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745.

ON THE SCHWARZIAN DERIVATIVE, AND THE POLYHEDRAL 
FUNCTIONS.

[From the Transactions of the Cambridge Philosophical Society, vol. xπι. Part I. (1881), pp. 5—68. Read March 8, 1880.]
The quotient s of any two solutions of a linear partial differential equation of the second order, +p + qy = 0, is determined by a differential equation of the third order

d3s ∕d2s∖2f-* ∣ -*("÷⅛-*)∙
dx ∖dx∕where the function on the left-hand is what I call the Schwarzian Derivative ; or say this derivative is

. s'" fs"∖21«. 4 -7-i(7J ■where the accents denote differentiations in regard to the second variable x of the symbol.Writing in general (a, b, c .'.⅜X, Y, Z)2 to denote a quadric function(a, b, c, ⅛(a-b-c), ∣(-a+b~c), ⅛(-a-b + c)⅝X, Γ, Z)2,then, if the equation of the second order be that of the hypergeometric series, generalised by a homographie transformation upon the variable x, the resulting differential equation of the third order is of the form
{$, xj = (a, b, c .∙.) f—— , —?-= , -J—λ) ; 
l ∖x — a x — b x — cj
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745] OX THE SCHWARZIAN DERIVATIVE. 149and, presenting themselves in connexion with the algebraically integrable cases of this equation, we have rational and integral functions of s, derived from the polygon, the double pyramid, and the five regular solids. They are called Polyhedral Functions.The Schwarzian Derivative occurs implicitly in Jacobi’s differential equation of the third order for the modulus in the transformation of an elliptic function (Fund. Nova, 1829, p. 79, [G⅛s. Werke, t. ι., p. 133]) and in Rummer’s fundamental equation for the transformation of a hypergeometric series (Rummer, 1836 : see list of Memoirs) : but it was first explicitly considered and brought into notice in the two Memoirs of Schwarz*, 1869 and 1873. The latter of these, relating to the algebraic integration of the differential equation for the hypergeometric series, is the fundamental Memoir upon the subject, but the theory is in some material points completed in the Memoirs by Rlein and Brioschi.The following list of Memoirs, relating as well to the Polyhedral Functions as to the Schwarzian Derivative, is arranged nearly in chronological order.C( βKummer, Ueber die hypergeometrische Reihe 1 + x + ... Crelle, t. XV. (1836), pp. 39—83 and 127—172.Schwarz, Ueber einige Abbildungsaufgaben. Crelle-Borchardt, t. lxx. (1869), pp. 105—120.--------- Ueber diejenigen Falle in welchen die 6Wssische hypergeometrische Reiheeine algebraische Function ihres vierten Elementes darstellt. Do. t. lxxv. (1873), pp. 292—335.Cayley, Notes on Polyhedra. Quart. Math. Jour. t. vιι. (1866), pp. 304—316; [375].---------  On the Regular Solids. Do. t. xv. (1878), pp. 127—131; [679].Fuchs, Ueber diejenigen Dififerentiaigleichungen zweiter Ordnung welche algebraische Integralen besitzen, und eine Anwendung der Invariantentb eerie. Crelle-Borchardt, t. lxxxi. (1875), pp. 97—142.Klein, Ueber binare Formen mit linearen Transformationen in sich selbst. Math. Ann. t. ix. (1875), pp. 183—209.Brioschi, Extrait d’une lettre à M. Rlein. Math. Ann. t. xι. (1877), pp. 111—114.Klein, Ueber lineare Dififerentiaigleichungen. Math. Ann. t. xι. (1877), pp. 115—118.Brioschi, La théorie des formes dans l’intégration des équations différentielles linéaires du second ordre. Math. Ann. t. xi. (1877), pp. 401—411.Gordan, Ueber endliche Gruppen linearer Transformationen einer Verânderlichen. 
Math. Ann. t. XII. (1877), pp. 23—46.--------- Binâre Formen mit verschwindenden Covarianten. Math. Ann. t. XII. (1877),pp. 147—166.[* Schwarz, Ges. Werke, t. π., p. 351, remarks that the Derivative occurs implicitly in a memoir byLagrange, “ Sur la construction des cartes géographiques,” (1779), Œuvres, t. ιv., p. 651.]
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150 ON THE SCHWARZIAN DERIVATIVE [745Klein, Ueber lineare Differentialgleichungen. Math. Ann. t. XII. (1877), pp. 167—179.---------  Weitere Untersuchungen iiber das Icosaeder. Math. Ann. t. x∏. (1877),pp. 503—560.Cayley, On the Correspondence of Homographies and Rotations. Math. Ann. t. xv. (1879), pp. 238—240; [660].--------- On the finite Groups of linear transformations of a Variable. Math. Ann.t. xvι. (1880), pp. 260—263, and pp. 439—440; [752].I propose in the present Memoir to consider the whole theory: and, in particular, to give some additional developments in regard to the Polyhedral Functions.I remark that Schwarz starts with the foregoing differential equation of the third order {s, a>} = (a, b, c .∙.)f-i—, -~-τ, -i—} , 
l j \x — a x — b x — c∕and he shows (by very refined reasoning founded on the theory of conformable figures,which will be in part reproduced) that this equation is, in fact, algebraically integrable for 16 different sets of values of the coefficients a, b, c. It may I think be taken to be part of his theory, although not very clearly brought out by him, that theseintegrals are some of them of the form, x = rational function of 5 ; others of the form,rational function of x = rational function of 5 ; the rational functions of s being in fact the same in the last as in the first set of solutions : they are quotients of Polyhedral functions.But as regards the second set of cases, the solution of these, introducing for convenience a new variable z in place of may be made to depend upon the solution in the form, x = rational function of z, of an equation of a somewhat similar form, but involving two quadric functions of x and z respectively, viz. the equation⅛ ")+(δT<a' b'c ∙∙>t⅛ i⅛y=<aι' b- c∙ ∙∙∙>½∙ ⅛∙ ⅛)s'>

and we have the theorem that the solution of this equation depends upon the determination of P, Q, R rational and integral functions of z, containing each of them multiple factors, which are such that P + Q + R = 0. Using accents to denote differentiation in regard to z, this implies P' + Q' + R' = 0, and consequently
QR' - Q'R = RP, - R'P = PQ' - P,Q.Further, they are such that the equal functions QR' — Q'R, RP' — R'P, PQ' — P'Q contain only factors which are factors of P, Q or R.In fact, writing f, g, h = b —c, c — a, a — b, the required relation between x, z is then expressed in the symmetrical form f(x-a) : g(x — b) : h(x-c) = P : Q : R.
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745] AND THE POLYHEDRAL FUNCTIONS. 151The last-mentioned differential equation is considered by Klein and Brioschi: the solutions in 13 cases, or such of them as had not been given by Schwarz, were obtained by Brioschi : and those of the remaining 3 cases, subject to a correction in one of them, were afterwards obtained by Klein.The first part of the present Memoir relates, say to the foregoing equation{s, x} = (a, b, c .∙.) (—!— , —i-r , —ι-λ) , 
l , ∖x — a x — b x—c)although the other form in {x, z} may equally well be regarded as the fundamental form.We consider in the theory:A. The Derivative {s,, xj, meaning as above explained.B. Quadric functions of any three or more inverts —-..

x — IC. Rational and integral functions P, Q, P having a sum = 0, and which are such that QR' — Q'R, =RP,-R,P, =PQ,'-P'Q,, contains only the factors of P, Q, R.D. The differential equation of the third order.E. The Schwarzian theory in regard to conformable figures and the corresponding values of the imaginary variables s and x.F. Connexion with the differential equation for the hypergeometric series.The second part of the Memoir relates to the Polyhedral Functions.The paragraphs of the whole Memoir are numbered consecutively.
PART I.

The Derivative {s, x}. Art. Nos. 1 to 7.1∙ lf>,=√=i(l0g⅛)'thθu
2. The derivative {s, x} may be transformed in regard to either or both of the variables.Suppose, first, that s is a function of the new variable S, (hence also $ is a function of x): using subscript numbers to denote differentiations in regard to S, and the accents as before for differentiations in regard to x, we have

s' = S's1,whence, differentiating the logarithms,
s" s2 S'' 
s' = sζ1 + S7'
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152 ON THE SCHWARZIAN DERIVATIVE [745Again differentiating, we have7√7)s = s's⅛-(S + s"i + i- (17 'But →(77=*i [-*©’]-<: →(∣7,and consequently
⅜'-√5)'-[*-*©·] ÷i→θ'that is, {«> = (Éf) +the required formula.In a very similar manner, taking æ a function of X, it is shown that

fs'*HsDs<fs∙ z)-⅛jfi)∙3. If in this formula we write $ for s, and substitute the resulting value of 
{$, x} in the former formula, we haveι-)=0^>-(fyι^i÷θi^)∙
which is the formula for the change of both variables. It, in fact, includes the other two: viz. writing X = x, or S = s, and observing that {s, s} = 0 = ∖ac, x}, we have the other two formulae.4. By putting in the first formula X = s, we obtainfs'^ = -(s)2fιc- 4'i'
a formula for the interchange of the variables.5. Writing S = a^^, and using for a moment the accents to denote differentiation

CS -f~ (Xin regard to s, we have
ςι, _ ad — be S" _ — 2c (ci+d72’ Si~cs + d,and thence

>sw, ∕sy _ 2c2 
S' ∖S'J ~(cs + d)*,1 (s"∖2 _ -2°22 W ~(cs + d)2∙Consequently {$, s} = 0, whence also {s, = 0.
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745] AND THE POLYHEDRAL FUNCTIONS. 153Hence in the first formula {£, x} = {s, x}, that is,
(as + b ) f 1(<5"+2, ⅛=!s'a,i!viz. we may, in the derivative {s, x}, write for s any homographie function (as + b) ÷ (cs + d) of s. C(Λ∕ “I" /36. Again, if X =-----—, then from the second formulayx+6

that is, f ∞+∕t J.γ⅛8)* , 1.
l'γar + 8∫ (βδ-jβγ)∙i, ’’and here, changing s into (as + 6) ÷ (cs + d), we have finallyfft⅜ + b ax + /31 _ (yχ + δ)4 (CS + d ’ yx + δ∫ ~ (αδ — fiyfwhich is the formula for the homographie transformation of the two variables s, x.

