767.

ON THE GAUSSIAN THEORY OF SURFACES.

[From the Proceedings of the London Mathematical Society, vol. xiI. (1881), pp. 187-192. Read June 9, 1881.]

In the Memoir, Bour, "Théorie de la déformation des surfaces" (Jour. de l'Éc. Polyt., Cah. 39 (1862), pp. 1-148), the author, working with the form $d s^{2}=d v^{2}+g^{2} d u^{2}$ as a special case of Gauss's formula $d s^{2}=E d p^{2}+2 F d p d q+G d q^{2}$, obtains (p. 29) the following equations which he calls fundamental:-

$$
\text { [IV.] }\left\{\begin{array}{l}
\frac{1}{g} \frac{d g_{1}}{d v}=T^{2}-H H_{1} \\
\frac{d T}{d u}+\frac{d . H g}{d v}-H_{1} g_{1}=0 \\
\frac{d . T g^{2}}{d v}+g \frac{d H_{1}}{d u}=0
\end{array}\right.
$$

where g_{1} is written to denote $\frac{d g}{d v}$, and where (see p. 26)
H is the curvature of the normal section containing the tangent to the curve $v=$ constant,
H_{1} is the curvature of the normal section at right angles to the preceding, containing the tangent to the (geodesic) curve $u=$ constant,
T is the torsion of the same geodesic curve;
or, what is the same thing (see p. 25), the quadric equation for the determination of the principal radii of curvature at the point of the surface is

$$
\left(\frac{1}{\rho}-H\right)\left(\frac{1}{\rho}-H_{1}\right)-T^{2}=0 .
$$

Writing for greater convenience K in place of the suffixed letter H_{1}, also V instead of g, so that the differential formula is $d s^{2}=d v^{2}+V^{2} d u^{2}$, the equations become

$$
\left\{\begin{array}{l}
\frac{1}{V} \frac{d^{2} V}{d v^{2}}=T-H K, \\
\frac{d T}{d u}+\frac{d \cdot H V}{d v}-K \frac{d V}{d v}=0, \\
\frac{d \cdot T V^{2}}{d v}+V \frac{d K}{d u} \quad=0
\end{array}\right.
$$

or, if we use the suffix 1 to denote differentiation in regard to v, and the suffix 2 to denote differentiation in regard to u, then the equations are

$$
\begin{gathered}
\frac{V_{11}}{V}=T^{2}-H K, \\
T_{2}+(H V)_{1}-K V_{1}=0, \\
\left(T V^{2}\right)_{1}+K_{2} V=0,
\end{gathered}
$$

or, what is the same thing,

$$
\left\{\begin{array}{l}
V_{11}=V\left(T^{2}-H K\right), \\
T_{2}+H_{1} V+(H-K) V_{1}=0, \\
T_{1} V+2 T V_{1}+K_{2}=0 .
\end{array}\right.
$$

I wish to show how these formulæ connect themselves with formulæ belonging to the general form $d s^{2}=E d p^{2}+2 F d p d q+G d q^{2}$. These involve not only Gauss's coefficients E, F, G, but also the coefficients $E^{\prime}, F^{\prime}, G^{\prime}$ belonging to the inflexional tangents; and, for convenience, I quote the system of definitions, Salmon's Geometry of Three Dimensions, 3rd ed., 1874, p. 251, viz.

$$
\begin{gathered}
d x, d y, d z=a d p+\alpha^{\prime} d q, \quad b d p+b^{\prime} d q, \quad c d p+c^{\prime} d q ; \\
d^{2} x=\alpha d p^{2}+2 \alpha^{\prime} d p d q+\alpha^{\prime \prime} d q^{2} \\
d^{2} y=\beta d p^{2}+2 \beta^{\prime} d p d q+\beta^{\prime \prime} d q^{2}, \\
d^{2} z=\gamma d p^{2}+2 \gamma^{\prime} d p d q+\gamma^{\prime \prime} d q^{2} ;
\end{gathered}
$$

