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Statistical irreversibility of turbulence 

E. A. NOVIKOV 

THE PROBLEM of statistical irreversibility of incompressible turbulent flows is formulated. The 
group of incompressible (i.e. preserving the elementary volume) transformations of the region 
in itself is chosen as the phase space of flow. A statistical principle which is close to the ideas 
of Boltzmann and Gibbs is suggested. The calculations based on this principle explain the 
general irreversible tendencies in the spectra of turbulent flows: in the two-dimensional flows 
the energy is transferred from the smaller scale to larger scale motions, m the three-dimensional­
from larger to small scale motions. The equilibrium probability distribution is suggested. 

1. IN THREE-DIMENSIONAL turbulent flows of incompressible fluid the energy is transferred 
from large scale to the small scale motions. The influence of the viscosity is important 
only in the range of very small scales [1 ], when the spectrum of energy decreases sharply 
(exponentially) [2]. The main parameter determining the internal structure of a turbulent 
flow, the energy flux is not dependent on the viscosity [1]. Then we may suppose that 
this tendency of energy transfer in three-dimensional flows takes place in an ideal non­
dissipative fluid as well. 

At the same time, this motion of an ideal fluid is dynamically reversible. If at some 
instant we change the sign of the velocity field, then all the proc~sses will be reversed. 
Therefore, the tendency of the energy transfer has a statistical character. 

The problem in question becomes particularly interesting if we recall that in two­
dimensional turbulent flows the rev~rse tendency takes place, i.e. the energy is trans­
ferred from the smaller scale to larg~r scale motions. Such a possibility was pointed out 
in some theoretical studies [3-6]. The r~c~nt numerical experiments on the simulation 
of the two-dimensional turbulenc~ J7] and laboratory experiments with a conductive 
liquid in a strong magnetic field [8] confirm this effect. Finally, the data on the atmospheric 
general circulation also giv~ evidence for th~ energy transfer from the sm1ller to larger 
scales which is sometimes called "the negative viscosity" [9]. 

Irreversible tendencies appear not only in the energy sp~ctrum but in all probability 
distributions and they produc~ in particular the phenomenon of intermittency of turbulent 
flows (cf. [10], where you can find references on earlier works). 

This set of problems might naturally be c11led the problem of statistical irreversibility 
of turbulent flow;). H-ere we suggest a certain approach to the solution of this problem 
which is close to the ideas of B)ltzm1nn and Qibb:>. The m1in objective is to choose the 
phase space and the averaging proc·edure in such a way th1t a standud turbulent flJW 
regime would C)rresp:md to an ''equilibrium distribution" in the phase space. 
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2. For the construction of a general theory of turbulence, statistical characteristics 
of vorti~ty field are of major interest [11, 2, 12]. Velocity and pressure fields are expressed 
in an incompressible fluid through the vorticity field. 

Let A0{r) be an initial vorticity, x'(a)-a position of liquid particles at the timet, a­
initial coordinates. In the two-dimensional flow of ideal fluid, the vorticity of a liquid 
particle is conserved, 

(1) !l(x'(a)) = D0 (a), 

but in the three-dimensional flows, the vorticity lines are stretching as [13]: 

(2) .Qf(x(a) = o~(a) D2(a). 
ua~ 

As the phase space of flow at the fixed 0° we choose the group G of incompressible, 
i.e., preserving the elementary volume, transformations of the region into itself x(a). 
On this group (more accurately on its finite . approximation-see p. 3) we give the prob­
ability distribution p,. We require p, to be invariant in relation to shifts on the group which 
is an analog of the Liouville condition of phase volume conservation. 

The condition of the energy conservation determines an energy surface in the phase 
space. The area of the energy surface u(E) determined by an integral over p, does not 
d.~pemcl ()tl the time moment at which the initial vortieity field was tabn, i.e. it is the 
~~ ~f m<»ion. 

W~ ~8VJP.e tJu~t the ftuid. 11\0VCII the more free tho quicker the pb&H trajectory iUs 
(with so~ ,_preading) the whole available region of the pbue tpaco. The qucation what 
thi$ ~va.il•ble repon at a bed A0 is requires a apecial study. Basing on tltc blown ideas 
of BolQQJ.alUl and Oibba and on some ifttuitive considerations, we fonnulate the fbllowing 
statistical principle: the statistical characteristics of flow are readjusted on an averap 
QVQf a Jarae tirno in $Uch a way that the liquid tnay move with a maximwn f~om. Start­
mg fr-om the averaging prO«dure over x(a) ·and taking into account (1) and {2), one 
may obtain stati~tical chara.eteristiei of the "equilibrium" state to which the system is 

approac.hina. 
Here · we shall make the averaging over the whole phase space. Therefore the cmtlf8Y 

of the equilib.riulll state corresponds to the mean ellcrgy calculated for the distribution 
a(E). The &tatistical obarao~eristics Qc the equilibrium state must be invariant :t"elative 
to trandbrmation of 09 by formulae (1) and (2) with an arbitrary x(a}. In ~lar, 
when replacing- 0° by 0' these formulae must be invariant. This e.o~pondJ to the 
exfoliation of the functional space of the flows on the so-.called "sheets of fields with equal 
circulation" [14]. Together with averaging over x(a) which is an averaging over the sheet, 
one may perform a CQlllplementary averaging over no. 

