755.

ON THE MATRIX $\left(\begin{array}{cc}a, & b \\ c, & d\end{array}\right)$, AND IN CONNEXION THEREWITH

THE FUNCTION $\frac{a x+b}{c x+d}$.
[From the Messenger of Mathematics, vol. ix. (1880), pp. 104-109.]
In the preceding paper, [due to Prof. W. W. Johnson,] the theory of the symbolic powers and roots of the function $\frac{a x+b}{c x+d}$ is developed in a complete and satisfactory manner; the results in the main agreeing with those obtained in the original memoir, Babbage, "On Trigonometrical Series," Memoirs of the Analytical Society (1813), Note I. pp. 47 - 50 , and which are to some extent reproduced in my "Memoir on the Theory of Matrices," Phil. Trans., t. cxlviII. (1858), pp. 17-37, [152]. I had recently occasion to reconsider the question, and have obtained for the nth function $\phi^{n} x$, where $\phi x=\frac{a x+b}{c x+d}$, a form which, although substantially identical with Babbage's, is a more compact and convenient one; viz. taking λ to be determined by the quadric equation

$$
\frac{(\lambda+1)^{2}}{\lambda}=\frac{(a+d)^{2}}{a d-b c},
$$

the form is

$$
\phi^{n}(x)=\frac{\left(\lambda^{n+1}-1\right)(a x+b)+\left(\lambda^{n}-\lambda\right)(-d x+b)}{\left(\lambda^{n+1}-1\right)(c x+d)+\left(\lambda^{n}-\lambda\right)(c x-a)} .
$$

The question is, in effect, that of the determination of the nth power of the matrix $\binom{a, b}{c, d}$; viz. in the notation of matrices

$$
\left(x_{1}, y_{1}\right)=\left(\left.\begin{array}{l}
a, b \\
c, d
\end{array} \right\rvert\,(x, y),\right.
$$

means the two equations $x_{1}=a x+b y, y_{1}=c x+d y$; and then if x_{2}, y_{2} are derived in like manner from x_{1}, y_{1}, that is, if $x_{2}=a x_{1}+b y_{1}, y_{2}=c x_{1}+d y_{1}$, and so on, x_{n}, y_{n} will be linear functions of x, y; say we have $x_{n}=a_{n} x+b_{n} y, y_{n}=c_{n} x+d_{n} y$: and the nth power of $\left(\left.\begin{array}{ll}a, & b \\ c, & d\end{array} \right\rvert\,\right.$ is, in fact, the matrix $\left(\left.\begin{array}{cc}a_{n}, & b_{n} \\ c_{n}, & d_{n}\end{array} \right\rvert\,\right.$.

In particular, we have

$$
\binom{a, b}{c, d}^{2},=\left(\left.\begin{array}{c}
\left.a_{2}, b_{2}\right),=\left(\left.\begin{array}{c}
a^{2}+b c, b(a+d) \\
c_{2}, d_{2}
\end{array} \right\rvert\,\right. \\
c(a+d), d^{2}+b c
\end{array} \right\rvert\,,\right.
$$

and hence the identity

$$
\left|\begin{array}{cc}
a, & b \\
c, & d
\end{array}\right|-(a+d)\left(\begin{array}{ll}
a, & b \\
c, & d
\end{array} \left\lvert\,+(a d-b c)\left(\left.\begin{array}{ll}
1, & 0 \\
0, & 1
\end{array} \right\rvert\,\right)=0\right.\right.
$$

viz. this means that the matrix

$$
\left(\begin{array}{ll}
a_{2}-(a+d) a+a d-b c, & b_{2}-(a+d) b \\
c_{2}-(a+d) c & , \\
d_{2}-(a+d) d+a d-b c
\end{array}\right)=\left(\begin{array}{ll}
0, & 0
\end{array}\right),
$$

or, what is the same thing, that each term of the left-hand matrix is $=0$; which is at once verified by substituting for $a_{2}, b_{2}, c_{2}, d_{2}$ their foregoing values.

The explanation just given will make the notation intelligible and show in a general way how a matrix may be worked in like manner with a single quantity: the theory is more fully developed in my Memoir above referred to. I proceed with the solution in the algorithm of matrices. Writing for shortness $M=\binom{a, b}{a, d}$, the identity is

$$
M^{2}-(a+d) M+(a d-b c)=0
$$

the matrix $(1,0)$ being in the theory regarded as $=1$; viz. M is determined by |0, 1
a quadric equation; and we have consequently $M^{n}=$ a linear function of M. Writing this in the form

$$
M^{n}-A M+B=0
$$

the unknown coefficients A, B can be at once obtained in terms of α, β, the roots of the equation

$$
\begin{gathered}
u^{2}-(a+d) u+a d-b c=0 \\
\alpha^{n}-A \alpha+B=0 \\
\beta^{n}-A \beta+B=0
\end{gathered}
$$

or more simply from these equations, and the equation for M^{n}, eliminating α, β, we have

$$
\left|\begin{array}{lll}
M^{n}, & M, & 1 \\
\alpha^{n}, & \alpha, & 1 \\
\beta^{n}, & \beta, & 1
\end{array}\right|=0 ;
$$

that is,

$$
M^{n}(\alpha-\beta)-M\left(\alpha^{n}-\beta^{n}\right)+\alpha \beta\left(\alpha^{n-1}-\beta^{n-1}\right)=0
$$