$A, B, C=b c^{\prime}-b^{\prime} c, \quad c a^{\prime}-c^{\prime} a, \quad a b^{\prime}-a^{\prime} b ; \quad V^{2}=E G-F^{2} ;$

$$
E^{\prime}=A \alpha+B \beta+C \gamma, \quad F^{\prime}=A \alpha^{\prime}+B \beta^{\prime}+C \gamma^{\prime}, \quad G^{\prime}=A \alpha^{\prime \prime}+B \beta^{\prime \prime}+C \gamma^{\prime \prime},
$$

so that $E^{\prime}, F^{\prime \prime}, G^{\prime}$ are, in fact, the determinants

$$
\left|\begin{array}{lll}
a, & b, & c \\
a^{\prime}, & b^{\prime}, & c^{\prime} \\
\alpha, & \beta, & \gamma
\end{array}\right|,\left|\begin{array}{ccc}
a, & b, & c \\
a^{\prime}, & b^{\prime}, & c^{\prime} \\
\alpha^{\prime}, & \beta^{\prime}, & \gamma^{\prime}
\end{array}\right|,\left|\begin{array}{ccc}
a, & b, & c \\
a^{\prime}, & b^{\prime}, & c^{\prime} \\
a^{\prime \prime}, & \beta^{\prime \prime}, & \gamma^{\prime \prime}
\end{array}\right|
$$

The equation for the determination of the principal radii of curvature is

$$
\left(E^{\prime} \rho-E V\right)\left(G^{\prime} \rho-G V\right)-\left(F^{\prime} \rho-F^{\prime} V\right)^{2}=0
$$

which, in the particular case $F=0$ (and therefore $V^{2}=E G$), becomes

$$
\left(E^{\prime} \rho-E V\right)\left(G^{\prime} \rho-G V\right)-F^{\prime 2} \rho^{2}=0,
$$

or, as this may be written,

$$
\left(\frac{1}{\rho}-\frac{E^{\prime}}{E V}\right)\left(\frac{1}{\rho}-\frac{G^{\prime}}{G V}\right)-\frac{F^{\prime 2}}{E G V^{2}}=0,
$$

an equation which corresponds with Bour's form

$$
\left(\frac{1}{\rho}-K\right)\left(\frac{1}{\rho}-H\right)-T^{2}=0
$$

and becomes identical with it, if

$$
E^{\prime}=E V K, \quad G^{\prime}=G V H, \quad F^{\prime}=-V^{2} T .
$$

But, making p, q correspond to Bour's variables, p to v, and q to u, it is necessary to show that the foregoing values (and not the interchanged values $\left.E^{\prime}=G V H, G^{\prime}=E V K\right)$ are the correct ones. We have, Salmon, p. 254,

$$
\left\|\begin{array}{rll}
d q, & \rho E^{\prime}-V E, & \rho F^{\prime}-V F \\
-d p, & \rho F^{\prime}-V F, & \rho G^{\prime}-V G
\end{array}\right\|=0 ;
$$

or, putting herein $F=0$, the equations may be written

$$
\frac{d q}{-d p}=\frac{E^{\prime}}{F^{\prime}}\left(1-\frac{V E}{\rho E^{\prime \prime}}\right)=\frac{F^{\prime}}{G^{\prime}} \div\left(1-\frac{V G}{\rho G^{\prime}}\right) ;
$$

or, we see that to $d q=0$ corresponds the value $\frac{1}{\rho}=\frac{E^{\prime}}{E V}$, and to $d p=0$ the value $\frac{1}{\rho}=\frac{G^{\prime}}{G V}$. Hence the former of these values of $\frac{1}{\rho}$ corresponds to Bour's $d u=0$, that is, to his $\frac{1}{\rho}=K$; and the latter to Bour's $d v=0$, that is, to his $\frac{1}{\rho}=H$; or the values are, as stated,

$$
E^{\prime}=E V K, \quad G^{\prime}=G V H .
$$

The formula $d s^{2}=E d p^{2}+2 F d p d q+G d q^{2}$ agrees with Bour's $d s^{2}=d v^{2}+g^{2} d u^{2}$, if $p=u, q=v, E=1, F=0, G=g^{2}$. With these values, $V^{2}=E G-F^{2}=g^{2}$, or say $g=V$, and Bour's equation is, as it was before written, $d s^{2}=d v^{2}+V^{2} d u^{2}$. And we have to find the three equations which, putting therein $p=u, q=v, E=1, F=0, G=V^{2}$, $E^{\prime}=V K, F^{\prime}=-V^{2} T, G^{\prime}=V^{3} H$, reduce themselves to Bour's equations.