3. The calculations are always performed with the help of some finite-dimensional 
approximation. In this work, we choose the averaging procedure to be as simple as possi~. 
A finite region of the fluid-filled space is divided into n cells with equal volumes although 
possibly dift"erent shapes. Consider various transferences of fluid from certain CC)lls to other 
ones. These transferel\COS (transpositions) form a non-commutative group Gru We pre­
scribe to each transference an equal probability 1/n! The probability distribution Pn 
so constructed in this way is evidently invariant with respect to shifts over the group. 
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If the field no is smooth, then choosing n sufficiently large may approximate with 
any accuracy the fluid motion over a finite time interval using the indicated transferences. 
In this sense, p,,. is invariant relating to the shifts along the phase trajectories of the roughen­
ed system. On the other hand, any discrete transference (e.g. transposition of ~wo volumes) 
may be performed by continuous incompressible transformation constructing, if necessary, 
circulations for the exchange of fluids between neighbouring cells. 

4. Let us consider two-dimensional flow. Expand the vorticity field into series using 
the system of eigenfunctions of the Laplace operator 

(3) Qt(r) = }; DiS1(r), L1St = -k2 S", 
k 

which satisfy the condition of orthogonal normalization 

(4) Sk(r)Sk.(r) = dw. 

Here and below the overbar denotes averaging over the volume occupied by the fluid, 
<5u, is Kronecker's symbol. 

From (3) and (4), making use of the change of variables r = xt(a) and accounting 
for (1) and incompressibility condition, we get 

,m = D~(r)Sk (r) = D0 (a)S" (xt(a)). 

The averaging over p,,. we shall denote by ( ),.. The vorticity spectrum is expressed by 
the value 

and when determining this value it is convenient to consider separately the cases when 
the points a and b are in the same cell and in different cells. After simple calculations 
o( combinatorial type one gets thatJ 

(5) (!Jf),. = _!!___
1 

(D0
)

2 (Sk)2 +_!_
1 

[(w~,.>)2 Sf.<,.>- (D~,.>)2 (Sk)2], 
n- n-

where w~,.> = D?~-Q, index (n) shows that the preliminary averaging inside each cell 
was performed. The higher order moments are calculated in a similar way. In particular, 

<w(r)w(r')w(r")) = n2~ [<5<0>. ,-!(b(n),+b(n>,+b<">,)+~]. 
n (n- 1)(n-2) r,r,r n r,r r,r ~.r n2 

Here w = !J-(!J), (!J) = !J0
, symbols <5<"> are equal to one when all the indicated points 

are in one cell and equal to zero in the opposite case. 
Functions S" entering (5) are quickly decreasing with increasing of K and values of 

Sf<n> are close to "One due to (4). After filtration oflarge scale components which is denoted 
by tilda, we get for the mean square of vorticity gradient, vorticity and velocity that at 
n-+ oo 

((VQ)2),.-+ oo, ((Q)2),.--+ const, ((V)2),.-+ 0. 

Thus in the equilibrium state of two-dimensional flow the energy is concentrated 
in the range of the small wave numbers and vorticity spreads into the range of large wave. 
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numbers (compare [5, 6D. The second statement follows als.o from the first and from an 
easily provable inequality 

where K, and KD are wave numbers . averaged correspondingly over velocity and vorticity 
spectra, K0 is a constant of motion. 

5. In the case of three-dimensional flows, by virtue of (2), it is necessary to average 
quantities dependent on the derivatives of the transformation x(a). In the averaging pro­
cedure suggested in p. 3 there are discontinuous functions, therefore this procedure is 
inadmissible in the three-dimensional case (the invariance relative to the pointed out 
in p. 2 transformations of no is violated here)(~). Nevertheless, the calculations were 
carried out by two methods: using approximations · of derivatives by finite differences 
and using Fourier transformations. The vorticity spectrum is expressed then through 
the quantities of the type 

which are calculated taking into account the fact that some points may occur in the same 
celJ. Results obtained by both methods prove to be close to each other. 

We present here the basic fact: at n ~ oo 

Therefore, according to these calculations, the equilibrium state of three-dimensional 
flows is characterized by the growth of vorticity and by the transfer of energy into the 
large wave-number range. The difference between the three-dimensional case and the 
two-dimensional one is naturally related to the effect of stretching of vortex lines. 

6. The proposed statistical principle allows to explain the general irreversible ten­
dencies in the spectra of two-dimensional and three-dimensional flows. In order to perform 
detailed calculations of statistical characteristics of particular flows on the base of this 
principle it is necessary to specify the averaging procedure over the phase space. In par­
ticular, one should take into account the conservation law or the balance of energy. The 
simplest presumption is that in case of isotropic flows the phase trajectory fills uniformly 
the region of intersection of the sheet, having equal circulation, with the energy surface. 
The condition of the maximum of entropy for the distribution on the sheet at a fixed 
mean energy leads to a factor exp{ -PH[D0

, x)l}, where His kinetic energy. This factor 
is to be introduced into the averaging procedure over x(a), described in p. 3, whereby 
a corresponding statistical sum will appear instead of n! 

It is possible to make a generalization of the described approach for the case of compres­
sible conducting fluid. 

The author wishes to express his gratitude to V. I. ARNOLD, L. M. BREKHOVSKIKH, 

L. A. DIKIY, B. B. KADOMTSEV, Ya. G. SINAY for the helpful discussion> of this paper. 

(1) In order not to disrupt the vortex line3 in the three-dimemional case at transferences of fluid it is 
useful to approximate w 0 by superpo3itions of vortex: rings. This que3tion will be considered in detail 
in another paper. 
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