But instead of α, β, it is convenient to introduce the ratio λ of the two roots, say we have $\alpha=\lambda \beta$; we thence find

$$
\begin{aligned}
(\lambda+1) \beta & =a+d \\
\lambda \beta^{2} & =a d-b c
\end{aligned}
$$

giving

$$
\frac{(\lambda+1)^{2}}{\lambda}=\frac{(a+d)^{2}}{a d-b c}
$$

for the determination of λ, and then

$$
\begin{aligned}
& \beta=\frac{a+d}{\lambda+1} \\
& \alpha=\frac{(a+d) \lambda}{\lambda+1}
\end{aligned}
$$

The equation thus becomes
or we have

$$
M^{n}(\lambda-1) \beta-M\left(\lambda^{n}-1\right) \beta^{n}+\left(\lambda^{n}-\lambda\right) \beta^{n+1}=0
$$

$$
M^{n}=\frac{\beta^{n-1}}{\lambda-1}\left\{\left(\lambda^{n}-1\right) M-\left(\lambda^{n}-\lambda\right) \beta\right\}
$$

It is convenient to multiply the numerator and denominator by $\lambda+1$, viz. we thus have

$$
M^{n}=\frac{\beta^{n-1}}{\lambda^{2}-1}\left[\left(\lambda^{n+1}-1\right) M+\left(\lambda^{n}-\lambda\right)\{M-(\lambda+1) \beta\}\right]
$$

The exterior factor is here

$$
=\frac{1}{\lambda^{2}-1}\left(\frac{a+d}{\lambda+1}\right)^{n-1}
$$

moreover $(\lambda+1) \beta$ is $=a+d$: hence

$$
M=\left(\begin{array}{ll}
a, & b
\end{array}\right)
$$

and

$$
M-(\lambda+1) \beta=\binom{a, b}{c, d}-\left(\begin{array}{cc}
a+d, & 0 \\
0, a+d
\end{array}\right),=\left(\begin{array}{cc}
-d, & b \\
c,-a
\end{array}\right)
$$

the formula thus is

$$
M^{n}=\frac{1}{\lambda^{2}-1}\left(\frac{a+d}{\lambda+1}\right)^{n-1}\left\{\left(\begin{array}{l}
\left.\lambda^{n+1}-1\right)\left(\begin{array}{l}
a, b \\
c, d
\end{array} \left\lvert\,+\left(\lambda^{n}-\lambda\right)\left(\left.\begin{array}{c}
-d, b \\
c,-a
\end{array} \right\rvert\,\right\}\right., ~\right.
\end{array}\right.\right.
$$

viz. we have thus the values of the several terms of the nth matrix

$$
M^{n}=\left(\left.\begin{array}{ll}
a_{n}, & b_{n} \\
c_{n}, & d_{n}
\end{array} \right\rvert\,\right.
$$

and, if instead of these we consider the combinations $a_{n} x+b_{n}$ and $c_{n} x+d_{n}$, we then obtain

$$
\begin{aligned}
& a_{n} x+b_{n}=\frac{1}{\lambda^{2}-1}\left(\frac{a+d}{\lambda+1}\right)^{n-1}\left\{\left(\lambda^{n+1}-1\right)(a x+b)+\left(\lambda^{n}-\lambda\right)(-d x+b)\right\}, \\
& c_{n} x+d_{n}=\quad, \quad, \quad\left\{\left(\lambda^{n+1}-1\right)(c x+d)+\left(\lambda^{n}-\lambda\right)(c x-a)\right\}
\end{aligned}
$$

and in dividing the first of these by the second, the exterior factor disappears.
It is to be remarked that, if $n=0$, the formulæ become as they should do $a_{0} x+b_{0}=x$, $c_{0} x+d_{0}=1$; and if $n=1$, they become $a_{1} x+b_{1}=a x+b, c_{1} x+d_{1}=c x+d$.

If $\lambda^{m}-1=0$, where m, the least exponent for which this equation is satisfied, is for the moment taken to be greater than 2 , the terms in $\}$ are
and

$$
(\lambda-1)(a x+b)+(1-\lambda)(-d x+b),
$$

$$
(\lambda-1)(c x+d)+(1-\lambda)(c x-a) ;
$$

viz. these are $(\lambda-1)(a+d) x$, and $(\lambda-1)(a+d)$, or if for $(\lambda-1)(a+d)$ we write $\left(\lambda^{2}-1\right) \frac{a+d}{\lambda+1}$, the formulæ become for $n=m$

$$
\begin{aligned}
& a_{m} x+b_{m}=\left(\frac{a+d}{\lambda+1}\right)^{m} x \\
& c_{m} x+d_{m}=\left(\frac{a+d}{\lambda+1}\right)^{m}
\end{aligned}
$$