The first of these is nothing else than the equation for the measure of curvature, viz. Salmon, p. 262 (but, using the suffixes 1 and 2 to denote differentiation in regard to p and q respectively), this is

$$
\begin{aligned}
4\left(E^{\prime} G^{\prime}-F^{\prime 2}\right)= & E\left(E_{2} G_{2}-2 F_{1} G_{2}+G_{1}^{2}\right) \\
& +F\left(E_{1} G_{2}-E_{2} G_{1}-2 E_{2} F_{1}+4 F_{1} F_{2}-2 F_{1} G_{1}\right) \\
& +G\left(E_{1} G_{1}-2 E_{1} F_{2}+E_{2}^{2}\right) \\
& -2\left(E G-F^{2}\right)\left(E_{22}-2 F_{12}+G_{11}\right) .
\end{aligned}
$$

In fact, writing herein $E=1, F=0$, and therefore the differential coefficients of E and F each $=0$, the equation becomes

$$
4\left(E^{\prime} G^{\prime}-F^{\prime 2}\right)=G_{1}{ }^{2}-2 G G_{11},
$$

which is

$$
4 V^{4}\left(H K-T^{2}\right)=\left(2 V V_{1}\right)^{2}-2 V^{2}\left(2 V_{1}^{2}+2 V V_{11}\right),=-4 V^{3} V_{11} ;
$$

or finally it is

$$
V_{11}=V\left(T^{2}-H K\right)
$$

The other two of Bour's equations are derived from equations which give respectively the values of $E_{2}^{\prime}-F_{1}^{\prime}$ and $F_{2}^{\prime}-G_{1}^{\prime}$; viz. starting from the equations

$$
\begin{aligned}
& E^{\prime}=A \alpha+B \beta+C \gamma, \\
& F^{\prime \prime}=A \alpha^{\prime}+B \beta^{\prime}+C \gamma^{\prime}, \\
& G^{\prime}=A \alpha^{\prime \prime}+B \beta^{\prime \prime}+C \gamma^{\prime \prime},
\end{aligned}
$$

we see at once that E_{2}^{\prime} and F_{1}^{\prime} contain, E_{2}^{\prime} the terms $A \alpha_{2}+B \beta_{2}+C \gamma_{2}$, and F_{1}^{\prime} the terms $A \alpha_{1}^{\prime}+B \beta_{1}{ }^{\prime}+C \gamma_{1}^{\prime}$, which are equal to each other $\left(\alpha_{2}=\alpha_{1}^{\prime}\right.$ since α and α^{\prime} are the differential coefficients x_{11}, x_{12} of x, and so $\beta_{2}=\beta_{1}{ }^{\prime}$ and $\gamma_{2}=\gamma_{1}^{\prime}$). Hence

$$
E_{2}^{\prime}-F_{1}^{\prime}=A_{2} \alpha+B_{2} \beta+C_{2} \gamma-A_{1} \alpha^{\prime}-B_{1} \beta^{\prime}-C_{1} \gamma^{\prime} ;
$$

and similarly

$$
F_{2}^{\prime}-G_{1}^{\prime}=A_{2} \alpha^{\prime}+B_{2} \beta^{\prime}+C_{2} \gamma^{\prime}-A_{1} \alpha^{\prime \prime}-B_{1} \beta^{\prime \prime}-C_{1} \gamma^{\prime \prime}
$$

