range 0' A < y < oo; the transitional damping coefficient being 
y, = O'A. Figure 9, also representing the system~ = 3.50, reveals the following features: 

a) with the introduction of material damping, the flutter load of the undamped system 
OP reduces to OP' due to the Ziegler's jump PP'. 
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b) in the range 0 < y < Yr, area OP'AD, addition of damping increases the flutter 
load monotonically. 

c) in the range Yr < y < oo, area DAEF, the system becomes divergent with the critical 

load KcrD(t)' 

d) the damping values corresponding to A, Band Care identical to the values represented 
by A, Band C in Fig. 3. 

vi) ;F < ; < oo. This range, in Fig. 3, is represented by the upper portion of subs paces 
R4 and R5 • Since this area is above the mode seperation curve in entirety, the mode of 
instability remains as divergence. These are the so-called pseudo conservative systems, 
i.e., systems for which instability occurs through divergence, although at least some polyge-

400-

0 
<1: 
0 
..J 

..J 
<1: 
u 
I-

CC 
u 

( = (F + !:!.( =4·175265 

POST VANISHING FLUTTER 

KcrF(:l) 

KcrDIII 

77/7/777/777777 77777777777777777/ 

DIVERGENCE 

0 < y < CD 

Fro. 10. The instability boundaries of the system. ~ = ~F+Ll.; 

nic forces are present. A restudy of Figs. 7, 8 and 9 and Fig. 10, which represents the 
system ; = ;F+Ll;p, reveals the following features: 

a) an increase of; lowers the dotted divergence boundary, Kcr = KcrD(t)' 

b) with the increase of;, the left and right loops of the flutter boundaries begin to shift 
apart. Finally, as seen in Fig. 10, the left loop of the flutter boundary disappears 
completely; rendering the system fully divergent. 
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Conclusion 11. As a result of the interaction between ~. the ratio of the polygenic and 
monogenic forces, and y, the material damping coefficient; the mode of instability and the 
critical load of the damped system are influenced in the following manner: 

i) in the range, 0 < ~ < ~v, the mode of instability, which is flutter, remains unaltered. 
The critical load, however, is influenced significantly and the maximum attainable value 
is given by the optimal stability envelope. 

ii) in the range, ~D < ~ < ~F' the transformation from flutter to divergence is possible 
at y = Yt provided the inequality, 0 < y < y**, is satisfied. For y > y**, the mode of 
instability becomes divergence. For 0 < y < y**, when the initial mode of instability is 
flutter, the critical load is influenced in the following manner: First, the introduction of 
infinitesimal damping produces the Ziegler's jump. Further addition of damping increases 
the critical load monotonically up to y = Yt, where the system transforms into a divergence 
system and the critical load thereafter remains constant. In contrast to the undamped 
case, there is no jump of the critical load during transformation from flutter to divergence. 

iii) In the range, ~F < ~ < oo, the mode of instability, which is divergence, remains 
unaltered. The critical load, as expected, remains insensitive to damping. 
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