959.

NOTE ON PLÜCKER'S EQUATIONS.

[From the Messenger of Mathematics, vol. xxiv. (1895), pp. 23, 24.]
It is well known that if
then the equations

$$
\begin{gathered}
A, B, C, D=2,3,6,8, \\
n=m^{2}-m-A \delta-B \kappa \\
\iota=3 m^{2}-6 m-C \delta-D \kappa \\
m=n^{2}-n-A \tau-B \iota \\
\kappa=3 n^{2}-6 n-C \tau-D \iota
\end{gathered}
$$

are equivalent to three independent equations giving n, τ, ι in terms of m, δ, κ. It is easy to show that the necessary conditions in order that this may be so, are

$$
C=3 A, \quad \text { and } \quad D=3 B-1
$$

that is,

$$
A, B, C, D=A, B, 3 A, 3 B-1
$$

where A and B are arbitrary.
In fact, from the last two equations eliminating τ, and for n, ι substituting their values, we have

$$
\begin{aligned}
C m-A \kappa= & (C-3 A)\left(m^{2}-m-A \delta-B \kappa\right)^{2} \\
& -(C-6 A)\left(m^{2}-m-A \delta-B \kappa\right) \\
& +(A D-B C)\left(3 m^{2}-6 m-C \delta-D \kappa\right)
\end{aligned}
$$

which must therefore be an identity. In order that the term in m^{4} may vanish we must have $C=3 A$; and then substituting this value for C, we must have

$$
3 A m-A \kappa=3 A\left(m^{2}-m-A \delta-B \kappa\right)+(A D-3 A D)\left(3 m^{2}-6 m-3 A \delta-D \kappa\right)
$$

Here the coefficient of m^{2} must vanish, that is,

$$
0=3 A+3 A D-9 A B, \quad \text { or } \quad D=3 B-1,
$$

and, substituting this value, the equation is
that is,

$$
\begin{aligned}
3 A m-A \kappa= & 3 A(-m-A \delta-B \kappa) \\
& -A\{-6 m-3 A \delta-(3 B-1) \kappa\}
\end{aligned}
$$

$$
\begin{aligned}
3 m-\kappa= & -3 m-3 A \delta-3 B \kappa \\
& +6 m+3 A \delta+(3 B-1) \kappa
\end{aligned}
$$

an identity.