Here, from the values of A, B, C, we have

$$
\begin{array}{lll}
A=b c^{\prime}-c b^{\prime} ; & A_{1}=\beta c^{\prime}-\gamma b^{\prime}+b \gamma^{\prime}-c \beta^{\prime} ; & A_{2}=\beta^{\prime} c^{\prime}-\gamma^{\prime} b^{\prime}+b \gamma^{\prime \prime}-c \beta^{\prime \prime} ; \\
B=c a^{\prime}-a c^{\prime} ; & B_{1}=\gamma a^{\prime}-\alpha c^{\prime}+c \alpha^{\prime}-a \gamma^{\prime} ; & B_{2}=\gamma^{\prime} a^{\prime}-\alpha^{\prime} c^{\prime}+c \alpha^{\prime \prime}-a \gamma^{\prime \prime} ; \\
C=a b^{\prime}-b a^{\prime} ; & C_{1}=\alpha b^{\prime}-\beta a^{\prime}+a \beta^{\prime}-b \alpha^{\prime} ; & C_{2}=\alpha^{\prime} b^{\prime}-\beta^{\prime} a^{\prime}+a \beta^{\prime \prime}-b \alpha^{\prime \prime} ;
\end{array}
$$

and, substituting, we find

$$
\begin{aligned}
& E_{2}^{\prime}-F_{1}^{\prime}=2 \alpha^{\prime} \alpha \alpha^{\prime}+a \alpha^{\prime \prime} \alpha, \\
& F_{2}^{\prime}-G_{1}^{\prime}=-2 a \alpha^{\prime} \alpha^{\prime \prime}-a^{\prime} \alpha^{\prime \prime} \alpha,
\end{aligned}
$$

if, for shortness, $a^{\prime} \alpha^{\prime}$ denotes the determinant

$$
\left|\begin{array}{ccc}
a^{\prime}, & \alpha, & \alpha^{\prime} \\
b^{\prime}, & \beta, & \beta^{\prime} \\
c^{\prime}, & \gamma, & \gamma^{\prime}
\end{array}\right|
$$

and so for the other like symbols. Observe that, with

$$
\left|\begin{array}{ccccc}
a, & a^{\prime}, & \alpha & \alpha^{\prime}, & a^{\prime \prime} \\
b, & b^{\prime}, & \beta, & \beta^{\prime}, & \beta^{\prime \prime} \\
c, & c^{\prime}, & \gamma, & \gamma^{\prime}, & \gamma^{\prime \prime}
\end{array}\right|
$$

we have in all 10 determinants, viz. these are $a a^{\prime} \alpha,=E^{\prime} ; a a^{\prime} \alpha^{\prime},=F^{\prime} ; a a^{\prime} \alpha^{\prime \prime},=G^{\prime}$; $\alpha \alpha^{\prime} \alpha^{\prime \prime}$; and the six determinants $a \alpha \alpha^{\prime}, a \alpha^{\prime} \alpha^{\prime \prime}, a \alpha^{\prime \prime} \alpha ; a^{\prime} \alpha \alpha^{\prime}, a^{\prime} \alpha^{\prime} \alpha^{\prime \prime}, a^{\prime} \alpha^{\prime \prime} \alpha$. The foregoing expressions of $E_{2}^{\prime}-F_{1}^{\prime}$ and $F_{2}^{\prime}-G_{1}^{\prime}$ respectively, substituting therein for the determinants $a^{\prime} \alpha \alpha^{\prime}, a \alpha^{\prime \prime} \alpha, a \alpha^{\prime} \alpha^{\prime \prime}, a^{\prime} \alpha^{\prime \prime} \alpha$ their values as about to be obtained, are the required two equations. We have