Ί. Let s be a given function of x, the equation {$, x} — {s, x} is a differentialequation of the third order in S, and by what precedes, its general integral is $ = .CS “ł“ ćóiS>z, s'' %Cs'The direct process is as follows : we have a first integral -≈ = —----------, ; a second
o «S* CS -t^ cZ• C-Æ sintegral log S' = log √ — 2 log (cs + d) + const., that is, S' = +-^2 ’ an^ thence a final

Λintegral S = B--------- -⅞, which is equivalent to the foregoing value of $.
cs 4- ci

The Quadric Function of three or more Inverts. Art. Nos. 8 to 15.
8. We consider a quadric function of any number of inverts ——, —allΛ? 0i CC — fjof them different : it is assumed that the constant term is = 0, and also that the sum of the coefficients of the linear terms is = 0. We have therefore square terms

-7——V7, product terms ------ —----- , and linear terms —, where the sum of the(x — α)2 r x — a.x — β x— acoefficients A is =0. Any product term -------- ----- -= is expressible in the form of adifference ——- -----------λ —1-7, of two linear terms, and (the coefficients of these
a-βx-a a-βx-β

c. xι. 20
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154 ON THE SCHWARZIAN DERIVATIVE [745being equal), after it is thus expressed, the sum of the coefficients of the linear terms is still = 0. The function is thus always expressible in the form
a b A B

(x — α)2 (x — ∕3)2 "+^ ’ ” ^*^ x — a χ — βwhere the sum A + B + ... is = 0 : this may be called the reduced form.9. Observe that any particular invert —— may disappear altogether from the0C CLreduced form : this will be the case if a = 0, that is, if the original form contains noterm in 7-——-, and if also A = 0. An invert thus disappearing from the reduced (zc-α)2’ rι &form is said to be non-essential : and the inverts which do not disappear are said to be essential. The original form contains in appearance the non-essential inverts, but it is really a quadric function of the essential inverts only.10. Imagine the original function expressed as a rational fraction, the denominatorbeing the product (x — a)2 (x — β)2 (x-y)2... of the squared factors corresponding to all the inverts (non-essential as well as essential) : the numerator will be in general of a degree less by 2 than that of the denominator, but the coefficients of any one or more of the higher powers of x may vanish, and the numerator will then be of a lower degree. But this numerator wτill for any non-essential invert contain thefactor {x — γ)2, or, dividing the numerator and denominator each by this factor, the difference of the degrees of the numerator and denominator will remain unaltered ; that is, the difference will have the same value whether we do or do not attend to the non-essential inverts ; or say it will have the same value for the original form and for the reduced form.
ABC11. It is to be remarked that the linear terms-------- 1---- —≈ Η---------- ł- ..., wherex — a x— β x — 7

A + B + C + ... — 0, can be (and that in a variety of ways) expressed as a sum of11 1differences —————^, that is, as a sum of product-terms --------------Hence thex—a x-β r x-a.x-βquadric function can be (and that in a variety of ways) expressed as a homogeneousfunction fa, ...K—— , —ι-=,...^ ; we must have in the form all the essential inverts, ∖ Ax — α x — β )and we need have these only. Supposing that this is so, and that the number of the essential inverts is =w, then the number of constants is =⅜7i(w + l), whereas the number of constants in the reduced form is only = 2n — 1 : hence the coefficients are not determinate ; or, what is the same thing, we may have different quadric functions having each of them the same reduced function; these quadric functions, as having the same reduced function, can only differ by multiples of the evanescent expressionsβ~r, + 7~g + a~β f,, &c.
x — β .x — 7 x — <γ.x-a x— a .x-β
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745] AND THE POLYHEDRAL FUNCTIONS. 155In particular, if the number of essential inverts is = 3, then the quadric function is of the form (a, b, c, f, g, hJji-a, 5ig, -L)*,
which contains one superfluous constant, and equivalent functions differ only by a multiple of

β-Ι + 7—a + *-β
χ — β.χ — y x — y . x — a x — a. x — β'

12. A quadric function such that the degree of the numerator is less by 4 than that of the denominator is said to be “curtate.”The conditions, in order that the functionfa, b, c, f, g, hK * - , —^-5, ——V ’ ’ s, χ-β, χ-y)may be curtate, are easily found to bea + b + c + 2f + 2g + 2h = 0,α(a + h + g) + jS(h + b + f) + γ(g + f+c) = Ojand by reason of the superfluous constant we are at liberty to assume a third condition : the three conditions may be taken to be a + h + g, h + b + f, g + f+c each = 0; and this being so the values of f, g, h are = ⅜ (a — b - c), j (— a + b — c), ∣ (— a — b + c) respectively. Hence the form is(a, b. o, i(a-b-c), ⅜(-a + b-c), ⅜(-a-b + c)Ji+, J,
which, as already mentioned, we denote by

(a, b, c .∙.K-, -+^, —Y.∖ ∖x — a X — β X — γ∕We have thus the theorem that a curtate function of any number of inverts, but with only the three essential inverts 1 1 __1 
x — a’ x — β, x — 7 ’is always expressible in the foregoing formfa, b, c AÏ—, -⅛, —Y∙∖ Xa; — α x — β x — y ∕13. It may be remarked that the function (a, b, c .*.](A, Y, Z)2 is a function of the differences of the variables X, Y, Z ; and similarly, in the case of four variables, a function (a, b, c, d, f, g, h, 1, m, n$W, Y, Z, W)2, for whicha+h+g + 1, h + b + f+m, g + f+c + n, 1+m + n + d,

20—2
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156 ON THE SCHWARZIAN DERIVATIVE [745are each =0, is a function of the differences of the variables X, Y, Z, W: and so in general. Any such function is said to be “ diaphoric ” : and it is easy to see that, taking for the variables any inverts whatever, a diaphoric function is always curtate.14. The function ∫ a b c _ 1
( (x — α)2 (x — β)2 (a? — γ)2 ” J1 f a b c )2
- 2]---------- ÷ ------- a ^b ---------- ÷ ∙ ∙ ∙ f j

(x — a. x — β x — γ Jwhere the coefficients a, b, c, ... satisfy the relation a + b + c + ...= - 2, is diaphoric,and therefore curtate. In fact, forming the sum, coeff. .——-ro + ⅛ coeff. ------ --------x + ...,’ 6 ’ (χ — α)2 i x— a. x — βthis is — a — ⅛a2 — ⅜ab — ⅜ac — ..., = — ⅜a (2 + a + b + c + ...), which is =0; and similarly the other conditions are satisfied.15. The function∕ 1 Y α αi 6 δ1 c Ci . V∖ λx — a x - a1 x — β x — β1 x — y x — y1 )regarded as a function of the inverts1 1 1 
x — a, x— α1 ’ x — β'where a + ax+...=δ + 51+... = c+Cι+..., = & suppose, is diaphoric, and therefore curtate. In fact, the condition in regard to isa (α2 + aa1 + aa2 + ...) +1 (— a + b — c) (ab + ab1 + ...) + ⅛ (— a — b + c) (ac + ac1 + ...) = 0 ; that is,

(ik [a + (— a + b — θ) ^f^ ⅜ (— & — b + c)∣ = 0, which is satisfied. And similarly the other conditions are satisfied.
The functions P, Q, R. Art. Nos. 16 to 20.16. We consider P, Q, R, rational and integral functions of z, such that P + Q + R = 0 : hence, using the accent to denote differentiation in regard to z, we have also P' + Q, + R, = 0 ; and therefore QR' - Q'R = RP' - R'P = PQ' - P'Q, = Θ suppose : and we require to find 

P, Q, R such that the function Θ contains only the factors of P, Q, R.17. It is to be observed that, effecting upon a solution P, Q, R any linear substitution (az + β)÷(yz + δ), and omitting the common denominator, we have a solution; but this is regarded as identical with the original solution. The three functions, if
www.rcin.org.pl



745] AND THE POLYHEDRAL FUNCTIONS. 157not originally of the same order, can thus be made to be of the same order; or by taking account of the root z — ∞, we may in the original case regard them as being of the same order, and it is convenient so to regard them : say they are taken to be of the same order δ. And there is clearly no loss of generality in taking the three functions to be prime to each other ; for any common factor of two of them would divide the third, and might therefore be struck out.18. We may therefore write
P = All (z — Γ)p, Q = Gi∏ (z — m)q, R = 7/11 (z — n)r,where (z — V)p is taken to denote the distinct simple or multiple factors of P, and the like as regards Q and R ; the factors z — I, z — m, z — n are thus all of them different. And we have δ = ∑ρ, = ∑q, = ∑r.19. It is at once seen that Θ is of the degree 2δ-2, and moreover that it contains the factors ∏ {z — Z)2,-1, ∏(z- m)q~1, ∏ (z — n)r~1 ; hence it contains the factor

∏ (z — l)p~1 (z — m)q~1 (z — ri)r~1.Suppose the number of distinct indices p is = σ1, that of distinct indices q is σ2, and that of distinct indices r is σ3 ; then the degree of the factor is = 3δ — <r1 — σ2 — σ3 ; and if this be = 2δ — 2, then Θ can have no other variable factor : viz. if the numbers σ1, σ2> σ^3 of the distinct indices p, q, r respectively are such that σ1 + σ., + σ3 = δ -(- 2, a relation which is henceforth taken to be satisfied, then we haveΘ = ATI (z — l}p~1 {z — m)q~1 (z — n)r-l.As already in effect remarked, the conclusion extends to the case where P, Q, R arenot of the same degree ; the equation P + Q + R= 0 here implies that two functions,say P, Q, are of the same degree, and the third function R of an inferior degree;but, this being so, we have only to regard R as containing the factor ( I — ofthe degree t proper for raising its degree up to that of P or Q.20. Solutions are given in the following PQA-Table : in which, where required,the proper factor ^1—z-^ has been added; the first column headed Ref. No. (ReferenceNumber) will be explained further on. The Annex to the same Table will also be explained.
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158 ON THE SCHWARZIAN DERIVATIVE [745

The PQP-Table.
Ref. No. P= i Q= 

R=
 

θ =

1 
». 

-1(1-i)" 
-"÷1 

-"-(ι-⅛
)""

2 
— (zn+l)2

 
(z*-l)2 

-4nz“-i
(z»+l)(

z“-l) (l-⅛
y^1

3j 
(z4 + 2√

^3z2 + l
)3 

- 12√ - 3z2 
(z4-l)2^l

-^-Y 
- (z4 - 2√^

3z2 +1)
3 

24√ ∑3
 (z4 ÷ 2√~

3z2 +1)
2

(z4-2√^
3z2 + l)z

(z4-l)
4 

(z8 + 14z
4 + l)8 

- (z12 - 33z8
 - 33z4 +1)

2 
-108 (z3-z)4 (l

 - ±)4 
576(z8

+...)2(ẑ2
-...) (z3-z)3 (l

-~Y
5 

(z20 - 228z1
5 + 494z

1° + 228z
5 +1)3 

- (z30 - 522
z25 - 10005z

2° 
-1728(

z11 + llzβ
-z)δ fl--Y -8640(z2θ-...)2(z“

 + . )4fl--Y
+ 0z15-1

0005z1
0 + 522z

5 + l)2 
∖ ∞∕ 

∖ ∞J
V1I1I1,,V∏I 42(1-⅛) 

_(Z + 1)2
 

(*“1)2 
-4(z + 1)

(z-1)
IX 

(z-4)3 
-(z-l)(z

 + 8)2 
27z2^l-^)

 
27 (z-4)2

(z + 8)z
X z

(z + 8)3 
-(z2-20

z-8)2 
-64(z-l

)3 (l-^ j 
- 64 (z + 8)2

 (z2-20z
...) (z -1)

XI 4
(zs-2 + 1

)3 
-(2z3-3z

2-3z + 2)2
 

-27z2(z-1)2 (l
--108(z2-z...)2(2z3-3z2...) 2,2-d(i-±)

XII 
z3(z + 5)

2(z + 8) 
-(z3 + 9z

2 + 12z-
8)2 

-64 (3z-1) (l--960z3(z + 5) (z3 + 9z2...) (l-^
XIII 

(z2 + 14z
 + l)3 

-(z3-33
z2-33z 

+ l)2 
-108z(

z-l)4 
- 108 (z2 +1

4z...)2 (z
3-33z2..

