
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 26, 3, pp. 523-528, Warszawa 1974 

BRIEF NOTES 

PreliDUnary note on an underdete~ed 
impingement problem of Helmholtz jets 

1. Introduction 

K. KRAEMER (GOTTINGEN) 

THE STEADY plane potential flow due to symmetrical impingement of two jets on both 
sides of a central jet is studied and it is found that the available upstream parameters 
are not sufficient to determine the flow uniquely. 

LIQUID jets in air, impinging against each other or against a wall, behave very much like 
in viscid flows subject to a condition of constant pressure along their free boundary surface. 
The theory of such flows relies largely on balances of mass and momentum. As a more 
refined tool of investigation the Helmholtz hodograph method [1, 2] becomes available 
if attention is restricted to steady two-dimensional (plane) problems. That will be done 
in this note. 

General principles of cause and effect, as well as common experience suggest that 
even a complicated steady flow, composed of more than one jet (but without any wall 
where separation could occur) should be determined completely by the upstream conditions, 
i.e. by the shape and position of the participating nozzles and by the fluxes emerging from 
them. However, there seem to be exceptions, at least within the framework of inviscid 
theory. Below will be discussed a steady, plane, inviscid and incompressible jet interaction 
problem, which admits a continuous one-parameter-set of different flow configurations 
after the upstream conditions have already been fixed. An example is schematically shown 
in Fig. 1. 

2. Statement of the problem 

A two-dimensional jet of inviscid incompressible fluid is approaching from infinity, 
where its width is 2a (say) and the magnitude of its flow velocity is V (say). Upon both 
sides of this "first" jet are impinging two "secondary" jets of the same fluid, having each 
the width b (say) at upstream infinity and also the velocity magnitude V. Their direction 
relative to the first jet is specified by the angle fJ (say) as defined in Figs. 2, 3, 4. 
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The irrotational, plane flow resulting from the impingement is supposed to be steady, 
to contain no discontinuities in its interior and to remain symmetrical with respect to the 
straight centerline of the first jet (which could be replaced by a plane wall in inviscid 
theory). All streamline plots of this note show the flow or hodograph on one side of the 
centerline only. The pressure outside of the flow has the same value everywhere. Hence, 
by Bernoulli's equation, the flow speed along the free flow boundaries is constant and 
everywhere equal to V. 

From the interaction zone the fluid is escaping either via a jet along the centerline, which 
assumes the width 2d (say) at downstream infinity, and via two symmetrical jets of the 
asymptotic width c (say) flowing in the directions given by angle y (say) which is also defined 
in Figs. 2, 3, 4. The values of a and V may be chosen as units of length and of velocity, 
respectively, without loss of generality. 

Now, this problem may be posed: given arbitrary values bfa, p, which are the resulting 
values of the unknowns c/a, dja, y? 

j~~oo _-1.
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FIG. 1. FIG. 2. 
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FIG. 3. FIG. 4. 

3. Balances of mass and momentum 

We choose a closed control surface which intersects the participating jets sufficiently 
far from their region of mutual interaction. There the pressure is undisturbed and each 
jet is a uniform parallel stream, the mass and momentum-flux of which is proportional 
to its respective width. 

Conservation of mass within the control volume yields: 

(3.1) a+b-c-d = 0. 

Conservation of the momentum component parallel to the centerline renders: 

(3.2) a-bcos{J+ccosy-d = 0. 

No useful equation can be obtained from the normal momentum component, nor from 
the moment of momentum because of the symmetry of the flow. 

From Eqs. (3.1) and (3.2) follows by subtraction: 

(3.3) b(l +cos{J)-c(l +cosy) = 0. 

This means: With fixed parameters bfa, {3 the conservation equations admit different 
solutions c/a, y. Provided the parameter y can also be prescribed then the jet width c(y) 
is an increasing function of angle y, the ratio c/b being independent of b/a. In 
consequence of Eq. (3.1), the jet width d(y) is a decreasing function of y. 

Some additional, restrictive conditions for the flow emerge from simple geometry. 
The angles {3, y must not be negative, fJ ~ 0, y ~ 0. Their sum must not exceed two 
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right angles, {J+y ~ n. All jets must have a positive width, i.e. bfa ~ 0, dfa ~ 0. 
Substituting d from Eq. (3.1) and c from Eq. (3.3), the latter condition is equivalent to 

(3.4) b 
1 +cosy 

l a ~ ---=---
cos{J -cosy ' 

dfa ~ 0. 

No restriction is imposed by the condition c/a ~ 0, since this value is always positive 
if {3 < n by Eq. (3.3). 

Figure 6 ilJustrates: there is a compact domain of the three-dimensional (bfa, {J, y)
parameterspace, bounded by the planes bfa = 0, {J = 0, y = 0, {J + y = n and by the 

a a 

FIG. 5. FIG. 6. 

curved surface dfa = 0 of Eq. (3.4). Every point within this domain represents a flow which 
is compatible with the conservation equations. 