$$
\begin{array}{ll}
a a+b b+c c=E, & a a^{\prime}+b b^{\prime}+c c^{\prime}=F, \\
a^{\prime} a+b^{\prime} b+c^{\prime} c=F, & a^{\prime} a^{\prime}+b^{\prime} b^{\prime}+c^{\prime} c^{\prime}=G, \\
\alpha a+\beta b+\gamma c=\frac{1}{2} E_{1}, & \\
\alpha a^{\prime}+\beta b^{\prime}+\gamma c^{\prime}=F_{1}-\frac{1}{2} E_{2}, \\
\alpha^{\prime} a+\beta^{\prime} b+\gamma^{\prime} c=\frac{1}{2} E_{2}, & \alpha^{\prime} a^{\prime}+\beta^{\prime} b^{\prime}+\gamma^{\prime} c^{\prime}=\frac{1}{2} G_{1}, \\
\alpha^{\prime \prime} a+\beta^{\prime \prime} b+\gamma^{\prime \prime} c=F_{2}-\frac{1}{2} G_{1}, & \alpha^{\prime \prime} a^{\prime}+\beta^{\prime \prime} b^{\prime}+\gamma^{\prime \prime} c^{\prime}=\frac{1}{2} G_{2} ;
\end{array}
$$

and if from the first five equations, regarded as equations linear in (a, b, c), we eliminate these quantities, and from the second five equations, regarded as linear in ($a^{\prime}, b^{\prime}, c^{\prime}$), we eliminate these quantities, we obtain two sets each of five equations,

$$
\left\|\begin{array}{rrrrr}
a, & a^{\prime}, & \alpha, & \alpha^{\prime}, & \alpha^{\prime \prime} \\
b, & b^{\prime} & \beta, & \beta^{\prime}, & \beta^{\prime \prime} \\
c, & c^{\prime}, & \gamma, & \gamma^{\prime}, & \gamma^{\prime \prime} \\
E, & F^{\prime \prime}, & \frac{1}{2} E_{1}, & \frac{1}{2} E_{2}, & F_{2}^{\prime}-\frac{1}{2} G_{1}
\end{array}\right\|=0, \text { and }\left\|\begin{array}{rrrrr}
a, & a^{\prime}, & \alpha, & \alpha^{\prime}, & \alpha^{\prime \prime} \\
b, & b^{\prime}, & \beta, & \beta^{\prime}, & \beta^{\prime \prime} \\
c, & c^{\prime}, & \gamma, & \gamma^{\prime}, & \gamma^{\prime \prime} \\
F, & G, & F_{1}-\frac{1}{2} E_{2}, & \frac{1}{2} G_{1}, & \frac{1}{2} G_{2}
\end{array}\right\|=0 .
$$

These may be written,

$$
\begin{array}{rlr}
F \alpha \alpha^{\prime} \alpha^{\prime \prime}-\frac{1}{2} E_{1} a^{\prime} \alpha^{\prime} \alpha^{\prime \prime}-\frac{1}{2} E_{2} a^{\prime} \alpha^{\prime \prime} \alpha-\left(F_{2}-\frac{1}{2} G_{1}\right) a^{\prime} \alpha \alpha^{\prime} & =0, \\
-E \alpha \alpha^{\prime} \alpha^{\prime \prime}+\frac{1}{2} E_{1} a \alpha^{\prime} \alpha^{\prime \prime}+\frac{1}{2} E_{2} a \alpha^{\prime \prime} \alpha+\left(F_{2}-\frac{1}{2} G_{1}\right) a \alpha \alpha^{\prime} & =0, \\
E a^{\prime} \alpha^{\prime} \alpha^{\prime \prime}-F a \alpha^{\prime} \alpha^{\prime \prime}+\frac{1}{2} E_{2} G^{\prime}-\left(F_{2}-\frac{1}{2} G_{1}\right) F^{\prime \prime} & =0, \\
E a^{\prime} \alpha^{\prime \prime} \alpha-F a \alpha^{\prime \prime} \alpha-\frac{1}{2} E_{1} G^{\prime}+\left(F_{2}-\frac{1}{2} G_{1}\right) E^{\prime} & =0, \\
E a^{\prime} \alpha \alpha^{\prime}-F a \alpha \alpha^{\prime}+\frac{1}{2} E_{1} F^{\prime}-\quad \frac{1}{2} E_{2} E^{\prime} & =0 ;
\end{array}
$$