.) (z - l)3
XIV 

(64z + 1
89) (64z2

+133z 
+ 49)3 

-z(409
6z3 + 18

810z2 + 
25725z

 + 12005
)2 - 27.77 (z +1)2 Çl -

 
- 135.77 (6

4z2+...)2 (
4096z3

+...)
(2 + l)(1-±

)∙
XV 

- (5z - 27)(
125z3-2

5z2-265
z-243)

3 - ( - 3125z5 + 9375
z4 +187

50z3 
+ 13824

00000z
3 (z +1)2 (l 

- ) - 1382400000 (125z3-...)2
+ 8750z2

+30750
z +196

83)2 
z χ4

(-3125
z8+...)z2

(z + l) (!-£
-)

_
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

J_
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
In the second half 

of the table the fu
nctions

 P, Q, R, except 
in the lines XII, X

IV and XV, were ca
lculate

d by Brioschi : thos
e for the lines

XII and XIV were 
calcula

ted by Klein, but 
as regards line XV

 there would seem
 to have been some

 error at the beginn
ing of the calculati

on, and 
the values foun

d by him are 
errone

ous.
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745] AND THE POLYHEDRAL FUNCTIONS. 159
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160 ON THE SCHWARZIAN DERIVATIVE [745

The Differential Equations {x, z} and {s, x}. Art. Nos. 21 to 45.21. In reference to what follows, it is convenient to put P = ArP0, P' = Jf1P0, where Pa is written for ∏(z — Γ)p~1, the g.c.m. of P and P' ; and X is consequently 
= F multiplied by the product ∏ (z — Z) of the several factors taken each with the index unity ; and so for Q and R : viz. we write

P,Q, R = XP0, YQo, ZR0,

P', Q', R' = X1P0, Γ1Q0, Z1R0,and the foregoing value of Θ then is
<∂ = KP0Q0R0.We come now to the investigation of the leading theorem. Take a, b, c arbitrary, 

f, g, lι = b-c, c — a, a — & ; P, Q, R functions of z as above ; and write/(# — a) : g (x — b) : h (x -c) = P : Q : R,equations, which are consistent with each other and determine x as a rational function of z. Using, as before, the accent to denote differentiation in regard to z, and taking the coefficients (a, b, c) arbitrary, it is required to find the value of⅛ 2)+√≈(a, b, c A)'.
22. Calculation of the first term {x, z}.We have x = ⅛ function + ÷ (γ + δj , and thence {x, z} = ∣^, s j , = {ξ, z}for a moment ; then

f,z fP∖' RP'-R'P P0Q0R0 P0Q0 
ξ ~ ∖r) R2 , Z2R02 , Z2R0 ‘Substituting the values

Po = ∏ (z — l)p~1, Q0=ιl(z — m)q~1, R0=TI(z — n)r~1, Z=Tl(z — ri),∖vq have
ξ" _^p — 1 5> q— 1 → r +1
ξ z — i z — m z — nand thence f 1 i v p - 1 v7-l vr + l)(i≈!, ή-, ~(z-mf + z(i-nγ∖-U 2t≤ + ∑i∑1 _2 r-+U

( z — I z — m z — n)or say
(_ P~1 ffι~1 _ _ g~1 gι~1 _ , r+1 , Λ +1 ∖∖ (z-Z)2 (z — Z1)2 (z — m)2 (z-m1)2 (z — n)2 (z-n1)2 "'J-if t≤ + 2⊂ι +...+ rJ + ïl=1 +..._ ί±1 _ 1l±I _ Y
\ z —l z —11 z — m z -m1 z — n z — n1 /
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745] AND THE POLYHEDRAL FUNCTIONS,where it is to be observed that 161

^,(P - 1) + S (q — 1) — X (r + 1), — δ — σ1 + δ — σ2 — (δ + σ3) = δ — σ1 — σ2 — cr3 = — 2 ;consequently the function is diaphoric, and therefore curtate.It is to be remarked that the function, although presenting itself in a form unsymmetric in regard to the factors of R and Q, and of JR, is really symmetric as regards the three sets of factors ; this is obvious à priori, and it will be presently verified.23. For the calculation of the second term√2fa, b, c .,.λ--, —i-,, -i-') ,∖ ∖x — a x — b x — c)we have
j∖x-a), g(x-b), h(x -c)= ΩP, ΩQ, ΩR,where Ω is a determinate function of s; hence

x' x √ Pz & <L iΓ ?L β' 
x-a, x-b, x-c~P + Ω, Q + ∩, R + Ω ’Then substituting these values, by reason that the function is diaphoric, the terms in disappear, and we have

*,s(a- b∙c ∙¾⅛ ^b∙ i⅛-J
-μ∙Wwhich is =√a,b,c.∙i2ą, ∑-l, ∑-^y.∖ λ z — L z — m z — nJWe have ¾) = ⅜, = ∑r, = δ: and hence by what precedes, this function, considered asa function of the inverts ——, &c., is diaphoric, and therefore curtate. 
z — L24. We have therefore∕ ∖z 1 1 1 λ 2⅛ + b, c —f a;_ci =

( κP~1 ς ¾,~1 i s r + 1 )( (s — 02 (* - m)2 (z — n)2)-1( >⅛*≈⅛-1 S3'
⅜∙⅛ ⅛ ⅛)'∙

where the whole function on the right-hand side is curtate.
C. XI. 21
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162 ON THE SCHWARZIAN DERIVATIVE [74525. We have to bring the function on the right-hand side into the reduced form
a A

{z — α)2 z — afor the purpose of getting rid of the non-essential inverts (if any).We write V P~1 - P~1 . P~1 i (*-02 (s-j)a + (*-4)2 ’= P~1 , v' Pι~1 .
{z - ιy- (z -ι1ys,viz. z — I here denotes any particular factor, and z —l1 represents any other factor ol the same set ; and so in other like cases.26. The whole coefficient of , * τ.. is(^-Z)2-(p-l)-⅛(p-l)2 + ap2, = ⅛(1-p2) + ap2jan expression which, regarded as a function of a and p, is represented by (ap): the parentheses are used only to avoid ambiguity, and are omitted when j) is a number, thus al = a, a2 = — ∣ + 4a, and so in other cases.27. The whole term in —--, comes fromz — I

_P^
z — L ∖ z —11 z — m z — nJ+ j2aX,^-7 + (-a-b + c)X-⅛- + (-a + b-c)X--k
z-l{ z-lx z — m ' z—n)viz. each term such as -----—----- r is to be replaced by 7-r --------τ∖ giving

Z — L ∙ Z — bγ b bγ ∖Z b Z bγ∕11 . . 1 .1rise to the term y—y —-1, or contributing the term j—y to the coefficient of ----- j.
b ój Z "~~~ b b bj Z bThe whole coefficient thus is

= - (i> - 1) f∑'⅞÷1 + 2 1 - 2 ~ -1)
vr ∖ I —11 I — m I — nJ + 2ai>∑'^+j>(→-b + c)∑r^+i>(-a + b-c)∑r^.28. Suppose first that z — I is a multiple factor of P, viz. a factor with an index p

0' R,greater than 1 : then, for z = I, we have Q + R = 0, Q' + R' = 0, and thence =
Q Vthat is, Σ r-- - = X7----  . We have thereforei>(-≈∙-b + 0)2⅛+i(-a + b-e)Σ^= - ap (,∑ + S k—5) ;

1 V I — m I-nJ
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745] AND THE POLYHEDRAL FUNCTIONS. 163moreover, in the top line, the terms X r½- and - X rr~ destroy each other. The 
L — m l — n jwhole coefficient of ---- ,, when z— I is a multiple factor of P, thus isZ L→~1>(¾1-⅛-⅛)

÷M⅛-^(⅛+b⅛)∙
a form which is now symmetrical in regard to the inverts -1-----  and —ι-.

I — vi l — n29. The value just obtained must be equal to(1 -p≈ + 2ap≈) I Σ te-"i + ∑ 1 - S- _L) ;∖ l—m l—n l-l1∕viz. comparing the two forms and reducing, they will be identical if only(1 -p + 2aij) ∣X'⅛⅛ - X ⅛⅛-⅛>g~ff _ 2 ⅜-(1÷^r~X = o I t — i1 l — m l — n )and it can be shown that the function inside the { } is in fact = 0.
Λ ĆZ fΓ30. We have, as before, X^-_^ = X j—— ; or writing each of these quantities =Φ, the equation to be verified is

∑'j,.-P = (P +1) Φ-pt —---- ι⅛-j-1 .
l-l1 l-m1l-nWe have Ł - p ∣ -Xi

P z-Γz-l1, ~X,that is,
V, P^i P p ∕t^τr[χ~^ι, aιz=l∙

_ ~X1(z-ι)-pX'
X{z-l) _ ,The first derived function of the numerator is W1' {z — I) + X1 — pX', which for 

z = l is X1 — pX', which is — 0 ; and, for the denominator, it is X, (z -l) + X, which is also =0. Passing to the second derived functions, we find
κv p1 2X1'-pX" ~X1'-⅛pX"

z-lΓ 2X' , X,From the equation
i'=_L+rj_
x z-ι z—I

21—2
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164 ON THE SCHWARZIAN DERIVATIVE [745we find in like manner y, 1 _jX" 
l-k X' ’and we thence obtain (z being always = I)

s,p+p1 = Xi 
~l z -lγ X' 'so that the equation to be verified becomesφ.' = (i, + i)Φ-i,∑ 1 -2,∑J-.A1 λ z I — m l — n31. But from the equation Θ, = PQ'-P'Q, = KP0Q0R0, we find XY1- X1Y = KRv, and then, differentiating, XY1' + X'Y1- X1,Y — X1Y, = KRJ : writing in these equations 

z = li they become
-X,Y = KR0,

XΥ1-X'Y-X1Y, = KR0,so that, dividing the second by the first,
_X' y2 x; y, _r^
x1 y "hχ^1" y ~p0,

Y Q'or, recollecting that X1 = pX' and ~ = we have
⅛-v(½L-Γ∖+e,
X, p∖R' Y) + Q,that is,
X' ^∖l-n l — m) ~j l-m,

= (p + 1)Φ -pt-r^
1l- m l — nthe required relation.32. The result is that, z— I being a multiple factor of P, the coefficient of the term —— is = (1 -i,≈ + Sap*) {∑ *⅛ ∑ iX∑A - ∑' XJ,

i>z χΓι∕Q' r'∖ y' z' ia"Ι(a^[⅛(ρ + p) γ z ⅛ x,'33. In the case where z — I is a simple factor of P we have p = 1, and the coefficient is = 2a∑' γ^1j + (- a - b + c) 2 r^- + (- a + b - c) Σ z- ,
I ~ Ł, l — m I — n_ 2 _ (b _ c>(ς ∑y: ∖∖ I — i1 l — m l-n∕ ∖ l — m l — n)
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745] AND THE POLYHEDRAL FUNCTIONS. 165

34. Of course the formulæ for the coefficients of -.—--7λ2 and —give at once,
∖Z — b)" Z — bby a mere change of letters, those for the coefficients of -—r-, —-— , and

(z — m)2 z — rn117------- , ——— ; and the function in question,
( Z — rHj Z — 72/

{æ, z}+x'2(a, b, c .∙.K-^-, —î-ï, ——) ,∖ Λ# — ci x — b x-c∕is now obtained in the required form- ... I <bg> ... 1 + -A + _?- c
{z —1)2 (z — w)2 (z — n)2' z — l" z -m"' z — n'”where (a/?) denotes ⅜ (1 — p2) + ap2, and the like for (bç) and (cr); and where, z — l being a multiple factor of P, the coefficient A contains the factor (ap); and similarly for B and G.35. Suppose that the coefficients a, b, c are no one of them = 0 ; we haveal, = a, which does not vanish; that is, z — l being a simple factor of P, the expression contains , or the invert is essential : and similarly, z — m beinga simple factor of Q, or z — n a simple factor of R, the inverts —-— and —— 

z — vi z — nare essential. But for z — I a multiple factor of P, the coefficient (ap) of the term ~κ2 may vanish, viz. this will be the case if a = j(l- ; and, when this is so, thecoefficient A of the corresponding term --7 also vanishes; that is, —7 is a non-essential invert. And similarly for any multiple factor z - m of Q or z — n of R, theinvert —-— or ——— may be non-essential. 
z — vι z — n36. If P, Q, R contain each of them only multiple factors of the same index, say of the indices p, q, r for the three functions respectively, viz. if the functions are F(∏(z-l))p, G (∏ (z — m))q, JP(Π(z-ri))r, the result contains only the six terms written down : and then, if a, b, c are = ⅜ (l - , 2 (l “ ÿ) , ⅜ (1 “ resPectivθly the result is = 0 : viz. we then have{zr, z]+0'2(a, b, c '^∑a> ic∑c) = 0>

or we in fact have, for the values in question of a, b, c, a solution 
f(x-a) : g (x-b) : lι (x - c) = P : Q : Rof this differential equation of the third order.
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166 ON THE SCHWARZIAN DERIVATIVE [74537. The reasoning applies directly to lines 2, 3, 4, 5 of the PQjβ-Tablc ; and with a slight variation to line 1 ; viz. here the factors of R (= — 1 + zn) are all simple factors, but in virtue of c = 0 and a = b, the corresponding inverts disappear, and, the other inverts also disappearing, the value of the function is = 0. Hence lines 1, 2, 3, 4, 5 of the 7jQA-Table give each of them a result =0, for the values of (a, b, c) appearing by the table itself, and shown explicitly in the corresponding line of the Annex.

