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Statistical irreversibility of turbulence
E. A. NOVIKOV

THE PROBLEM of statistical irreversibility of incompressible turbulent flows is formulated. The
group of incompressible (i.e. preserving the elementary volume) transformations of the region
in itself is chosen as the phase space of flow. A statistical principle which is close to the ideas
of Boltzmann and Gibbs is suggested. The calculations based on this principle explain the
general irreversible tendencies in the spectra of turbulent flows: in the two-dimensional flows
the energy is transferred from the smaller scale to larger scale motions, in the three-dimensional—
from larger to small scale motions. The equilibrium probability distribution is suggested.

1. IN THREE-DIMENSIONAL turbulent flows of incompressible fluid the energy is transferred
from large scale to the small scale motions. The influence of the viscosity is important
only in the range of very small scales [1], when the spectrum of energy decreases sharply
(exponentially) [2]. The main parameter determining the internal structure of a turbulent
flow, the energy flux is not dependent on the viscosity [1]. Then we may suppose that
this tendency of energy transfer in three-dimensional flows takes place in an ideal non-
dissipative fluid as well.

At the same time, this motion of an ideal fluid is dynamically reversible. If at some
instant we change the sign of the velocity field, then all the processes will be reversed.
Therefore, the tendency of the energy transfer has a statistical character.

The problem in question becomses particularly interesting if we recall that in two-
dimensional turbulent flows the reverse tendency takes place, i.e. the energy is trans-
ferred from the smaller scale to larger scale motions. Such a possibility was pointed out
in some theoretical studies [3-6]. The recent numerical experiments on the simulation
of the two-dimensional turbulence [7] and laboratory experiments with a conductive
liquid in a strong magnetic field [8] confirm this effect. Finally, the data on the atmospheric
general circulation also give evidence for thz energy transfer from the smaller to larger
scales which is somsatimss called “the negative viscosity” [9].

Irreversible tendencies appzar not only in the energy spactrum but in all probability
distributions and they produce in particular the phenomsznon of intermittency of turbulent
flows (cf. [10], where you can find references on earlier works).

This set of problems might naturally bz called the problem of statistical irreversibility
of turbulent flows. Hzre we suggest a certain approach to the solution of this problem
which is close to the ideas of Boltzmann and Gibbs. The main objective is to choose the
phase space and the averaging procadure in such a way that a standard turbulent flow
regime would correspond to an “equilibrium distribution” in the phase space.
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2. For the construction of a general theory of turbulence, statistical characteristics
of vorticity field are of major interest [11, 2, 12]. Velocity and pressure fields are expressed
in an incompressible fluid through the vorticity field.

Let Q°(r) be an initial vorticity, x'(a)—a position of liquid particles at the time ¢, a—
initial coordinates. In the two-dimensional flow of ideal fluid, the vorticity of a liquid
particle is conserved,

M Q(x'(a)) = 2°(a),
but in the three-dimensional flows, the vorticity lines are stretching as [13]:
@ 21(x@ = 22 020,

As the phase space of flow at the fixed £2° we choose the group G of incompressible,
i.., preserving the elementary volume, transformations of the region into itself x(a).
On this group (more accurately on its finite approximation—see p. 3) we give the prob-
ability distribution u. We require u to be invariant in relation to shifts on the group which
is an analog of the Liouville condition of phase volume conservation.

The condition of the energy conservation determines an energy surface in the phase
space. The area of the energy surface o(E) determined by an integral over u does not
depend en the time moment at which the initial vorticity field was taken, i.e. it is the
integsal of motion.

We assyme that the fluid moves the more free the quicker the phase trajectory fills
(with some spreading) the whole available region of the phase space. The question what
this available region at a fixed R° is requires a special study. Basing on the kmown ideas
of Boltzmann and Gibbs and on some intuitive considerations, we formulate the following
statistical principle: the statistical characteristics of flow are readjusted on an average
over a Jarge time in such a way that the liquid may move with a maximum freedom. Start-
ing from the averaging procedure over x(8) and taking into account (1) and (2), one
may obtain statistical characteristics of the “equilibrium” state to which the system is
approaching.

Here we shall make the averaging over the whole phase space. Therefore the energy
of the equilibrium state oorresponds to the mean energy calculated for the distribution
o(E). The statistical charaoteristics of the equilibrium state must be invariant relative
to transformation of &° by formulae (1) and (2) with an arbitrary x(s). In particular,
when replacing 2° by Q' these formulae must be invariant. This corresponds to the
exfoliation of the functional space of the flows on the so-called “sheets of fields with equal
circulation” [14]. Together with averaging over x(a) which is an averaging over the sheet,
one may perform a complementary averaging over 2°.