and

$$
\begin{array}{rlrl}
G \alpha \alpha^{\prime} \alpha^{\prime \prime}-\left(F_{1}-\frac{1}{2} E_{2}\right) a^{\prime} \alpha^{\prime} \alpha^{\prime \prime}-\frac{1}{2} G_{1} a^{\prime} \alpha^{\prime \prime} \alpha & -\frac{1}{2} G_{2} a^{\prime} \alpha \alpha^{\prime} & =0, \\
-F \alpha \alpha^{\prime} \alpha^{\prime \prime}+\left(F_{1}-\frac{1}{2} E_{2}\right) a \alpha^{\prime} \alpha^{\prime \prime}+\frac{1}{2} G_{1} a \alpha^{\prime \prime} \alpha & +\frac{1}{2} G_{2} a \alpha \alpha^{\prime} & =0, \\
F a^{\prime} \alpha^{\prime} \alpha^{\prime \prime} & -G a \alpha^{\prime} \alpha^{\prime \prime}+\frac{1}{2} G_{1} G & -\frac{1}{2} G_{2} F^{\prime} & =0, \\
F a^{\prime} \alpha^{\prime \prime} \alpha & -G a \alpha^{\prime \prime} \alpha-\left(F_{1}-\frac{1}{2} E_{2}\right) G^{\prime}+\frac{1}{2} G_{2} E^{\prime} & =0, \\
F a^{\prime} \alpha \alpha^{\prime} & -G a \alpha \alpha^{\prime}+\left(F_{1}-\frac{1}{2} E_{2}\right) F^{\prime}-\frac{1}{2} G_{1} E^{\prime \prime} & =0 .
\end{array}
$$

Attending in each set only to the third, fourth, and fifth equations, and combining these in pairs, we obtain

$$
\begin{array}{lll}
V^{2} a \alpha^{\prime} \alpha^{\prime \prime}+\left(\frac{1}{2} F G_{1}-F F_{2}+\frac{1}{2} E G_{2}\right) F^{\prime}+\left(-\frac{1}{2} E G_{1}+\frac{1}{2} F E_{2}\right) & G^{\prime}=0, \\
V^{2} a^{\prime} \alpha^{\prime} \alpha^{\prime \prime}+\left(\frac{1}{2} G G_{1}-G F_{2}+\frac{1}{2} F G_{2}\right) F^{\prime}+\left(-\frac{1}{2} F G_{1}+\frac{1}{2} G E_{2}\right) & G^{\prime}=0 ; \\
V^{2} a \alpha^{\prime \prime} \alpha+\left(-\frac{1}{2} F E_{1}+E F_{1}-\frac{1}{2} E E_{2}\right) G^{\prime}+\left(-\frac{1}{2} F G_{1}+F F_{2}-\frac{1}{2} E G_{2}\right) E^{\prime}=0, \\
V^{2} a^{\prime} \alpha^{\prime \prime} \alpha+\left(-\frac{1}{2} G E_{1}+F F_{1}-\frac{1}{2} F E_{2}\right) G^{\prime}+\left(-\frac{1}{2} G G_{1}+G F_{2}-\frac{1}{2} F G_{2}\right) E^{\prime \prime}=0 ; \\
V^{2} a \alpha \alpha^{\prime}+\left(\frac{1}{2} E G_{1}-\frac{1}{2} F E_{2}\right) & E^{\prime}+\left(\frac{1}{2} F E_{1}-E F_{1}+\frac{1}{2} E E_{2}\right) F^{\prime}=0, \\
V^{2} a^{\prime} \alpha \alpha^{\prime}+\left(\frac{1}{2} F G_{1}-\frac{1}{2} G E_{2}\right) & E^{\prime}+\left(\frac{1}{2} G E_{1}-F F_{1}+\frac{1}{2} F E_{2}\right) F^{\prime \prime}=0 .
\end{array}
$$

