958.

ON THE SURFACE OF THE ORDER n WHICH PASSES THROUGH A GIVEN CUBIC CURVE.

[From the Messenger of Mathematics, vol. xxiII. (1894), pp. 79, 80.]
IT is natural to assume that, taking A, B, C to denote the general functions $(x, y, z, w)^{n-2}$ of the order $n-2$, the general surface of the order n which passes through the curve

$$
\left\{\begin{array}{lll}
x, & y, & z \\
y, & z, & w
\end{array}\right\}=0
$$

(or, what is the same thing, the curve $x: y: z: w=1: \theta: \theta^{2}: \theta^{3}$), has for its equation

$$
\left|\begin{array}{lll}
A, & B, & C \\
x, & y, & z \\
y, & z, & w
\end{array}\right|=0
$$

but the formal proof is not immediate. Writing the equation in the form

$$
U=S a x^{a} y^{\beta} z^{\gamma} w^{\delta},=0, \alpha+\beta+\gamma+\delta=n,
$$

then U must vanish on writing therein $x: y: z: w=1: \theta: \theta^{2}: \theta^{3} ;$ a term $\alpha x^{\alpha} y^{\beta} z^{\gamma} w^{\delta}$ becomes $=a \theta^{p}$, where $p=\beta+2 \gamma+3 \delta$ is the weight of the term reckoning the weights of x, y, z, w as $0,1,2,3$ respectively; and hence the condition is that, for each given weight p, the sum $S a$ of the coefficients of the several terms of this weight shall be $=0$. Using any such equation to determine one of the coefficients thereof in terms of the others, the function U is reduced to a sum of duads $a\left(x^{\alpha} y^{\beta} z^{\gamma} w^{\delta}-x^{\alpha^{\prime}} y^{\beta^{\prime}} z^{\gamma} w^{\delta^{\gamma}}\right)$, where in each duad the two terms are of the same degree and of the same weight, and where a is an arbitrary coefficient; it ought therefore to be true that each such duad $x^{a} y^{\beta} z^{\gamma} w^{\delta}-x^{\alpha^{\prime}} y^{\beta} z^{\gamma} w^{\delta}$ has the property in question-or writing $P, Q, R=y w-z^{2}$, $z y-x w, x z-y^{2}$, say, that each such duad is of the form $A P+B Q+C R$.

Suppose for a moment that α^{\prime} is greater than α, but that $\beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ are each less than β, γ, δ respectively: the duad is $x^{\alpha^{\prime}} y^{\beta} z^{\gamma} w^{\delta}\left(x^{\lambda}-y^{\mu} z^{\nu} w^{\rho}\right)$, where λ, μ, ν, ρ are each
positive, and hence $x^{\lambda}-y^{\mu} z^{\nu} w^{\rho}$ is a duad having the property in question, or changing the notation say $x^{\alpha}-y^{\beta} z^{\gamma} w^{\delta}$ has the property in question; and in like manner, by considering the several cases that may happen, we have to show that each of the duads

$$
\begin{aligned}
& x^{\alpha}-y^{\beta} z^{\gamma} w^{\delta}, \quad y^{\beta}-x^{\alpha} z^{\gamma} w^{\delta}, \quad z^{\gamma}-x^{\alpha} y^{\beta} w^{\delta}, w^{\delta}-x^{\alpha} y^{\beta} z^{\gamma}, \\
& x^{\alpha} y^{\beta}-z^{\gamma} w^{\delta}, x^{\alpha} z^{\gamma}-y^{\beta} w^{\delta}, x^{a} w^{\delta}-y^{\beta} z^{\gamma}
\end{aligned}
$$

has the property in question; it being of course understood that, in each of these duads, the two terms have the same degree and the same weight. The first form cannot exist; for we must have therein $\alpha=\beta+\gamma+\delta$ and $0=\beta+2 \gamma+3 \delta$, which is inconsistent with $\alpha, \beta, \gamma, \delta$ each of them positive. For the second form $\beta=\alpha+\gamma+\delta$, $\beta=2 \gamma+3 \delta$: this is $\alpha=\gamma+2 \delta$ or the duad is $y^{2 \gamma+3 \delta}-x^{\gamma+2 \delta} z^{\gamma} w^{\delta}$, $=\left(y^{2}\right)^{\gamma} y^{3 \delta}-(x z)^{\gamma}\left(x^{2} w\right)^{\delta}$. Writing $y^{2}=x z-R$, we have terms containing the factor R, and a residual term $(x z)^{\boldsymbol{r}}\left\{y^{38}-\left(x^{2} w\right)^{\delta}\right\}$, and writing herein

$$
x w=y z-Q \text { or } x^{2} w=x y z-Q
$$

we have terms containing Q as a factor and a residual term

$$
(x z)^{\gamma}\left\{y^{3 \delta}-(x y z)^{\delta}\right\},=(x z)^{\gamma} y^{\delta}\left\{\left(y^{2}\right)^{\delta}-(x z)^{\delta}\right\},
$$

and again writing herein $y^{2}=x z-R$, we see that this term contains the factor R : hence the duad in question consists of terms having the factor R or the factor Q. Similarly for the other cases: either $\alpha, \beta, \gamma, \delta$ can be expressed as positive numbers, and then the duad consists of terms each divisible by P, Q, or R; or else $\alpha, \beta, \gamma, \delta$ cannot be expressed as positive numbers, and then the duad does not exist: thus for the third form $z^{\gamma}-x^{\alpha} y^{\beta} w^{\delta}$, here $\gamma=\alpha+\beta+\delta, 2 \gamma=\beta+3 \delta$, or say $\gamma=3 \alpha+2 \beta, \delta=2 \alpha+\beta$, and the duad is $z^{3 \alpha+2 \beta}-x^{\alpha} y^{\beta} w^{2 a+\beta},=z^{3 \alpha}\left(z^{2}\right)^{2 \beta}-\left(x w^{2}\right)^{\alpha}(y w)^{\beta}$, which can be reduced to the required form. But for the duad $x^{\alpha} y^{\beta}-z^{\gamma} w^{\delta}$, we have $\alpha+\beta=\gamma+\delta, \beta=2 \gamma+3 \delta$, which cannot be satisfied by positive values of $\alpha, \beta, \gamma, \delta$, and thus the duad does not exist.

A surface of the order n which passes through $3 n+1$ points of a cubic curve contains the curve: hence the number of constants, or say the capacity of a surface of the order n, through the curve $P=0, Q=0, R=0$, is

$$
\frac{1}{6}(n+1)(n+2)(n+3)-1-(3 n+1),=\frac{1}{6}\left(n^{3}+6 n^{2}-7 n-6\right)
$$

Primâ facie the capacity of the surface $A P+B Q+C R=0, A, B, C$ being general functions of the order $n-2$, is

$$
3 \cdot \frac{1}{6}(n-1) n(n+1)-1,=\frac{1}{2}\left(n^{3}-n-2\right),
$$

but there is a reduction on account of the identical equations

$$
x P+y Q+z R=0, \quad y P+z Q+w R=0
$$

which connect the functions P, Q, R : for $n=2$, the formulæ give each of them as it should do, Capacity $=2$; viz. the quadric surface through the curve is

$$
a P+b Q+c R=0
$$