3. The calculations are always performed with the help of some finite-dimensional
approximation, In this work, we choose the averaging procedure to be as simple as possible.
A finite region of the fluid-filled space is divided into n cells with equal volumes although
possibly different shapes. Consider various transferenices of fluid from certain cells to other
ones. These transferences (transpositions) form a non-commutative group G.., We pre-
scribe to each transference an equal probability 1/n! The probability distribution uy
8o constructed in this way is evidently invariant with respect to shifts over the group.
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If the field R° is smooth, then choosing n sufficiently large may approximate with
any accuracy the fluid motion over a finite time interval using the indicated transferences.
In this sense, u, is invariant relating to the shifts along the phase trajectories of the roughen-
ed system. On the other hand, any discrete transference (e.g. transposition of two volumes)
may be performed by continuous incompressible transformation constructing, if necessary,
circulations for the exchange of fluids between neighbouring cells.

4, Let us consider two-dimensional flow. Expand the vorticity field into series using
the system of eigenfunctions of the Laplace operator

6) Q@ =D AS@, A4S = kS,
k

which satisfy the condition of orthogonal normalization
@ Sy Se(r) = Sue.
Here and below the overbar denotes averaging over the volume occupied by the fluid,
O 1s Kronecker’s symbol.
From (3) and (4), making use of the change of variables r = x’(a) and accounting
for (1) and incompressibility condition, we get
& = Q@) S (1) = °@) Sk (x'(®)).

The averaging over u, we shall denote by { ),. The vorticity spectrum is expressed by
the value

(Si(x(a)) Si(x(b)))n

and when determining this value it is convenient to consider separately the cases when
the points @ and b are in the same cell and in different cells. After simple calculations
of combinatorial type one gets that]

) (O = " @Y+ (@) Son— @) G

where w, = QB Q. index (n) shows that the preliminary averaging inside each cell
was performed. The higher order moments are calculated in a similar way. In particular,

7.0 13
(@EE) 0@, = (,,—fl(ﬁ‘;l—a [6?.".—.," = L (8t 80t 80 + ni]

Here 0 = 2—(2), () = Q° symbols 6 are equal to one when all the indicated points
are in one cell and equal to zero in the opposite case.

Functions S, entering (5) are quickly decreasing with increasing of K and values of
Simyare close to-one due to (4). After filtration of large scale components which is denoted
by tilda, we get for the mean square of vorticity gradient, vorticity and velocity that at
n—

(VD) = 0, {(£2)*), = const, {(F)?s = 0.

Thus in the equilibrium state of two-dimensional flow the energy is concentrated
in the range of the small wave numbers and vorticity spreads into the range of large wave
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numbers (compare [5, 6]). The second statement follows also from the first and from an
easily provable inequality

KFKQ > Kgs

where K, and K are wave numbers averaged correspondingly over velocity and vorticity
spectra, K, is a constant of motion.

5. In the case of three-dimensional flows, by virtue of (2), it is necessary to average
quantities dependent on the derivatives of the transformation x(a). In the averaging pro-
cedure suggested in p. 3 there are discontinuous functions, therefore this procedure is
inadmissible in the three-dimensional case (the invariance relative to the pointed out
in p. 2 transformations of Q° is violated here)(*). Nevertheless, the calculations were
carried out by two methods: using approximations of derjvatives by finite differences
and using Fourier transformations. The vorticity spectrum is expressed then through
the quantities of the type

(x i (a') X, I(b') Sl (x (a)) Sk (X(b))),, ’

which are calculated taking into account the fact that some points may occur in the same
cell. Results obtained by both methods prove to be close to each other.
We present here the basic fact: at n —» o0

@)y, » o,  {(H)*)n — const.

Therefore, according to these calculations, the equilibrium state of three-dimensional
flows is characterized by the growth of vorticity and by the transfer of energy into the
large wave-number range. The difference between the three-dimensional case and the
two-dimensional one is naturally related to the effect of stretching of vortex lines.

6. The proposed statistical principle allows to explain the general irreversible ten-
dencies in the spectra of two-dimensional and three-dimensional flows. In order to perform
detailed calculations of statistical characteristics of particular flows on the base of this
principle it is necessary to specify the averaging procedure over the phase space. In par-
ticular, one should take into account the conservation law or the balance of energy. The
simplest presumption is that in case of isotropic flows the phase trajectory fills uniformly
the region of intersection of the sheet, having equal circulation, with the energy surface.
The condition of the maximum of entropy for the distribution on the sheet at a fixed
mean energy leads to a factor exp {—BH[Q°, x)]}, where H is kinetic energy. This factor
is to be introduced into the averaging procedure over x(a), described in p. 3, whereby
a corresponding statistical sum will appear instead of n!

It is possible to make a generalization of the described approach for the case of compres-
sible conducting fluid.

The author wishes to express his gratitude to V.I. ArNoLD, L. M. BREKHOVSKIKH,
L. A. Dikry, B. B. KapoMTsEv, Ya. G. SiNAY for th: helpful discussions of this paper.

(') In order not to disrupt the vortex lines in thz thres-dimansional case at transferences of fluid it is
useful to approximate w® by superpositions of vortex rings. This question will bs considzred in detail
in another paper.
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