We thus obtain

$$
\begin{aligned}
E_{2}^{\prime}-F_{1}^{\prime} & =\frac{2}{V^{2}}\left\{\left(\quad-\frac{1}{2} F G_{1}+\frac{1}{2} G E_{2}\right) E^{\prime}+\left(-\frac{1}{2} G E_{1}+F F_{1}-\frac{1}{2} F F_{2}\right) F^{\prime}\right\} \\
& +\frac{1}{V^{2}}\left\{\left(\frac{1}{2} F E_{1}-E F_{1}+\frac{1}{2} E E_{2}\right) G^{\prime}+\left(\frac{1}{2} F G_{1}-F F_{2}+\frac{1}{2} E G_{2}\right) E^{\prime}\right\} \\
F_{2}^{\prime}-G_{1}^{\prime} & =\frac{2}{V^{2}}\left\{\left(\frac{1}{2} F G_{1}-F F_{2}+\frac{1}{2} E G_{2}\right) F^{\prime \prime}\left(r \quad-\frac{1}{2} E G_{1}+\frac{1}{2} F E_{2}\right) G^{\prime}\right\} \\
& +\frac{1}{V^{2}}\left\{\left(-\frac{1}{2} G E_{1}+F F_{1}-\frac{1}{2} F E_{2}\right) G^{\prime}+\left(-\frac{1}{2} G G_{1}+G F_{2}-\frac{1}{2} F G_{2}\right) E^{\prime}\right\} ;
\end{aligned}
$$

or, finally,

$$
\begin{aligned}
E_{2}^{\prime}-F_{1}^{\prime}=\frac{1}{V^{2}}\{ & \left(-\frac{1}{2} F G_{1}+G E_{2}-F F_{2}+\frac{1}{2} E G_{2}\right) E^{\prime} \\
& \left.+\left(-G E_{1}+2 F F_{1}-F F_{2}\right) F^{\prime}+\left(\frac{1}{2} F E_{1}-E F_{1}+\frac{1}{2} E E_{2}\right) G^{\prime}\right\} \\
F_{2}^{\prime}-G_{1}^{\prime}=\frac{1}{V^{2}}\{ & \left(-\frac{1}{2} G G_{1}+G F_{2}-\frac{1}{2} F G_{2}\right) E^{\prime} \\
& \left.+\left(F G_{1}-2 F F_{2}+E G_{2}\right) F^{\prime \prime}+\left(-\frac{1}{2} G E_{1}+F F_{1}-E G_{1}+\frac{1}{2} F E_{2}\right) G^{\prime}\right\}
\end{aligned}
$$

which are the required formulæ; and which may, I think, be regarded as new formulæ in the Gaussian theory of surfaces.

Writing herein as before, the first of these becomes

$$
(V K)_{2}+\left(V^{2} T\right)_{1}=\frac{1}{V^{2}}\left\{\frac{1}{2}\left(V^{2}\right)_{2} \because K\right\},=V_{2} K
$$

that is,

$$
V_{2} K+V K_{2}+V^{2} T_{1}+2 V V_{1} T=V_{2} K
$$

or finally

$$
V T_{1}+2 T V_{1}+K_{2}=0,
$$

which is Bour's third equation. And the second equation becomes

$$
\begin{aligned}
-\left(V^{2} T\right)_{2}-\left(V^{3} H\right)_{1} & =\frac{1}{V^{2}}\left\{-\frac{1}{2} V^{2}\left(V^{2}\right)_{1} V K+\left(V^{2}\right)_{2}\left(-V^{2} T\right)-\left(V^{2}\right)_{1} V^{2} H\right\}, \\
& =-V^{2} V_{1} K-2 V V_{2} T-2 V^{2} V_{1} H,
\end{aligned}
$$

that is,

$$
-V^{2} T_{2}-2 V V_{2} T-V^{3} H_{1}-3 V^{2} V_{1} H=-V^{2} V_{1} K-2 V V_{2} T-2 V^{2} V_{1} H ;
$$

or finally

$$
T_{2}+V H_{1}+(H-K) V_{1}=0
$$

which is Bour's second equation.