www.rcin.org.pl



745] AND THE POLYHEDRAL FUNCTIONS. 167which are =0; 1,0; 25, l⅛ resPectively∙
3 12 21 11Hence writing a1, b1, c1 = ^, gg, the corresponding inverts are j—∣, ---- —,and the result is z fφ 1 χ √4 3 12 . χ 1 1 1 y _ /3 12 21 χ 1 1 iγ∖j), 8, 25,∙‰-α, x-b' x-c) U’ 25’ 50*∙‰-l, z-∞ , z)'40. It is hardly necessary to remark that an expression(a1, b1, c1 .∙.K-— , —iγ-, ——∖ Kz — α1 z — o1 z— oo jin fact denotes __ ¾ . h1 — a1 — b1 + c1(> - «i)2 (z - 61)2 + (z - α1) (z - δ1) ‘The particular form of the z inverts is immaterial ; we could by a general lineartransformation upon the z make them to be ———, —ι-, —-— with the (α1, 61, ci) 

z — α1 z — b1 z — c1arbitrary; or we can give to the a1, b1, c1 any particular values we please: there would be a propriety in making the inverts to be in every case (as in the foregoing111example) -, -------- , ----- =∙ ; but the numerical work would be troublesome, and it isZ Z — GCl Z — 1not worth while to effect it.41. The conclusion is that lines (III, V, VII, VIII) and IX to XV of the PQP-Table, give, for determinate values of (a, b, c) and (a1, b1, c1), solutions
f(x-a) '. g (x—b) : h(x-c)≈P : Q : Rof the equation

⅛ ,J + ^(⅛ b, c .∙.]^, i⅛p =(a1, b1, c1 ⅛ J⅛) .

where a, b, c, a1, b1, c1 are or can be made arbitrary, but without any real gain of generality herein. This is the Differential Equation {x, zj.42. Recurring to the results from the Arabic lines of the PQP-Table, but for convenience writing s instead of z, we have
f{x-a) : g (x — b) : h(x- c) = P : Q : R,where P, Q, R are now functions ol s, a solution ol⅛^! + (s)1(a,b.e⅛α∙ ~y = °∙But we have

fs> f*- s>,
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168 ON THE SCHWARZIAN DERIVATIVE [745and the foregoing is therefore a solution of{β, x} = (a, b, c .∙.X-—, —ιy, ——,∖ X# — a x — b x - c∕a differential equation of the third order. This is the Differential Equation {s, x}.43. From the Roman lines, if we assume
f(x-a) : g (x-b) : h(x-c) = ty : G : sJi,where ⅛ G, ?)i are functions of z, not the same functions that P, Q, R are of s, since they belong to a different line of the Table : we have, as before,,*, 2l + (⅛Xa, b' c ∙'∙ii→∙ 5→) =(a‘’ b,' c, ∙''⅛⅛ r⅛∙ ⅛)∙

44. We may combine any such result with a properly selected result of the preceding system, the two results being such that (a, b, c) have the same values in each of them. (See as to this the foot-note referring to the Annex to the PQR- Table.) The last equation then becomes*>+(<ε)"k -Ηa- b- c, ∙∙L⅛ i⅛∙ i⅛1)s>or since
fc + (£) =this is

(S. s) = (a1, b,, c1 jA⅛, ~)^.

the corresponding relation between s, z being of course obtained by the elimination of x from the two sets of equations
f{x — a) : g (x — b) : h(x — c) = P : Q : R, and f(x — a) : g (x — b) : h (x — c) = φ : G : ;viz. the required relation is

P : Q : R = $ : G : 9i,where P, Q, R are functions of s ; φ, G, 9ι functions of z ; and, in virtue of 
P + Q + R = Q, + G + 9Î = 0,the relations are equivalent to a single equation between z and s. And writing finally x in place of z, that is, now considering φ, G, 9Î as functions of x, we have

$ : G : 9Î = P : Q : Ras a solution of
{8, ≈r} = (a,, b1, c1 ∙∙J^ι. j⅛ j⅛)*,

a differential equation of the third order of the foregoing form, {s, a?J = given function of x, but with different values of the coefficients, (a1, b1, c1) instead of (a, b, c).
www.rcin.org.pl



745] AND THE POLYHEDRAL FUNCTIONS. 16945. It thus appears that there are in all 16 sets of values of (a, b, c), for which the equation is solved, viz. the 16 sets of values are shown in the righthand column of the Annex. For greater clearness I exhibit the integral equations as follows:
Functions of x. Functions of s.

1 f(x-a) : y(x-b) : h(x -~c) = P : Q : R (1) Polygon

I 55 = 55 (2) Double Pyramid

II 55 T= 55 (3) Tetrahedron
III 4x : — (« + 1)2 : (x — 1)2 = ’5 (3) »»

IV ∕(x - a) : 9,(∞-δ) : h (x ~c) = 55 (4) Cube and Octahedron
V (x- 1)2 : — (ic+l)2 : 4æ = 55 (4) 55

VI f(x-a) : g (æ - δ) : h (x -<5) = 55 (5) Dodecahedron and Icosahedron
VII 4x : - (x + 1)2 : (x — l)2 =· 55 (5) 55

VIII (æ-1)2 : -(α+l)2 : 4x = 55 (5) 55

IX P : Q : P (ix) = 55 (5)
X 55 (X) = 55 (5) 55

XI 55 (xi) = 55 (5) 55

XII 55 (xii) = 55 (5) 55

XIII 55 (xiii) = 55 (5) 55

XIV 55 (xiv) = 55 (5) 55

XV 55 (XV) = 55 (5) 55

The values of the P, Q, R as functions of x, or of s, are taken out of the PQi^-Table: only in the lines III, V, VII, VIII, where P, Q, R are given as= 4^, -(z + 1)2, (z - 1)2,and where, as regards V and VIII, there is a transposition of P and R, I have inserted the actual values of the zc-functions. (See as to this the foot-note referring to the Annex.)
The Schτυarzian Theory. Art. Nos. 46 to 62.46. Considering the foregoing equation
{s, zr} = (a1, b1, c1 .∙∙^^yαι> ——)

as a particular case of the equation {s, x} = Rational function of x, =R (x) suppose,then we have in 1, I, II, IV, VI solutions of the form x = Rational function of s.
00C. XI. δ<j
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170 ON THE SCHWARZIAN DERIVATIVE [745Consider, in general, a solution of this form, x = F (s) a rational function of s : then 
s is an irrational function of x, and if β1, s2 are any two of its values, {s1, x} = R(x),{β2, x}=R(x)', that is, {s2, = {s1, x}, and therefore (ante, No. 7) ⅝ = as∖3^ ^ . AndC<Sj ■+· cLthen x = F(s2) = F ⅛∖, = F(s1)∙. viz. F(s) is a rational function of s, transform- ∖CSι ^t^ d∕able into itself by the transformation s into ct5-: and it is moreover clear that 

j cs + dbetween any two roots s whatever of the equation x = F (s) there exists a homographie relation of the form in question. Further, it is clear that these homographie transformations form a group; and consequently that F (s) is a rational function of s, transformable into itself by the several homographie transformations of a group of such transformations : viz. taking æ to be a rational function of s, it is only in the case x = F (s), a function of the form in question, that {s, ic} can be equal to a rational function of x.47. We may, in any equation between x and s, consider these as imaginary variables p + qi and u + υi respectively ; considering then (p, q) and (u, υ) as rectangular coordinates of points in different planes, we have a first plane the locus of the points x, and a second plane the locus of the points s: there is between the two planes a correspondence which is in fact the correspondence of conformable figures : to the infinitesimal element dx drawn from a point x of the first figure corresponds an infinitesimal element ds drawn from the corresponding point s of the second figure, these elements being in general connected by an equation of the form 
ds = (a + bi) dx, where a and b are functions of x or s ; and this signifies that, to obtain the pencil of infinitesimal elements or radii ds proceeding in different directions from the point s, we alter in a determinate ratio the absolute lengths of the infinitesimal elements or radii proceeding from the corresponding point x, and rotate the pencil through a determinate angle : this ratio and angle of rotation, or say, the Auxesis and the Streblosis, being of course variable from point to point. Or, what comes to the same thing, if dx and d1x be consecutive elements of the path of the point x, and 
ds, d1s the corresponding consecutive elements of the path of the point s, then the ratio of the lengths of the elements dx, d1x is equal to that of the lengths of the elements ds, d1s ; and the mutual inclination of the first pair of elements is equal to that of the second pair of elements. In particular, if at any point the path of x is a curved line without abrupt change of direction, then at the corresponding point the path of s is a curved line without abrupt change of direction. In what precedes, we have the relation at ordinary points ; but there may be critical corresponding points (x, s), the relation at a critical point between the corresponding elements dx, 
ds being of the form ds = (a + bi) (dx)k, (λ a positive integer or fraction) : here the angle between two elements ds is = λ times that between the two elements dx ; or, if the path of the point x through the critical point is without abrupt change of direction, say if the angle between the two consecutive elements is the flat angle π, then the angle between the two consecutive elements ds is = ∖π : viz. there may be in the path of the point s an abrupt change of direction.
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745] AND THE POLYHEDRAL FUNCTIONS. 17148. I consider the foregoing equation {s, x}- R (x), where R (x) is a rational function, and is now taken to be a real function of x : we may assume s' = ip'θ,eiθ, where the accents denote differentiation in regard to x, and where p,, θ, and therefore also θ,, are real functions of x. We have
λ∕z '∕ ∩"S O Ü .λ,7^√+7+i^-and thence

< -o,and thence {s, x} = {p, x} + {θ, «} + ⅛0'2 - p-^i - i~~.
Pt, PPutting this = R («), and assuming that x is real, we have

{p, x} + {θ, x}+⅜θ'2-p-J^ =R(x)∙, Q = ip^-.
pu pThe last equation gives p"θ' = 0, that is, θ' = 0, which gives s' = 0, and may be disregarded ; or else p" ≈ 0, therefore p', a real constant, = y suppose, and {p, x} = 0 : hence for the solution of the equation {s, x] = R (x), we have s' = iyθ'eiθ, θ a real quantity determined by {#, x}+⅜0'2 = R(x): and then, integrating the equation for s', we have s = α + βi + yelθ, a, β, y real constants.49. The conclusion is that, if {s, xj = R (x), a real function of x, and if x be real, that is, if the point x move along a right line (say the «-line), then s = a + βi + yeiθ 

(θ, and the constants α, β, y, being real), that is, the point s moves in a circle, coordinates of the centre α, β, and radius =γ.

