955.

THE NUMERICAL VALUE OF Πi , $= \Gamma (1+i)$.

[From the Messenger of Mathematics, vol. XXIII. (1894), pp. 36-38.]

I DO not know whether the numerical value of Πx for an imaginary value of x has ever been calculated; and I wish to calculate it for a simple case x = i.

We have

$$\frac{1}{\Pi z} = \left(1 + \frac{z}{1}\right)$$

$$\left(1 + \frac{z}{2}\right) e^{z \ln \frac{1}{2}}$$

$$\left(1 + \frac{z}{3}\right) e^{z \ln \frac{z}{3}}$$

$$\vdots$$

$$\left(1 + \frac{z}{s}\right) e^{z \ln \frac{s-3}{s}}$$

$$\vdots$$

where hl denotes the hyperbolic logarithm. Hence, in particular, when z = i, we have

$$\begin{aligned} \frac{1}{\Pi i} &= 1 + \frac{i}{1} \\ 1 + \frac{i}{2} \cdot \cosh \ln \frac{1}{2} + i \sin \ln \frac{1}{2} \cdot \\ 1 + \frac{i}{3} \cdot \cosh \ln \frac{2}{3} + i \sin \ln \frac{2}{3} \cdot \\ 1 + \frac{i}{4} \cdot \cosh \ln \frac{3}{4} + i \sin \ln \frac{3}{4} \cdot \\ &\vdots \\ &= \sqrt{(1+1)} \cdot \cos \theta_1 + i \sin \theta_1 \cdot \cos \phi_1 - i \sin \phi_1 \cdot \\ &\sqrt{(1+\frac{1}{4})} \cdot \cos \theta_2 + i \sin \theta_2 \cdot \cos \phi_2 - i \sin \phi_2 \cdot \\ &\sqrt{(1+\frac{1}{9})} \cdot \cos \theta_3 + i \sin \theta_3 \cdot \cos \phi_3 - i \sin \phi_3 \cdot \\ &\vdots \end{aligned}$$

www.rcin.org.pl

 $(\phi_1 = 0, \text{ and in the subsequent terms the imaginary part is taken with a negative sign in order to obtain positive values for <math>\phi_2$, ϕ_3 , &c.), = $\Omega(\cos \Theta + i \sin \Theta)$, if Ω be the modulus and Θ the sum

$$(\theta_1 - \phi_1) + (\theta_2 - \phi_2) + (\theta_3 - \phi_3) + \dots$$

We have

$$\Omega_1 = \sqrt{(1+1)} \cdot \sqrt{(1+\frac{1}{4})} \cdot \sqrt{(1+\frac{1}{9})} \dots,$$

which may be calculated directly. The value of Ω admits, however, of a finite expression, viz. we have

$$\Omega^2 = \frac{1}{\Pi i \Pi (-i)} = \frac{\sin \pi i}{\pi i} = \frac{e^{\pi} - e^{-\pi}}{2\pi},$$

the approximate numerical value is $\Omega = 1.9173$, viz. we have

$$e^{\pi} - e^{-\pi} = 23.141 - 0.043 = 23.098$$
: $\log = 1.3635744$, $-\log 2\pi = \overline{1.201819}$,

whence

$$\log \Omega^2 = .5653935$$
, $\log \Omega = .2826967$, or $\Omega = 1.9173$.

We have

$$\tan \theta_1 = 1$$
, $\tan \theta_2 = \frac{1}{2}$, $\tan \theta_3 = \frac{1}{3}$, &c.

also

$$\phi_1 = 0, \quad \phi_2 = \frac{180^\circ}{M\pi} \log \frac{1}{2}, \quad \phi_3 = \frac{180^\circ}{M\pi} \log \frac{2}{3}, \&c.,$$

where M is the modulus for the Briggian logarithms,

whence

$$\log \frac{180}{M\pi} = 2.1203383, \ \frac{180^{\circ}}{M\pi} = 131^{\circ}.9284.$$

We hence calculate the succession of values of θ and ϕ as follows:

θ	tan	arc		
I	1	45°		
2	•5	$26 \ 34'$		
3	.33333333	18 26		
4	·25	14 2		
5	•2	11 19		
6	·1666666	9 28		
7	·1428571	8 8		
8	·125	7 8		
9	·1111111	6 20		
10	·1	5 43		

66 - 2

www.rcin.org.pl

955]

THE NUMERICAL VALUE OF $\Pi i_{i} = \Gamma (1+i)$.

φ	131° •93	×			$\theta - \phi$	=		
I		all the set	= 0		1	45°		
2	$\log 1/2 =$	·3010300	$= 39^{\circ}$	43'	2		– 13°	9'
3	2/3	$\cdot 1760913$	23	14	3		4	48
4	3/4	.1249387	16	29	4		2	27
5	4/5	·0969100	12	47	5		1	28
6	5/6	·0791813	10	26	6		0	58
7	6/7	·0669467	8	50	7		0	42
8	7/8	·0579920	7	39	8		0	31
9	8/9	$\cdot 0511525$	6	44	9		0	24
10	9/10	$\cdot 0457575$	6	2	10		0	19

The sum of all the negative arcs $\theta_2 - \phi_2$, $\theta_3 - \phi_3$, ... as far as calculated, that is, up to $\theta_{10} - \phi_{10}$ is $= 24^{\circ} 46'$, or, writing x for the sum of the remaining arcs $\theta_{11} - \phi_{11}$ to infinity, we have

$$\frac{1}{\Pi i} = 1.9173 \ (\cos \Theta + i \sin \Theta),$$

where

 $\Theta = 45^{\circ} - 24^{\circ} 46' - x, = 20^{\circ} 14' - x.$

It would not be difficult to calculate a limit to the value of x.

[955