viz. we have here

$$
\frac{a_{m} x+b_{m}}{c_{m} x+d_{m}}=x
$$

or the function is periodic of the m th order. Writing for shortness $9=\frac{s \pi}{n}, s$ being any integer not $=0$, and prime to n, we have $\lambda=\cos 29+i \sin 29$, hence

$$
1+\lambda=2 \cos 9(\cos 9+i \sin 9)
$$

or $\frac{(1+\lambda)^{2}}{\lambda}=4 \cos ^{2} 9$; consequently, in order to the function being periodic of the nth order, the relation between the coefficients is

$$
4 \cos ^{2} \frac{s \pi}{n}=\frac{(a+d)^{2}}{a d-b c}
$$

The formula extends to the case $m=2, \operatorname{viz} \cdot \cos \frac{1}{2}(s \pi)=0$, or the condition is $a+d=0$. But here $\lambda+1=0$, and the case requires to be separately verified. Recurring to the original expression for M^{2}, we see that, for $a+d=0$, this becomes

$$
\left|\begin{array}{cc}
a^{2}+b c, & 0 \\
0 & , d^{2}+b c
\end{array}\right|,=\left(a^{2}+b c\right)\left|\begin{array}{c}
1, \\
0,1
\end{array}\right| ;
$$

that is,

$$
\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}=x
$$

or the result is thus verified.

But the case $m=1$ is a very remarkable one; we have here $\lambda=1$, and the relation between the coefficients is thus $(a+d)^{2}=4(a d-b c)$, or what is the same thing $(a-d)^{2}+4 b c=0$. And then determining the values for $\lambda=1$ of the vanishing fractions which enter into the formulæ, we find

$$
\begin{aligned}
& a_{n} x+b_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\{(n+1)(a x+b)+(n-1)(-d x+b)\}, \\
& c_{n} x+d_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\{(n+1)(c x+d)+(n-1)(c x-a)\},
\end{aligned}
$$

or as these may also be written

$$
\begin{aligned}
& a_{n} x+b_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\{x[n(a-d)+(a+d)]+2 n b\}, \\
& c_{n} x+d_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\{x \cdot 2 n c+[-n(a-d)+a+d]\},
\end{aligned}
$$

which for $n=0$, become as they should do $a_{0} x+b_{0}=x, c_{0} x+d_{0}=1$, and for $n=1$ they become $a_{1} x+b_{1}=a x+b, c_{1} x+d_{1}=c x+d$. We thus do not have $\frac{a_{1} x+b_{1}}{c_{1} x+d_{1}}=x$, and the function is not periodic of any order. This remarkable case is noticed by Mr Moulton in his edition (2nd edition, 1872) of Boole's Finite Differences.

If to satisfy the given relation $(a-d)^{2}+4 b c=0$, we write $2 b=k(a-d), 2 c=-\frac{1}{k}(a-d)$. then the function of x is

$$
\frac{a x+\frac{1}{2} k(a-d)}{-\frac{1}{2} k^{-1}(a-d) x+d},
$$

and the formulæ for the nth function are

$$
\begin{aligned}
& a_{n} x+b_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\{(a+d) x+n(a-d)(x+k)\}, \\
& c_{n} x+d_{n}=\frac{1}{2^{n}}(a+d)^{n-1}\left\{(a+d)-n(a-d)\left(\frac{x}{k}+1\right)\right\} ;
\end{aligned}
$$

which may be verified successively for the different values of n.
Reverting to the general case, suppose $n=\infty$, and let u be the value of $\phi^{\infty}(x)$. Supposing that the modulus of λ is not $=1$, we have λ^{n} indefinitely large or indefinitely small. In the former case, we obtain

$$
u=\frac{\lambda(a x+b)+(-d x+b)}{\lambda(c x+d)+(c x-a)},=\frac{(\lambda a-d) x+b(\lambda+1)}{c(\lambda+1) x+\lambda d-a}
$$

which, observing that the equation in λ may be written

$$
\frac{\lambda a-d}{c(\lambda+1)}=\frac{b(\lambda+1)}{\lambda d-a},
$$

is independent of x, and equal to either of these equal quantities; and if from these two values of u we eliminate λ, we obtain for u the quadric equation

$$
c u^{2}-(a-d) u-b=0,
$$

that is,

$$
u=\frac{a u+b}{c u+d},
$$

as is, in fact, obvious from the consideration that n being indefinitely large the nth and $(n+1)$ th functions must be equal to each other. In the latter case, as λ^{n} is indefinitely small, we have the like formulæ, and we obtain for u the same quadric equation: the two values of u are however not the same, but (as is easily shown) their product is $=-b \div c ; u$ is therefore the other root of the quadric equation. Hence, as n increases, the function $\phi^{n} x$ continually approximates to one or the other of the roots of this quadric equation. The equation has equal roots if $(a-d)^{2}+4 b c=0$, which is the relation existing in the above-mentioned special case; and here $u=\frac{1}{2 c}(a-d),=\frac{-2 b}{a-d}$, which result is also given by the formulæ of the special case on writing therein $n=\infty$.