4. Streamline patterns 

Consider the topology of the streamline patterns, both in the physical plane and in the 
hodograph, occurring at different parameter triplets (bfa, {3, y) in the region of jet 
interaction. Two types of patterns will readily be distinguished, type A and B (say) 
according to their stagnation points' position off or on the centerline. 

http://rcin.org.pl



PRELIMINARY NOTE ON AN UNDETERMINED IMPINGEMENT PROBLEM 527 

The hodograph, a conformal map of the physical streamlines (or rather: of their mirror 
image on the other side of the centerline) fills a circle of radius V with the exception of 
a straight notch, intersecting the periphery perpendicularly and penetrating less or more 
into the circle's interior. The notch is the image of the centerline. Sources of strengths 
V a, Vb and sinks of strengths Vc, Vd represent the approaching and retreating jets of the 
widths a, b, c, d, respectively. Their position on the periphery is determined by the radius 
vector pointing into the flow direction at infinity of the particular jet. The arcs of the 
periphery between these singular points are the images of the three free streamlines 
bounding the flow in the physical plane. 

For any flow (bja, {1, y), the values c/a and dja are determined by the conservation 
laws, Eqs. (3.1), (3.2), but the depth of the hodograph notch, i.e. the variation of flow 
velocity along the centerline, is not yet known. It can eventually be evaluated from the 
condition that the image of the stagnation point (or points) must fit to the center of the 
hodograph. The mathematical formulation of this condition will not be given here, except 
for the limiting case of Eq. (4.1) below. 

In flows of type A, illustrated by Fig. 2, the stagnation streamline splits the volume 
flux V a of the (half) first jet into one part to be deflected into direction y and another 
one to continue along the centerline. If parameters b;a, {1 are fixed, the partition of the 
first jet changes with y and, obviously, the deflected part increases with y. 

In flows of type B, Fig. 3, the first jet is completely deflected, only the secondary jet 
suffers a partition of its flux Vb. Between the two stagnation points on the centerline, the 
flow direction along the centerline is inverted. Accordingly, the hodograph notch is 
longer than the radius V. 

The limit between flow types A and B is formed by those exceptional flows featuring 
a single stagnation point on the centerline, where three streamlines intersect (under equal 
angles nJ3, instead of the common perpendicular intersection of two streamlines) as shown 
in Fig. 4. The hodograph notch penetrates exactly to the center of the hodograph circle. 
In consequence of this particular form, the hodograph transforms by a simple square root 
operation into the interior of a half circle, Fig. 5. The sources and sinks remain on the 
periphery, their polar angles are halved, the hodograph center, the image of the 
exceptional stagnation point, remains in the center point. The half circle may then be 
completed to a circle and to the full plane using the mirror principle. All singularities 
in that plane are then known. One component of the "flow velocity" induced in that plane 
by the sources and sinks vanishes in the center point because of the symmetry. The other 
component vanishes there too, and that center is the image of the stagnation point 
indeed, if 

(4.1) b . {1 . y d 0 a- sm2 -csm2 + = . 

This is the condition for the limiting case mentioned above. Eliminating d and c by 
Eqs. (3.1 ), (3.3), it can be written 

(4.2) 
b;a = 2(1 +cosy) 

(I+ cos p) (I+ sin ~ ) - (I +cos Pl (I -sin ~ T . 
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In the available domain of the (b/a, {1, y)-parameterspace, Eq. (4.2) is an interface 
which separates the flows of type A from those of type B. That interface is indicated in 
Fig. 6. 

It should be mentioned that flows of twofold symmetry: y = {1, d = a, c = b are 
po~sible at any value bfa, if {1 < n/2. They are of either type A or B, as may be judged 
from Fig. 6. The most symmetric case, having straight stagnation streamlines, is 
y = {1 = n/3, bfa = 2 which is included in the sketches of Fig. 1. 

5. Conclusion 

During the above investigation of an in viscid jet impingement probJem, a three-dimen
sional (bfa, {1, y)-parameterspace was introduced and a compact domain of this space 
was found to contain steady flows, either of type A or B, which seem to be reasonable 
solutions of the problem. The author is unable to imagine an experiment which could 
prescribe more than the two upstream parameters (b/a, {1). Since the experimenta] results 
should be reproducible, it must be expected that a unique selection y (bfa, {1) will be 
effected by some unknown mechanism among the inviscid solutions, if a steady flow can 
be obtained at all. 

Experiments with water jets in air are planned for the future. Therefore, and because 
no detailed computations have yet been made of the streamline patterns and hodographs 
which are shown here as schematic sketches only, this note has been termed a preli
minary one. 
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