751.

NOTE ON RIEMANN'S PAPER "VERSUCH EINER ALLGEMEINEN AUFFASSUNG DER INTEGRATION UND DIFFERENTIATION*."

[From the Mathematische Annalen, t. xvi. (1880), pp. 81, 82.]
The Editors of Riemann's works remark that the paper in question was contained in a MS. of his student time (dated 14 Jan. 1847) and was probably never intended for publication: indeed that he would not in later years have recognised the validity of the principles upon which it is founded. The idea is however a noticeable one: Riemann considers z_{x+h}, a function of $x+h$, expanded in a doubly infinite, necessarily divergent, series of integer or fractional powers of h, according to the law

$$
\begin{equation*}
z_{x+h}=\sum_{\nu=-\infty}^{\nu=+\infty} k_{\nu} \partial^{\nu} x \cdot h^{\nu}, \tag{2}
\end{equation*}
$$

where the meaning is explained to be that the exponents differ from each other by integer values, in effect, that ν has all the values $\alpha+p, \alpha$ a given integer or fractional value, and p any integer number from $-\infty$ to $+\infty$, zero included.

Riemann deduces a theory of fractional differentiation: but without considering the question which has always appeared to me to be the great difficulty in such a theory: what is the real meaning of a complementary function containing an infinity of arbitrary constants? or, in other words, what is the arbitrariness of the complementary function of this nature which presents itself in the theory?

I wish to point out the relation between the paper referred to, and a short paper of my own "On a doubly infinite Series," Quart. Math. Journ. t. vi. (1851), pp. 45-47, [102]: this commences with the remark "The following completely paradoxical investigation of the properties of the function I' (which I have been in possession

> * Werke, pp. 331-344.
of for some years) may perhaps be found interesting from its connexion with the theories of expansion and divergent series." And I then give the expansion

$$
C_{n} e^{x}=\Sigma^{r}[n-r]^{r} x^{n-1-r},
$$

where n is any integer or fractional number whatever, and the summation extends to all positive and negative integer values (zero included) of r. And I remark that, n being an integer, we have $C_{n}=\Gamma(n)$, and hence that assuming that this is so in general, or writing

$$
\Gamma(n) \cdot e^{x}=\Sigma^{r}[n-1]^{r} x^{n-1-r},
$$

we have this equation as a definition of $\Gamma(n)$. The point of resemblance of course is that we have a doubly infinite expansion of e^{x} in a series of integer or fractional powers of x, corresponding to Riemann's like expansion of z_{x+h} in powers of h.

Cambridge, 10 Sept. 1879.