50. Suppose a, b, c are any real values of x representing points a, b, c on the «-line; and A, B, C any given imaginary values of s representing points A, B, G
22—2

www.rcin.org.pl



172 ON THE SCHWARZIAN DERIVATIVE [745in the s-plane : since {s, x} = R («) is a differential equation of the third order, the integral contains three arbitrary constants, and we may imagine these so determined that to the values x=a, b, c shall correspond the values s==J,, B, G respectively.If there is not on the «-line any critical point, as the point x moves continuously along this line the point s will move continuously along a circle, which (inasmuch as α, b, c and A, B, C are corresponding points) must be the circle through the three points A, B, C*.51. If however the points a, b, c are critical points, such that the element ds at the corresponding points A, B, C are equal to multiples of (<⅛)λ, (dx)μ-, {dx)v respectively, then to the flat angles π at α, b, c correspond in the path of s the angles λπ, μτr, vπ at the points A, B, C respectively: and, assuming that α, b, c are the only critical points on the «-line, the path of s is made up of the three circular arcs CA, AB, BG meeting at angles λπ, μττ, vττ respectively. The arcs are completely determined by these conditions; for supposing the arc BC to make with the chord BC, at the points B and C, the angles f, f, and similarly the arcs CA and AB to make with the corresponding chords the angles g, g and h, h, then the conditions give λπ, μττ, vττ =A + g + h, Z,B + h+f ∆C+f + g, where the angles referred to are those of the rectilinear triangle A BG : we have thus the values of 
f, g, h', and the arc BC is the arc on the chord BG meeting it at angles f, f : and the like as regards the arcs CA and AB respectively.52. The foregoing equationts'*) = (a∙ b,c.∙.^,
where a, b, c have the values ⅜ (1 — λ2), ⅜ (1 — μi), ⅜ (1 — v2), and λ, μ, v are real and positive, has x = a, b, c for critical points of the kind in question. In fact, writing 
x-a=≈h, the equation is of the formf u ⅜ (1 — λ2) a0 ,ls> h}-------- — + -j- + α1 ÷ ajι + ...,which is satisfied by d 1 ds 1 + λ , , , , ,

S^dh"~~IΓ + i, + b'ι + ilh' + -'we thence obtain an integral of the forms = kh~k (1 + k1h + kihi + ...), = kφ for shortness.This is a particular integral, but we have from it the general integral2 + βkφ γ + bkφ '* Since there is no critical point on the zc>line there can be no abrupt change of direction in the path of s, that is, the path of s cannot consist of circular arcs meeting at an angle : but it is in the text further assumed that the path of s cannot consist of different arcs of circle, the one continuing the other without any abrupt change of direction.
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745] AND THE POLYHEDRAL FUNCTIONS. 173If A be the value of s corresponding to h = 0, then ∕3 = δA, and we find
α+Mδfr≠ _ ∕ α ∖∕ γ V1 _ . a-γA I . 
y+δh∕> ’ V +8kφ]∖ +8kφ) ’ + δfc φ + ∙∙∙,viz. reducing ι to its principal term hκ, and then writing ds, dx for s — A, and h(=x-a)respectively, we have ds = K {dx)κ, or x — a is a critical point with the exponent λ ; and similarly x = b and « = c are critical points with the exponents μ, and v respectively.53. Hence in the equation{s, «} = (a, b, c , -i-r, -1-,

’ ∖ ax — a x — b x — c∕as the point x, passing successively through a, b, c, describes the «-line, the point 5, passing successively through A, B, C, describes the sides AB, BC, CA of the curvilinear triangle ABC. To points x indefinitely near the «-line correspond points s indefinitely near the boundary AB, BC, CA of the triangle, viz. to points x indefinitely near to and on one side, suppose the upper side, of the «-line, correspond the points s indefinitely near to and within the boundary of the triangle : and in like manner to whole series of the points « on the same upper side of the «-line, correspond the whole series of points s inside the triangle.54. We have attended so far only to one of the points .s which correspond to a given point «, but considering the set of points s which correspond to the same point «, we have in the s-plane entire circles forming by their intersections curvilinear triangles ABC, ABC', «fee. ; we have thus two systems, say ABC, «fee., and ABC', «fee., of triangles, such that to a point « on the upper side of the «-line correspond points s, one of them within each of the triangles ABC, «fee., and to a point « on the lower side of the «-line correspond points s, one of them within each of the triangles ABC', «fee. ; and so consequently that, to the two half-planes on opposite sides of the «-line, correspond the two sets of triangles ABC, «fee., and ABC', «fee., respectively.55. In order that the relation 5 and « may be an algebraical one, it is necessary that the two sets of triangles should completely cover, once or a finite number of times, the whole of the s-plane : and this implies that the angles ∖τr, μπ, vτr have certain determinate values; and, in fact, that dividing the surface of a sphere into triangles, each with these angles, the curvilinear triangles ABC, ABC', &c., are the stereographic projections of these triangles. It was by such considerations as these that Schwarz, in the Memoir of 1873, p. 323, obtained the series of values I to XV of λ, μ, v, giving for a, b, c, =⅛(l-λ2), j (1 - μ2), ⅜ (1 - v2), the series of values mentioned in the Annex of the PQJS-Table: and thus showed à priori that the equation{s,,)4,b,c⅛-,s⅛ i⅛y
is algebraically integrable for these values of a, b, c; and only for these values, or for values reducible to them.
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174 ON THE SCHWARZIAN DERIVATIVE [74556. As an instance, take the double pyramid form: the integral equation is
f(x — a) : g (x — δ) : h (x — c) = 4>sn : — (s” — l)2 : (sn + l)2,or say

(c — a) (æ — b)_ (sn-l)2 (a— b}{x- c)~ (sn+l)2'
(sn — l)2or if, for greater simplicity, we assume a, b, c = 1, 0, oo , this is a7 = *--—or say 
(s + l)3/— 1 4- x— (sn-1) = vλj(sw + 1), that is, sn = — , a solution of the differential equation{5, »} = (§, i(l-n→), ∣.∙.g, -1-),.

∕g3 1 ∖θ 1 4~ scIn particular, if n = 3, we have x = -—-- ) or s3 =------ —, a solution of∖sj+l∕ 1±√λ>f 1∕3 4 3 Yl 1 1 y{·?, «4 (8, 9’ 8 , '‰, x-l, x-∞) '

57. We have here the spherical surface divided by the equator and three meridians into twelve triangles, each with the angles ⅜7r, ∣7r, |tt: and then, projecting from the South pole on the plane of the equator, we have the annexed figure of the s-plane,

divided into 12 curvilinear triangles, each with these same angles 90°, 90°, 60°; the plane is divided by the shading into two systems, each of 6 triangles. The figure of the zc-plane is by the Λ∙-line divided into two half-planes, one shaded, the other unshaded ; and we have on the line the point c at ∞, a at the origin, and b at the distance unity.
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745] AND THE POLYHEDRAL FUNCTIONS. 17558. Take x real ; then, if x is positive and less than 1, s3 is real and positive, and we have for s the infinite half-lines at the inclinations 0°, 120°, 240°, while if 
x is positive and greater than 1, s3 is real and negative, and we have the infinite half-lines at the inclinations 60°, 180°, 300°. If x is real and negative, then s3 is of1 — kithe form ----- τ ., = cos θ + i sin θ ; whence s is of the same form, or the locus of the1 + kι , ∣_point s is a circle radius unity. Writing s3 =------ .-, and supposing that the point x1 + ∖'xmoves along the «-line from b through a to c at — ∞ , and then from c at + ∞ to b, the point s describes the sides BA, AG, CB of the shaded triangle marked K.59. Suppose that the point x is at k, in the shaded half-plane at an indefinitelysmall distance from a; say we have « = —2∕e¾', (∕c small), then taking for fJx the value «(1 — i), we have s3 = ■■ , =1 — 2zc(l- i} nearly, and hence a value of s is= 1—∣λ + ∣λ⅛, which belongs to a point K near A, and within the shaded triangle: we have thus, in respect of this value of s, the shaded half of the «-plane corresponding to this shaded triangle. To the same value x = — 2λ¾ correspond in all six values of s, giving six points K each lying near a point A within one of the shaded triangles; and hence the shaded half-plane corresponds to the six shaded triangles, and the unshaded half-plane corresponds to the six unshaded triangles.60. Suppose the equation isis, x} = (α, b, c .∙.K------ , ,

l ’ j ∖k ∖χ — a x — b x — cjthat is, _ — (5 — c) (c — α) (α — δ) ∕ a b c ∖
x — a .x- b . x — c ∖b — c. x — a c — a.x—b a-b.x-c),where a, b, c are real, but a, b, c are imaginary. It is to be shown that, if the path of x is the circle passing through the points a, b, c, then the path of s is a circle passing through the corresponding three points.61. We may find a, β, y, θ0, 01, 02, such that a, b, c are = α + βi + yeθ°ι, a + βi + yeθ'i, 

a + βi + yeθ*i (this is, in fact, finding a and β the coordinates of the oentre, and y the radius of the circle through the three points a, b, c) : we then have x = α + βi + yeθi, 
θ a variable parameter, the equation which expresses that the point x is situate on the circle in question.We have x — a = y (eθi — e~θl>i'), = <γe⅛ <θ÷θo> ig⅜(0-eon — e-⅜<β-β0)⅛} ∙ the second factor is 
i sin ⅜ (θ - 0o), =iP suppose, or the equation is x — a = iPye^θ+θ<>'i, say

x — a = iPy expi ⅛ (0 + 0o).Similarly x-b = iQy expi ⅛ (0 + 0x), and x- c = iBy expi ⅜ (0 + 02) ; where P, Q, B, denote sin ⅛ (0 - 0o), sin ⅜ (0 - 0x), sin ⅜ (0 - 02) respectively. In like manner, we have b - c, c-a, 
a-b, = ⅛Ty expi ⅛ (01 + 02), iGy expi ⅜ (02 + 0o), iHy expi ⅛ (0o + 01), where F, G, H denote sin⅜(01-02), sin⅜(02-0o), sin⅜(0o-01) respectively.
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176 ON THE SCHWARZIAN DERIVATIVE [745We have
x-a.x-b.x-e~ PQR exP11 (*· + *■ +⅛ - 30),6-c∖-α = γFF expi -1 (⅛ + ⅛ + ⅛ + ,il

with the like values for-------- ----- ι and ----- i-------- . Hence the right-hand side ofc — a.x — b a — b.x—cthe equation is
FGH ( a b c λ . . ozl." PQB ∖FF + QG + RH) expι 2^,62. Considering now the left-hand side of the equation, we have

{«> = 0}-{λ> ¾
wsubstituting for x its value = a + βi + yeθi, this becomes{«> =-^e^2βi({s, 0}-⅛),that is, = - ({s, 0} - ⅜) expi (- 20).7'Assume s = L + Mi + Neei, L, M, and H constants ; then using the accent to denote differentiation in regard to 0, we find without difficulty {s, θ} = {Θ, 0}+⅛Θ'2, and the value of [s, rc} becomes

= - ⅛ (l0- *) + iθ', - i) exPi <- 2θ'>-
Hence, substituting the values of the two sides of the equation, the imaginary factor expi (— 20) divides out, and the equation becomes

}Θ, θ} + ⅛Θ'2 -⅜ = - (pp+ QQ + r∏) ’an equation, in which everything is real and which thus determines Θ as a real function of 0 : and we have therefore the theorem in question.
Connexion with the differential equation for the hyρergeonιetric series. Art. Nos. 63 to 68.63. Take p, q given functions of x, and y a function of x determined by the equation cZ2y dy λ

⅛+i>⅛ + S2'-°!
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745] AND THE POLYHEDRAL FUNCTIONS. 177again P, Q given functions of z, and v a function of z determined by the equation 
d2v „civ ^

c⅛+pd^=°-'and assume
y = wυ.Substituting this value of y in the first equation, we obtain for v an equation of the second order (the coefficients of which contain w), and we may make this identical with the second equation ; viz. comparing the coefficients of the two equations, we thus have two equations each containing w ∖ and by eliminating w we obtain a differential equation of the third order between z and x. This is, in fact, the basis of Rummer’s theory for the transformation of a hypergeometric series : the equation between z, x will be found presently in a different manner.64. But if with Schwarz, instead of making the equation obtained for v as above identical with the given equation for v, we merely assume that the two equations are consistent, then there is nothing to determine the value of z, which may be regarded as an arbitrary function of χ∙, y and v are then functions of x, and w denotes the quotient y÷υ of these two functions, and as such satisfies an equation the form of which will depend on the assumed relation between z and x. In particular, if P and Q denote the same functions of z that p and q are of χ∙, and if we assume z = x, 

