960.

ON THE CIRCLE OF CURVATURE AT ANY POINT OF AN ELLIPSE.

[From the Messenger of Mathematics, vol. xxiv. (1895), pp. 47, 48.]
Let

$$
u=\frac{x}{a}, \quad v=\frac{y}{b}, \quad u^{2}+v^{2}=1 .
$$

The equation of the circle of curvature at the point (x, y) of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

$$
X^{2}+Y^{2}+2 \frac{a^{2}-b^{2}}{a b}\left(-b X u^{3}+a Y v^{3}\right)+u^{2}\left(a^{2}-2 b^{2}\right)+v^{2}\left(b^{2}-2 a^{2}\right)=0
$$

Write $X=a \xi, Y=b \eta$, then this becomes

$$
a^{2} \xi^{2}+b^{2} \eta^{2}+2\left(a^{2}-b^{2}\right)\left(-\xi u^{3}+\eta v^{3}\right)+u^{2}\left(a^{2}-2 b^{2}\right)+v^{2}\left(b^{2}-2 a^{2}\right)=0 .
$$

To find where this meets the ellipse, we must write $\xi^{2}+\eta^{2}=1$; eliminating η, we have
$a^{2} \xi^{2}+b^{2}\left(1-\xi^{2}\right)-2\left(a^{2}-b^{2}\right) \xi u^{3}+u^{2}\left(a^{2}-2 b^{2}\right)+v^{2}\left(b^{2}-2 a^{2}\right)+2\left(a^{2}-b^{2}\right) v^{3} \sqrt{ }\left(1-\xi^{2}\right)=0$,
or putting for shortness

$$
a^{2}-b^{2}=A, \quad u^{2}\left(a^{2}-2 b^{2}\right)+v^{2}\left(b^{2}-2 a^{2}\right)=B,
$$

the equation for ξ is

$$
A \xi^{2}-2 A \xi u^{3}+b^{2}+B+2 A v^{3} \sqrt{ }\left(1-\xi^{2}\right)=0
$$

but

$$
b^{2}+B=b^{2}\left(u^{2}+v^{2}\right)+u^{2}\left(a^{2}-2 b^{2}\right)+v^{2}\left(b^{2}-2 a^{2}\right)=u^{2}\left(a^{2}-b^{2}\right)+v^{2}\left(2 b^{2}-2 a^{2}\right)=A\left(u^{2}-2 v^{2}\right),
$$

viz.

$$
\xi^{2}-2 \xi u^{3}+u^{2}-2 v^{2}+2 v^{3} \sqrt{ }\left(1-\xi^{2}\right)=0,
$$

that is,

$$
\left(\xi^{2}-2 u^{3} \xi+u^{2}-2 v^{2}\right)^{2}-4 v^{6}\left(1-\xi^{2}\right)=0,
$$

which is without difficulty reduced to the form
that is, and hence

$$
(\xi-u)^{3}\left\{\xi-\left(u^{3}-3 u v^{2}\right)\right\}=0,
$$

viz. writing $u, v=\cos \theta, \sin \theta$, then we have

$$
\begin{aligned}
& \xi=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta=\cos 3 \theta, \\
& \eta=\sin ^{3} \theta-3 \sin \theta \cos ^{2} \theta=-\sin 3 \theta,
\end{aligned}
$$

or the circle of curvature at $(a \cos \theta, b \sin \theta)$ cuts the ellipse in $(a \cos 3 \theta,-b \sin 3 \theta)$, as is known.
c. XIII.

