756.

A GEOMETRICAL CONSTRUCTION RELATING TO IMAGINARY QUANTITIES.

[From the Messenger of Mathematics, vol. x. (1881), pp. 1-3.]
Let A, B, C be given imaginary quantities, and let it be required to construct the roots of the quadric equation

$$
\frac{1}{X-A}+\frac{1}{X-B}+\frac{1}{X-C}=0 .
$$

The equation is
that is,

$$
\begin{gathered}
(X-B)(X-C)+(X-C)(X-A)+(X-A)(X-B)=0, \\
3 X^{2}-2(A+B+C) X+B C+C A+A B=0,
\end{gathered}
$$

and we have therefore

$$
\begin{aligned}
3 X-(A+B+C) & = \pm \sqrt{ }\left\{(A+B+C)^{2}-3(B C+C A+A B)\right\} \\
& = \pm \sqrt{ }\left\{A^{2}+B^{2}+C^{2}-B C-C A-A B\right\}
\end{aligned}
$$

or as this may be written

$$
X=\frac{1}{3}(A+B+C) \pm \sqrt{ }\left\{\frac{1}{3}\left(A+B \omega+C \omega^{2}\right) \cdot \frac{1}{3}\left(A+B \omega^{2}+C \omega\right)\right\},
$$

where ω is an imaginary cube root of unity,

$$
=\cos 120^{\circ}+i \sin 120^{\circ} \text { suppose. }
$$

Taking an arbitrary point O as the origin, let the imaginary quantity $A,=\alpha+\alpha^{\prime} i$ suppose, be represented by the point A, coordinates α and α^{\prime}; and in like manner the imaginary quantities B and C by the points B and C respectively.

Then $B \omega, B \omega^{2}$ are represented by points B_{1}, B_{2}, obtained by rotating the point B about the origin through angles of 120° and 240° respectively; $C \omega^{2}, C \omega$ are repre-
sented by points C_{1}, C_{2} obtained by rotating the point C about the origin through angles of 240° and $480^{\circ}\left(=120^{\circ}\right)$ respectively : and

$$
\frac{1}{8}(A+B+C), \quad \frac{1}{3}\left(A+B \omega+C \omega^{2}\right), \quad \frac{1}{3}\left(A+B \omega^{2}+C \omega\right)
$$

are represented by the points G, G_{1}, G_{2} which are the c.G.'s of the triangles $A B C$, $A B_{1} C_{1}, A B_{2} C_{2}$ respectively. The formula therefore is

$$
X=O G \pm \sqrt{ }\left(O G_{1} . O G_{2}\right),
$$

where, if a, a^{\prime} are the coordinates of G, then $O G$ is written to denote the imaginary quantity $a+a^{\prime} i$; and the like as regards $O G_{1}, O G_{2}$. Taking $\sqrt{ }\left(O G_{1} . O G_{2}\right)=O H$, we then have H a point such, that the distance $O H$ from the origin is = geometric mean of the distances $O G_{1}, O G_{2}$, and that the radial direction* of the distance $O H$ bisects the radial directions of the distances $O G_{1}, O G_{2}$ respectively. Finally, measuring off from G in the radial direction $O H$, and in the opposite radial direction, the distances $G X^{\prime}, G X^{\prime \prime}$ each $=O H$; we have the two points $X^{\prime}, X^{\prime \prime}$ representing the two roots X.

The construction is somewhat simplified if we take for the origin the point G; for then $O G=0$, and we have $X= \pm \sqrt{ }\left(G G_{1}, G G_{2}\right)$, so that the points $X^{\prime}, X^{\prime \prime}$ are in fact the point H, and the opposite point in regard to G.

The theory of the more general equation

$$
\frac{p}{X-A}+\frac{q}{X-B}+\frac{r}{X-C}=0,
$$

(p, q, r real) is somewhat similar, but the construction is less simple; we have

$$
(p+q+r) X^{2}-\{(q+r) A+(r+p) B+(p+q) C\} X+p B C+q C A+r A B=0
$$

Writing herein $q+r, r+p, p+q=l, m, n$, the equation becomes
$(l+m+n) X^{2}-2(l A+m B+n C) X+(-l+m+n) B C+(l-m+n) C A+(l+m-n) A B=0$, that is,

$$
\begin{aligned}
& \{(l+m+n) X-l A-m B-n C\}^{2} \\
& \quad=(l A+m B+n C)^{2}+\left\{l^{2}-(m+n)^{2}\right\} B C+\left\{m^{2}-(n+l)^{2}\right\} C A+\left\{n^{2}-(l+m)^{2}\right\} A B .
\end{aligned}
$$

Here the right-hand side is

$$
=l^{2} A^{2}+m^{2} B^{2}+n^{2} C^{2}+\left(l^{2}-m^{2}-n^{2}\right) B C+\left(-l^{2}+m^{2}-n^{2}\right) C A+\left(-l^{2}-m^{2}+n^{2}\right) A B,
$$

which is

$$
=-l^{2}(C-A)(A-B)-m^{2}(A-B)(B-C)-n^{2}(C-A)(A-B),
$$

and consequently is a product of two linear factors; these, in fact, are

$$
\frac{1}{l}\left\{l^{2} A+\frac{1}{2}\left(-l^{2}-m^{2}+n^{2} \pm \sqrt{ } \Delta\right) B+\frac{1}{2}\left(-l^{2}+m^{2}-n^{2} \mp \sqrt{ } \Delta\right) C\right\}
$$

[^0]where
$$
\Delta=l^{4}+m^{4}+n^{4}-2 m^{2} n^{2}-2 n^{2} l^{2}-2 l^{2} m^{2}
$$

It is to be observed that $\Delta,=\left(l^{2}-m^{2}-n^{2}\right)^{2}-4 m^{2} n^{2}$, is negative; hence, calling the factors $f A+g B+h C, f^{\prime} A+g^{\prime} B+h^{\prime} C$ respectively, the coefficients f, g, h, and $f^{\prime}, g^{\prime}, h^{\prime}$ are imaginary; moreover $f+g+h=0, f^{\prime}+g^{\prime}+h^{\prime}=0$.

The values of X thus are

$$
(l+m+n) X=l A+m B+n C \pm \sqrt{ }\left\{(f A+g B+h C)\left(f^{\prime} A+g^{\prime} B+h^{\prime} C\right)\right\},
$$

and then passing to the geometrical representation, we have $\frac{l A+m B+n C}{l+m+n}$ represented by the point which is the c.a. of weights l, m, n at the points A, B, C respectively; on account of the imaginary values of the coefficients the construction is not immediately applicable to the factors

$$
f A+g B+h C, \quad f^{\prime} A+g^{\prime} B+h^{\prime} C
$$

but a construction, such as was used for the factors

$$
A+\omega B+\omega^{2} C, \quad A+\omega^{2} B+\omega C,
$$

might be found without difficulty.

[^0]: * Radial direction is, I think, a convenient expression for the direction of a line considered as drawn as a radius of a circle from the centre, and not as a diameter in two opposite radial directions.

