955.

THE NUMERICAL VALUE OF $\Pi i,=\Gamma(1+i)$.

[From the Messenger of Mathematics, vol. xxiII. (1894), pp. 36-38.]
I Do not know whether the numerical value of Πx for an imaginary value of x has ever been calculated; and I wish to calculate it for a simple case $x=i$.

We have

$$
\begin{gathered}
\frac{1}{\Pi z}=\left(1+\frac{z}{1}\right) \\
\left(1+\frac{z}{2}\right) e^{z \mathrm{hl} \frac{1}{2}} \\
\left(1+\frac{z}{3}\right) e^{z \mathrm{hl} \frac{3}{3}} \\
\vdots \\
\left(1+\frac{z}{s}\right) e^{z \mathrm{hl} \frac{s-1}{s}}
\end{gathered}
$$

where hl denotes the hyperbolic logarithm. Hence, in particular, when $z=i$, we have

$$
\begin{aligned}
& \frac{1}{\Pi i}= 1+\frac{i}{1} \\
& 1+\frac{i}{2} \cdot \operatorname{coshl} \frac{1}{2}+i \sin \mathrm{hl} \frac{1}{2} . \\
& 1+\frac{i}{3} \cdot \operatorname{coshl} \frac{2}{3}+i \operatorname{sinhl} \frac{2}{3} . \\
& 1+\frac{i}{4} \cdot \operatorname{coshl} \frac{3}{4}+i \operatorname{sinhl} \frac{3}{4} . \\
& \vdots \\
&= \sqrt{ }(1+1) \cdot \cos \theta_{1}+i \sin \theta_{1} \cdot \cos \phi_{1}-i \sin \phi_{1} \\
& \sqrt{ }\left(1+\frac{1}{4}\right) \cdot \cos \theta_{2}+i \sin \theta_{2} \cdot \cos \phi_{2}-i \sin \phi_{2} . \\
& \sqrt{ }\left(1+\frac{1}{9}\right) \cdot \cos \theta_{3}+i \sin \theta_{3} \cdot \cos \phi_{3}-i \sin \phi_{3} .
\end{aligned}
$$

($\phi_{1}=0$, and in the subsequent terms the imaginary part is taken with a negative sign in order to obtain positive values for $\phi_{2}, \phi_{3}, \& c$. $),=\Omega(\cos \Theta+i \sin \Theta)$, if Ω be the modulus and Θ the sum

$$
\left(\theta_{1}-\phi_{1}\right)+\left(\theta_{2}-\phi_{2}\right)+\left(\theta_{3}-\phi_{3}\right)+\ldots .
$$

We have

$$
\Omega_{1}=\sqrt{ }(1+1) \cdot \sqrt{ }\left(1+\frac{1}{4}\right) \cdot \sqrt{ }\left(1+\frac{1}{9}\right) \ldots
$$

which may be calculated directly. The value of Ω admits, however, of a finite expression, viz. we have

$$
\Omega^{2}=\frac{1}{\Pi i \Pi(-i)}=\frac{\sin \pi i}{\pi i}=\frac{e^{\pi}-e^{-\pi}}{2 \pi}
$$

the approximate numerical value is $\Omega=1.9173$, viz. we have

$$
e^{\pi}-e^{-\pi}=23 \cdot 141-\cdot 043=23 \cdot 098: \quad \log =1 \cdot 3635744, \quad-\log 2 \pi=\overline{1} \cdot 201819,
$$

whence

$$
\log \Omega^{2}=\cdot 5653935, \quad \log \Omega=\cdot 2826967, \text { or } \Omega=1 \cdot 9173
$$

We have
also

$$
\tan \theta_{1}=1, \quad \tan \theta_{2}=\frac{1}{2}, \quad \tan \theta_{3}=\frac{1}{3}, \quad \& c
$$

$$
\phi_{1}=0, \quad \phi_{2}=\frac{180^{\circ}}{M \pi} \log \frac{1}{2}, \quad \phi_{3}=\frac{180^{\circ}}{M \pi} \log \frac{2}{3}, \quad \& c .
$$

where M is the modulus for the Briggian logarithms,

$$
\begin{aligned}
M=4342944 \log & =\overline{1} \cdot 6377843 \\
\pi=3 \cdot 1415926 \quad & =4971499 \\
180 \quad & =2 \cdot 2552755 \\
& \\
\log \frac{180}{M \pi} & =2 \cdot 1203383, \frac{180^{\circ}}{M_{\pi}}=131^{\circ} \cdot 9284 .
\end{aligned}
$$

whence

We hence calculate the succession of values of θ and ϕ as follows:

θ	\tan	arc	
1	1	45°	
2	$\cdot 5$	26	34^{\prime}
3	$\cdot 3333333$	18	26
4	$\cdot 25$	14	2
5	-2	11	19
6	$\cdot 1666666$	9	28
7	$\cdot 1428571$	8	8
8	$\cdot 125$	7	8
9	$\cdot 1111111$	6	20
10	$\cdot 1$	5	43

$66-2$

524

ϕ	$131^{\circ} \cdot 93 \times$		$\theta-\phi=$				
1			0		1	45°	
2	$\log _{1 / 2}=$	$\cdot 3010300=$	39°	43^{\prime}	2	-13°	9
3	$2 / 3$	$\cdot 1760913$	23	14	3	4	48
4	3/4	$\cdot 1249387$	16	29	4	2	27
5	4/5	- 0969100	12	47	5	1	28
6	5/6	-0791813	10	26	6	0	58
7	6/7	$\cdot 0669467$	8	50	7	0	42
8	7/8	-0579920	7	39	8	0	31
9	8/9	-0511525	6	44	9	0	24
10	9/10	$\cdot 0457575$	6	2	10	0	19

The sum of all the negative arcs $\theta_{2}-\phi_{2}, \theta_{3}-\phi_{3}, \ldots$ as far as calculated, that is, up to $\theta_{10}-\phi_{10}$ is $=24^{\circ} 46^{\prime}$, or, writing x for the sum of the remaining arcs $\theta_{11}-\phi_{11}$ to infinity, we have

$$
\frac{1}{\Pi i}=1 \cdot 9173(\cos \Theta+i \sin \Theta)
$$

where

$$
\Theta=45^{\circ}-24^{\circ} 46^{\prime}-x, \quad=20^{\circ} 14^{\prime}-x .
$$

It would not be difficult to calculate a limit to the value of x.