P, Q will become =p, q respectively : the given equation in v will be
d2v dv^+pa-+gv^o-,and w will thus denote the quotient of any two solutions of the equationf∕2y dy .
⅛+J><fo+i3'=°lviz. writing V=p2 + 2⅛-4^, then, by what precedes, the equation for w will be {w, a?} = - ⅛X.65. Returning now to Rummer’s problem, and considering y, v as solutions of the two differential equations respectively, w is a function independent of the particular solutions denoted by these letters : we have y = wv, and taking any other two solutions we have y1 = wv1, so that “ = calling each of these equal quantities s, we have s denoting the quotient of two solutions of the equation in y, and also the quotient of two solutions of the equation in v ; whence, writing as before X=p2+2^-4ç,cZPand similarly Z = P~ + 2 — 4>Q, we have{s, x} = - ⅜X {«, z∖=-⅛Z,and since in general = (<⅛) +

C. XI. 23
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178 ON THE SCHWARZIAN DERIVATIVE [745we obtain ι,,,1=-ix+κ(∣y1
as the required equation for the determination of z as a function of x. The process does not give the value of w, but this can be found without difficulty, viz.

dxIf z, x are regarded each of them as a function of the new independent variable 
θ, then the equation is f*-*>-<0p→-βι→(SP∙

66. Jacobi’s differential equation of the third order for the transformed modulus λ, 
Fund. Nova, p. 78, [Ges. Werke, t. ι, p. 132], is

3 (A∕2λ"a - λ'aFa) - 2k'∖, (k'∖"' - ∖'k''') + fc'aλ'a &'2 - (⅛χs)2 λ'2} = θ.
where the accents denote differentiations in regard to an independent variable θ : viz. dividing by 2fc'aλ'a, this becomesf*∙ "!+iλ'ι(⅛ιθ,∙
which is thus a particular case of Rummer’s equation, k, λ corresponding to x, z respectively, and the values of X, Z beingr = -∕Ι±*Υ 7 i1 + λΥ

x ∖jc-v!, z lλ-λ∙y ∙67. In the case of the hypergeometric series, the two differential equations of the second order are ⅛ + 72l(0t +_# + 1)x ⅛ _ α⅛L = ocfcc8 xΛ-x dx tc.l-x

d2v + y' — (a + ∕3, + 1) z dv a β'v _ θ 
dz- z. 1 — z dz z. 1 — zHence j _ γ(ff + (1 -x)} — (« + # + !)# _ y 7 — a — β — 1 _ — aβ

I x .1 — x x + 1 — x ’ x. 1 — x,and hence»2 + 9 ⅛_ 40 = 7a~27 , (7 ~ ~ ~ 1)2 + 2 (7 ~ ~ ~ 1) ¼9 + 2t(7 -a-∕3- 1 )
j dx 1 a? (l-,τ)2 x.l-xviz. writing λa = (l-7)a, a=⅜(l-λa),∕zs = (α - ∕S)a, b = ⅞ (1 - μ2),

v2 = (7 - a - β)2, c = ⅜ (1 - v2),
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745] AND THE POLYHEDRAL FUNCTIONS. 17$and putting in the formula x — 1, = — (1 — x), we have
_ ι Λ,s + 2⅛-4√> = ⅛(1~λ2> + ⅛(1-p2) » ⅜(λa-∕Λ2 + ι^-l)2V dx q) a? (a,·—1)2 x.x — 1a c -a + b — c a∙2¼~l)2 + x.x—1= fa, b, c .∙.λ-, —-—, -‰) ,∖ Ax x — ∞ x — 1/with a like formula for ⅜ f P2 + 2 — 4Qj . We then have

y = wv,

w2 = Gx~y ( 1 — tf)τ-α-0-1 z? (1 — ^∖-∙y'+a'+β'+ι
dzand the differential equation of the third order for the determination of z is{s,i≈i+(a1, b,, c1 .∙∕g, rA-, A_y(gy_(a, b, c ..∕g, A1y=o,

where a1, b1, c1 are the same functions of α', ∕3', y which a, b, c are of α, β, γ. This is, in effect, Rummer’s equation for the transformation of the hypergeometric series.68. And in like manner the Schwarzian equation for the determination of s, the quotient of two solutions, isfs'a,)=(a∙b.c.∙.g, j⅛, ⅛y..
PART II. THE POLYHEDRAL FUNCTIONS.

Origin and Properties. Art. Nos. 69 to 80.69. The functions in lines 1,...,5 of the ∕jQ72-Table are connected with the geometrical forms : p. Polygon or^2. Double Pyramid *,3. Tetrahedron,4. Octahedron and Cube,5. Dodecahedron and Icosahedron,(these figures being regarded as situate on a spherical surface), and with the stereographic projections of these figures.* Prof. Klein regards 1 as belonging to the polygon and 2 to the double pyramid: it seems to me that the fundamental figure, to which 1 and 2 each of them belong, is the polygon.
23—2
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180 ON THE SCHWARZIAN DERIVATIVE [745Consider a spherical surface and upon it any number of points : take at pleasure any point as South Pole, this determines the plane of the equator ; and the stereographic projection of any point is the intersection with the plane of the equator ofthe line joining the point with the South Pole.To fix the ideas take the radius of the sphere as unity: let the axes of x and ybe drawn in the plane of the equator in longitudes 0° and 90° respectively, and theaxis of z upwards through the North Pole : the position of a point on the sphere is determined by means of its N.P.D. θ and longitude f: moreover we take X, Y, Z for the coordinates of the point on the surface, and x, y for those of its projection ; and we then have
X, Y, Z= sin θ cos f, sin θ sin f, cos θ ;

X Yx = -— „ = tan ∣ θ cos f, y = =---- ,7 = tan ⅜ θ sin f,I + ∕j “ 1 + Zand conversely,
X, Y, Z = 2x, 2y, l-xa- y2, ÷ (1 + x2 + y2).We represent the point (X Y, Z) on the spherical surface by means of the magnitude x + iy, =tan ⅜0(cost∕+ fsin∕), or say by the linear factor, s — (x + iy): and similarly any system of points on the surface by means of the system of magnitudes λ, + iy, or say by the function ∏ {s — {x + iy)}, denoting in this manner the product of the linear factors which correspond to the different points respectively.70. It will presently appeal· that, if (considering a different stereographic projection, that is, a different position of the South Pole) we take x, y' as the coordinates of the new projection of the point, then √ + iy' is a homographie function

a(x + iy) + b ÷ {c (x + iy) +of x + iy : and consequently that the functions of s, which belong to different projections, are linear transformations one of the other: but at present we consider a single projection.It may be proper to remark that the figures in question are spherical figures having summits which are points on the spherical surface, edges (or sides) which are arcs of great circle joining two summits, and faces which are portions of the spherical surface: the mid-points of the sides, and the centres of the faces are of course points on the spherical surface.71. (1), (2). Considering a regular polygon formed by n summits on the equator,the longitude of one of them being 0°, then the stereographic projections correspond with the points themselves, and the values of x + iy are, 2∙7r . . 2ττ (n—1)2-7γ . . (ft—1)2∙7γ
η η η nThe corresponding function of s is sn- 1.
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745] AND THE POLYHEDRAL FUNCTIONS. 181The values of x + iy for the mid-points of the sides are7τ . . στ 3π . . 37γ (2n —l)7r . . (2n— l)7rcos —h ⅛ sin -, cos---- 1-1 sin —-, .... cos ---------- ----- H ι sin  -------- -—.n nnn η nThe corresponding function of s is sn+l.The North and South Poles, which form with the n points a double pyramid of 
n+2 summits, correspond to the values s = 0 and s = ∞. We have thuss(1-⅛¼-1)
as the function corresponding to the double pyramid.72. (3). Considering for a moment the tetrahedron as a figure with rectilinearedges, this is so placed that two opposite edges are horizontal, and that the vertical planes passing through the centre and these two edges respectively are inclined at angles +45° to the meridian: viz. the upper edge has the longitudes 135°, 3153, and the lower edge the longitudes 45°, 225°. We thus explain the position of the spherical figure.Corresponding to the summits we have the function s4 — 2i √3 s2 + 1.In fact, the equation s4 — 2i √3 s2 + 1 = 0 gives s2 = i (√3 + 2), and hence the values of s are the four values of x + iy shown in the annexed table for the values of 
X, Y, Z, and x + iy for the summits of the tetrahedron,long. X Γ Z x + iy45" A √3 1 1 1 + i√3 √3 √3-l135° - + + - 1 +2 Vθ ^t^ 1225° - -1 — i√3-l315° + - + 1 +i √3 + lCorresponding to the centres of the faces, or summits of the opposite tetrahedron, we have the function s4 + 2i √3 s2 + 1.Corresponding to the mid-points of the sides, we have the function
viz. the points in question are the North Pole s = 0, the South Pole s=∞, and the four points s= + I, s=+i on the equator at longitudes 0°, 90°, 180°, 270° respectively.
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182 ON THE SCHWARZIAN DERIVATIVE [74573. (4). The octahedron is placed with two of its summits as poles, and theother four summits in the equator at longitudes 0°, 90°, 180°, 270° respectively :the values of s are, as in the last case, 0, ∞, + 1, +1, and the function iss(1-⅛>-1>∙The function for the centres of the faces, or summits of the cube, is s8 + 14s4 + l.The function for the mid-points of the sides of the octahedron or of the cube iss12 - 33,s8 - 33,s4 + 1.74. (5). The Icosahedron is placed with two of its summits for poles; five summits lying in a small circle above the plane of the equator at longitudes 0°, 72°, 144°, 288°, and the remaining five summits in the corresponding small circle below the equator at longitudes 36°, 108°, 180°, 252° and 324°.The function for the summits of the Icosahedron is s (l - ~ ) (slθ + Ils’ — 1).The function for the centres of the faces of the Icosahedron, or summits of the Dodecahedron, is s2n — 228sιs + 494⅛∙1° + 228sδ — 1.The function for the mid-points of the sides of the Icosahedron or the Dodecahedron is s8β - 522s2δ + 10005s2° + Os15 - 10005slθ + 522sδ + 1.I give for the present these results without demonstration.75. Writing for s so as to obtain homogeneous functions (*φ⅛, y)n,—it will berecollected that the x, y of these functions have nothing to do with the x, y of the foregoing values x + iy—the forms which have thus presented themselves may be denoted as follows :(3) : ∕3 = (1, -2t√3, lfcr2, y2)2,Λ3 = (l, + 2i√3, l⅜jr2, y2)2, 
t'3 = xy (a·4 — y4),(4) : f⅛ = xy(xi-yt),
Λ4 = (l, 14, l⅜+,, y4)2,i4 = (l, -33, -33, l][ar4, 2∕4)3,(5) : ∕5 = xy(l, 11, - l$aĄ τ∕δ)2,∕tδ = (l, -228, +494, +228, - 1$>\ yδ)4,
t5 = (1, - 522, 10005, 0, - 10005, 522, l⅜zr5, ys)β,where observe that /4 is the same function as t3. In each set of functions f, h, t, we have lι and t covariants of f, viz. disregarding numerical factors,

h is the Hessian, or derivative (∕, ∕)2, and t is the derivative {f, K).
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745] AND THE POLYHEDRAL FUNCTIONS. 18376. Since f⅛ is the same function as £3, we have of course /4, A4 and £4 themselves covariants of /3 : but it is convenient to separate the two systems.77. It is to be observed that /3 is a quartic function having its quadrinvariant (∕) = 0 ; but independently of this, that is, qua qua,rtic function, it has only the covariants A3 and £3 (the Hessian and the cubicovariant respectively), viz. every other covariant is a rational and integral function of /3, A3 and £3. In particular, A4 and £4 are rational and integral functions of /3, A3 and £3 ; but inasmuch as /3 and A3 are not co variants of /4, this is not a property of A4 and t⅛ considered as covariants of /4, and the relation in question need not be attended to.78. It has just been stated that /3 qua quartic function has (in the sense explained) only the covariants A3 and t3 : /4 qua special sextic function and f~) quà 
special dodecadic function have the like property, viz. /4 has only the covariants A4 and £4 ; f5 only the covariants A5 and £5. Hence /3, jf4, f5 are “ Prime-forms ” in the sense defined in the paper by Fuchs, of 1875, viz. a Prime-form has no co variant of a lower order than itself, and also no covariant of a higher order which is a power of a form of a lower order.79. The same functions have also the property that they are functions transformable into themselves by means of a group of linear transformations, and in this point of view they were considered in the nearly contemporaneous paper by Klein, of 1875; it is in this paper shown that the functions so transformable into themselves must be Polyhedral functions as above, the linear transformations in fact corresponding to the rotations whereby the spherical polyhedron can be brought into coincidence with its own original position. This theory will be presently given.80. It is to be observed that, if U, V are functions (*]£&·, y)n of the same order n, then using the accent to denote differentiation in regard to x, UV' — U' V and (P, V) differ only by a numerical factor: and furtheι, that, writing as before

⅛Z∕$ = -, and in the expression UV'—U'V regarding U, V as functions (*](s, l)n, andthe accent as denoting differentiation in regard to s, we have UV' — U'V and (P, F) differing by a numerical factor only. We have in the PQP-Table, lines 3, 4, 5, 
P, Q, R equal to given numerical multiples of 1∣P, t>, fa, the indices α, β, y being such as to make these to be functions of the same degree : hence, neglecting numerical multipliers, PQ' — P'Q is equal to a function (hP, F), which is = A3^V>,~1 (A, £) : and the theorem that PQ' — P'Q, — QR' — Q'R, = RP' — R,P, contains only factors of P, Q, R is in fact the theorem that (h, i), (A, ∕), and (£, ∕) are each of them equal to a term or product of f, h, t : which is a result included in the theorem that f has only the covariants A and £. And by this last theorem we know already how from R, assumed to be known, we can derive P and Q : viz. P is a power of f; and we thence have A = (∕, ∕)2 and £ = (A, ∕), equations giving the functions A and £, upon which P and Q depend.
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184 ON THE SCHWARZIAN DERIVATIVE [745

Covariantive Formulae. Art. Nos. 81 to 84.81. The various covariantive formulæ will be given with their proper numerical coefficients.Tetrahedron function, f, A, t stand for the before-mentioned values,/3, A3, Z3 (P, Q, R≈hs, — 12⅛√3.ia, -∕3).For /3.
(a, b, c, d, e) = l, 0, 0, 1.⅜ (∕> ∕)8 = - 96Ï √3 ∙ h, ⅜ (A, A)2 = 96f √3 .∕ ⅛ (i, i)2 = - 25∕A,{∕,A)- 32i√3.⅛ (∕, ∕)4= 576∕= 0, (∕ Λ)< = 11527 = ∏δ2.^',

(∕ 0= 4∙^(A, i)= 4.∕2,Λ3 _fS_ 12t∙ √3 i2 = 0>∕A = (1, 14, lfcr*, y<)2(=∕4).It is convenient to remark that t2, fi, A3 being of the same order we have<2(∕8, A3)+∕3(Λ8, Z2) + A8(ia,∕3) = 0,that is, <2.3.3∕2Aa (∕ A) +∕3.3.2A'⅛ (A, i) + A3.2.3tf- (t, f) = 0,an equation which, substituting for (f, A), (A, t), (i, ∕) their values, reduces itself to the before-mentioned relation A3 —∕3 - 12i√3i2 = 0 ; and we have thus a verification of the values of (f, A), (A, t) and (i, f). The like remark applies to the other two cases, which follow.82. Hexahedron function, f, h, t stand for the before-mentioned values/4, A4, i4 (P, Q, R = A3, - i2, - 108∕4).For /4. (a, b, c, d, e,f, ^) = (0, ∣, 0, 0, 0, -⅜, 0).⅜ (∕, ∕)2 = - 25A, ⅜ (∕, /)« = 0, ⅜ (∕, ∕)3 = (720)2. f,(∕, A) = -8<, ⅛(A, A)2 = 3.26.78. ∕2,(∕, <) = - 12A2, ⅜ (i, t)2 = 24.33.112 .∕aA,(A, i) = - 1728∕3,A3 _ i2 _ 108y4 = 0
www.rcin.org.pl



745] AND THE POLYHEDRAL FUNCTIONS. 18583. Dodecahedron function, f h, t stand foi* the before-mentioned values/5, Λ5, £5 (P, Q, R≈hs, -t2, — 1728∕5).For f5.(a, b, c, d, e, f, g, h, i, j, k, I, w) = (0, ⅛, 0, 0, 0, 0, ⅛, 0, 0, 0, 0, -⅛, 0). ⅜ (∕ ∕)2 = - 12U, ⅜ (∕, ∕)4 =0, ⅜ (∕, ∕)6 = ⅜ (924)2 (720)2. ⅛∕*,⅜(Z∕)8= θ, ⅜(Z∕)lθ=0, ⅛(∕∕)12 = ⅛(924)2(720)4.¾*
(∕, h) = - 20if, ⅛ {h, λ)2 = 17328O∕3,(∕ i) = - 30Λ2, ⅜ {t, t)* = 9082800∕3∕t,
(h, £) = — 86400∕*5,A3-i2-l728∕δ = 0.84. We have i = (^0 + ∕0)(l, 522, - 10006, -522, 1⅛5, vδ)<.Write

ξ = (x> + y*).(l, 2, 6, -2, ¾ y∕,then
t = ξ(l, -10, 45OV)∙Or putting 2, -(zr2 + y2)(l, 2, 6, - 2l⅜, y)*

fxy (a;10 + 11 aPyi — yw)that is, ξ = pff then
p5 — 10p3 + 45p = . (Klein.)

Investigation of the forms fb and hb. kx∖t. Nos. 85 and 86.√5 _ i85. Writing for shortness]- ^ = tanα = —-—» and g ~ cos 36° + isin 36°, then the values of x + iy corresponding to the summits of the Icosahedron are0,
k, kgi, kgi, kg6, kg3,
k~1g, k~1g3, k~1g3, k~1g7, k~1g9,∞5and the function fb is thus

= s (1 - ⅛) “ k^ ~ k~^,

* The numerical coefficients -f⅛ and f∣ are Klein’s B and A·. the latter of them is the ordinary quadrinvariant of a dodecadic function ; the former is an invariant linear as regards the coefficients of f, and existing only for the special form f in question : viz. writing for a moment
f=∖(xny + 11a;6?/6 - a;?/11),then (∕, ∕)6 contains the factor λ2, and (∕ containing the factor λ) the form is ⅜(∕, ∕)6 = ⅜ (924)2(720)2. -⅛λ .f,which is linear as regards λ. We have alsoH∕- ∕)12=⅜(924)2(720)*.f⅜λa!say -d=⅜fλ2, -B=-⅛λj or 84JB2=A. Of course in the case of a general dodecadic function f, we have (∕, ∕)6> an irreducible covariant, not breaking up into factors.

+ a is the α, 7 is the 7, and 7' the a-β of the Table, No. 99.
C. XI. 24
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186 ON THE SCHWARZIAN DERIVATIVE [745where the product of the last two factors is β1° + (Arβ-·■ Jfcβ) β5 — 1. We havejfc→ = ⅛ (80 √5 + 176), = ⅛ (5 √5 + 11),½β =⅛(80√5-176), = ⅜(δ√5-ll),and consequently Ar8 — ki = 11 ; or the function is(s10 + lls5-1).86. Similarly, writing for shortness* I = tan ⅛y, Z' = tan⅜γ', where2 5 + 2√5 . 2 10-2√5 , . cosy 3 + √5' 15 '15 sin y 4 ’, , 5-2√5 . 0 , 10 + 2√5 cosy 3-√5cos≈7=-jγ-, sin-7=-„ -=-5-iand g = cos 36° + i sin 36° as before, then the values of x + iy for the summits of the dodecahedron are
⅛,, ⅛3, ⅛f, ⅛f, l99,
i,g, l'93, l'tf,, l'97, l'g9>
l'~∖ l'-'g*i l,~y, l'~'cf, l'→g*,
l~∖ l~'g∖ l~'cf, l→cfi l→g*.The function hb is therefore= s1° + s8 (Z8 - Z~8) + 1. s1° + s8 (Γs - l,~s) -1.We have 7_K tr (1 + cos 7)5 - (1 — cos y)5 2 cos 7 . _ 1 _ λ „ i .Z~8-Z8 = ---------- l÷.-— = ∙ r (5 + 10 cos2 7 + cos4 7)sιns 7 sm8 72cos7 384 + 64√5 128 cos 7 . _ .cλ 111 ._= -τ-τ-'-.------ — = -γf -÷-~l (6 + √5) = 114 + oθ √5 ;sm87 4o 45 sιn8yvviz. this last identity depends on∣f (3 ÷ √5) (6 + √5) = (114 + 50 √5) sin4 7,that is, 160(3 + √5) (6 + √5) = (114 + 50 √5) (120 - 40 √5), or 2 (3 + √5) (6 + √5) = (57 + 25 √5) (3 - √5),or finally (7 + 3√5)(6 + √5)= 57 + 25 √5,which is right.Similarly Z'→-Z'8= 114 - 50√5,and observing that the sum and product of 114 + 50√5, 114-50√5 are = 228 and 496 respectively, the required function of s is(s1° - 1)2 - 228 (s,8 - s8) + 496s10,= s2° - 228s15 + 494slθ + 228s8 + 1,which is the required value of lib.

* a is the α, y is the 7, and y' the a-β of the Table, No. 99.
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745] AND THE POLYHEDRAL FUNCTIONS. 187

Invariantive property of the Stereographic Projection. Art. Nos. 87 to 93.87. The before-mentioned theorem that the functions derived from two differentstereographic projections of the same point are linear transformations one of the other, may be thus stated :Considering on the surface of a sphere, two fixed points A and B ; and determining the position of a point C, first in regard to A by its distance θ and azimuth f and

next in regard to B by its distance θ' and azimuth f,, the azimuths from the great circle ABx which joins the two points A and B, then we havetan ⅛θ (cos∕+ ⅛ sin∕), and tan hθ' (cos f' + i sin ∕'), homographie functions one of the other: calling them s, s', and putting the distance 
AB = c, the relation between them in fact is

z _ s — tan ⅜c 1 +s tan ∣c ’or, what is the same thing, tan ⅜c(l + ss') = s — s' ;or, observing that
ss, = tan ⅛θ tan ⅜θ, {cos (∕+∕') + i sin (f+f)}, we have the two equationstan ⅜c {1 + tan ⅜θ tan ⅛θ' cos (∕+f')} = tan ⅜θ cos f - tan ⅛θ' cos∕', tan ⅜c { tan ⅛θ tan ⅛θ, sin (∕+∕')} = tan ⅜θ sin f — tan ⅜θ' sin f'.88. If we denote the angles of the spherical triangle by C, A, B, and the opposite sides by c (as before), a, b, then θ, θ, = b, a-, ff' = A, τr-B, whence

s, s' = tan ∣δ(cos A +⅛sin A), — tan ⅜a (cos ΰ — i sin B) :
or we have between the sides a, b, c and angles A, B of a spherical triangle the relations tan ∣c {1 - tan ⅜α tan ⅜6 cos (A — B)} ≈ tan ⅜6 cos A + tan ⅜α cos B, tan ⅜c { — tan ⅜α tan ⅛b sin (A — B)} = tan ⅜6 sin A — tan ⅛α sin B;

24—2
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188 ON THE SCHWARZIAN DERIVATIVE [745equations which may be verified by means of the ordinary formulæ of Spherical Trigonometry.89. But it is interesting to give the proof with rectangular coordinates.Taking (X, Y, Z∖ (X1, F1, Zj) for the coordinates, referred to two different sets of axes, of a point on the spherical surface: also x, y, x1, y1 for the coordinates of the corresponding stereographic projections, we have
(X1, yι, Zj) = ( a, β , y )(X, Y, Z∖ 

a·', β', y 
*", β", y"

X : F : Z : 1 = 2x : 2y : 1 — a? — ya : 1 + a? ÷ y2,
Xi : Γ1 : Z1 : 1 = 2a⅛ : 2y1 : 1 - ar1a - y1a : 1 + a⅛a + y12,and thence «1 : y1 : 1 = 2cuc + 2βy +y (l-tf-y2): 2αzzc + 2β'y + y (1 — x2 — y2): 1 + x2 + y2 + 2β"dJ + %β"y + y" (1 — x2 — y2).

CO '2∣ XV90. Introducing z, z1 for homogeneity, or writing -, £ and -1, in place ofZ Z Zy Zγ
x, y and xl, y1, respectively, we haveλ⅛ = 2ax + 2βy +y (z2-xi- y2), =(-γ, -y , y , β , a , Q$x, y, z)2,
y1= 2ax+2β,y+y, (z2-xi-y2)i =( -y, -y, y , β', a!, 0$ „ )2,
z-i = z2 + X2 + y3 + 2a."X + 2β"y + y"(z2 — x? — y2), = (l-7", l-γ", 1+y", β", a", 0$ „ )2,and thence without difficulty2> = Ï-J— ∣<1 + 7") * + <«" + O’ - ⅛>) IO + √') « + ( - ⅛8") (® + ⅛)).

¾ + ⅛λ=-χ-⅛ i(1 + 7")2 + («" + »£") (« - iy)} K1 - 7") * + (- «" + #") (« + t'y)),7+7<⅝ _ ⅛ = _JL ((1 - γ") z - (a" + i?’) (x - »y)J 1(1 + γ") 2 + ( a - iX) (x + iy)}, 
y — yviz. the form is z1 : x1 + iy1 : x1 — iy1 = MN : NL : LM (L, Μ, Ν linear functions of 

z, x + iy, x-iy)-. showing that the relation between two stereographic projections of the same spherical figure is in fact that of a quadric transformation, the fundamental points in each figure being an arbitrary point and the two circular points at infinity: or, what is the same thing, to any line in the one figure there corresponds a circle in the other figure, which is the “ circular relation ” of Mobius.91. The actual values area⅛ + ¾yι = 1 + γ" (1 - γ") z - (λ" - iβ") (a + ⅞∕)<¾ 7 + y'i ’ (1 + y") z + (α" — iβ"} (x + iy) ’¾⅛ = 1 + y" (1 ~ 7,) z-(μ + iβ") (x - jy) 
z1 7 — y'i ‘ (1 + γ") z + (a" + iβ") (x — iy) ’

www.rcin.org.pl



745j AND THE POLYHEDRAL FUNCTIONS. 189

CC “ł" z?/viz. attending only to the former of these, we have —--- —1 a homographie function of*ι
CC "4~ 6?/----- -. which is the before-mentioned theorem.z 92. Supposing that the transformation from (X, Y, Z) to (X1, Y1, Zi) is made by a rotation, the coordinates of which are λ, μ, v: that is, if f g, h are the inclinations of the resultant axis to the axes of x, y, z respectively, and θ the angle of rotation, putting λ, μ, p = tan⅛0cos∕, tan⅜dcosp, tan ⅛θ cos h: then the coefficients of transformation are(a, β , γ ) = ( 1+λ2-μ2τ2, 2(λμ,÷p) , 2(λp- μ) ) ÷(1 + λ2 + μ,2 + p2).

a', β', y' 2 (μ^λ — v) , 1 — λ2 + ∕x2 — p2, 2 (μv + λ)a ", β", y" 2 (pλ + μ) , 2 (μv — λ) , 1 — λ2 — μ2 + v2 ∖Substituting these values, the formulæ become, after an easy reduction,zr1 + ¾y1 _ — (p + ¾') (x + iy) + (λ + iμ) z 
zx (λ — iμ) ∖x + iy) + (v — i) z ’

x-i — ÎVi _ — (y— i) (χ — iy) + (λ — iμ) z ' 
z1 (λ + iμ)(x — iy) + (v+ i) z ,attending to the former of these, and writing for greater simplicity

x1 + iy-i x + iy
-tjl-, ~~^ = 8ι>s z1 zrespectively, we have
— (p + ⅛) S + (λ ⅛- iμ)1 (λ — iμ) s + (p — ⅛) ’or writing this _Asj-B 

sι~Gs + D,then Λ : B : G : D = — p — i : λ + iμ : λ — iμ : p — i.93. I call to mind that the condition, in order that the homographie transformation s1 = (As + B) ÷ (Gs + D) may be periodic of the order n, is(A + 7))2-4(AD-AC,)cos2-= 0, , w
m being an integer different from zero and prime to n. In particular, when n = 2, it is Λ+D = Q∙. n = 3, it is A2 + AD + D- + BG = 0 : n = 4, it is Λ2 + D'- + 2BG= 0 : and π=5, it is (A+D)2-⅛(3±√5)(AD-jBC) = 0.

Groups of homographie transformations. Art. Nos. 94 and 9δ.94. The formulæ just obtained serve to connect the theory of the rotations of a polyhedron with that of the homographie transformations s into (As ÷ B) ÷ (Gs + D) : and, corresponding to the rotations which leave the polyhedron unaltered, we have groups of homographie transformations. We have thus, corresponding to the cases of the tetrahedron, the cube and the octahedron, and the dodecahedron and icosahedron respectively, groups of 12, of 24, and of 60 homographie transformations s into
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190 ON THE SCHWARZIAN DERIVATIVE [745(As + B)÷(C⅛ + D). The group of 60 and the group of 24 include each of them as part of itself the group of 12 : it is further to be remarked that the group of 12 may be regarded as that of the positive substitutions upon four letters abed, the group of 24 as that of all the substitutions upon the four letters, and the group of CO as that of the positive substitutions upon five letters abcde.95. I call to mind that a group of functional symbols 1, α, β, ... can alwaysbe expressed in the equivalent form 1, ⅛α⅛-1, ⅛∕S⅛-1, ... where ⅛ is any functionalsymbol whatever : clearly, a, β, ... being homographie transformations, then, A beingany homographie transformation whatever, the new symbols ¾α⅛-1, ⅛∕3⅛~1, ... will also be homographie transformations ; and thus the group of homographie transformations can be expressed in various equivalent forms : these correspond to the different positions of the polyhedron in regard to the axes of coordinates: and there are in fact three cases which it is proper to consider, viz. attending for the moment to the dodecahedron, we may have the axis of z passing through the midpoint of a side, through the centre of a face, or through a summit ; that is, in the language presently explained, the cases are 1°, Pole at a point Θ ; 2°, Pole at a point A ; 3°, Pole at a point B.

The regular Polyhedra. Art. Nos. 96 to 103.96. We require a theory of the regular Polyhedra considered as systems of points on a sphere. I refer to my two papers [375] and [679]. In the latter paper, I remark that, considering the five regular figures drawn in proper relation to each other on the same spherical surface, the only points which have to be considered are 12 points A, 20 points B, 30 points Θ, and 6r* points Φ. Describing these by reference to the dodecahedron, the points A are the centres of the faces, the points 
B are the summits, the points Θ are the midpoints of the sides, and the points Φ are the midpoints of the diagonals of the faces. Or describing them by reference to the icosahedron, the points A are the summits, the points B are the centres of the faces, the points Θ are the midpoints of the sides : viz. each point Θ is the common midpoint of a side of the dodecahedron and a side of the icosahedron, which there intersect at right angles: and the points Φ are points lying by threes on the faces of the icosahedron, each point Φ of the face being given as the intersection of a perpendicular AΘ of the face by a line BB joining the centres of two adjacent faces and which intersects 4θ at right angles.97. The points Φ are comparatively unimportant, and it is proper in the first instance to attend only to the 12 points A, the 20 points B, and the 30 points Θ: these form 6 pairs of opposite points A, 10 pairs of opposite points B, and 15 pairs of opposite points Θ. Considering the diameters through each pair of opposite points Θ, we have thus a system of 15 axes, which in fact form 5 sets each of 3 rectangular axes : attending to any one of such sets, the diametral plane at right angles to one of the three axes contains of course the other two axes : it contains also two axes each through a pair of opposite points A, and two axes each through a pair of opposite points B. If instead of the plane we consider its intersection with the sphere, we have thus on the sphere 15 circles each containing 4 points Θ,
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745] AND THE POLYHEDRAL FUNCTIONS. 1914 points A and 4 points B. The fifteen circles intersect by fives in the pairs of opposite points A, by threes in the pairs of opposite points B, and by twos in the pairs of opposite points Θ ; the mutual inclinations of successive circles at the points 
A, B, Θ being =36°, 60° and 90° respectively. The whole number 15.14, =210, of the intersections of the circles two and two together is thus made up of the 12 points A each counting 10 times, the 20 points B each counting 3 times, and the 30 points Θ each counting once ; 210 = 120 ÷ 60 + 30.98. The angular magnitudes which present themselves are all obtained from the dodecahedral pentagon, as shown in the annexed figure, in which the angle subtended by a side at the centre is = 72°, and the angle between two adjacent sides is = 120°.

We write √lΘ = α, Β® = β, AB = y, B1Bi = x, ∕L B4B4B = θ, ®B4=g, ∕,ΘB4B = φ.From the triangle A®B, the angles of which are 36°, 90°, 60° and the opposite sides β, γ, α, we find the values of α, β, y, and these are such that α + β + 7 = ⅜ττ.From the triangle B4BBl, where the sides B4B, BBl, and the included angle are 2/3, 2β, 120°, we have the opposite side x, and the other two angles each = θ.From the triangle Σ>4BΘ, where the sides B4B, B®, and the included angle are 2/3, β, 120°, we find the opposite side g, the angle BBi<∂, = φ, and the angle 
B4<∂B, =45°.Hence each of the angles B4ΘB, B2QB1, being =45°, the angle B4QB.i is =90°: in this triangle the hypothenuse B2B4 is = x, and each of the other two sides is 
= g: whence we have cosλ∙ = cos2(∕, as is in fact the case, and moreover the values give x + 2^ = 180°. Also each of the other angles is found to be =60°; that is, we have Z 52B4Θ = 60°, or the whole angle at B4 being = 120°, the sum of the remaining angles B3B4Bi and BB4<∂ is =60°: that is, 0 + ≠ = 6Oo.From the triangle Θj31Θ' where the two sides and the included angle are 
β, β, 120°, we find ΘΘ' = 360.
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192 ON THE SCHWARZIAN DERIVATIVE [745And from the triangle ΘB4Θ", where the two sides and the included angle are 
g, g and (120° — 2φ =) 20, we find ΘΘ" = 60o.99. We thus arrive at the following Table:sin cos

A® α 31° 43' ∕δ-√5V 10 /5 + √5V 10
B® β 20° 55' √5-l √5+ 12√3 2 √3
AB y 37° 22' ∕l0-2√5V 15 ∕5 + 2√5V 1570, 32' 2 /2 1

(BB) X 3 3(/*=>) 9 54 44 √2√3 1√3
BBB θ 37° 46' √32√2 √52√2
B®B Φ 22 14 √3(√S-1)4 √2 √5 + 34√22a 63 26 2 1√5 √520 41 50 23 √532v 74 44 2(√5 + l) 4-√5“Ï 3 √5 3√5

a-β ∕5-2√δV 15 ∕Γ0+^2√^5V 1518° √5-l4 /5 + x∕5V 8ΘΘ 36° ∕5-√BV 8 √5+l4where as above a + β + γ = 90 ∖
x+2g =180, 
θ+φ =60°.100. We now construct three figures of the points A, B, Θ ; viz. these are stereographic projections, each showing the Northern hemisphere projected on the plane of the equator by lines drawn to the South Pole: hence, for any pair of opposite points not on the equator, only the point in the Northern hemisphere is shown : but for a pair of opposite points on the equator the two points are each of them shown. In fig. 1 the North Pole is taken to be a point Θ ; in fig. 2 it is a point 

A ; and in fig. 3 it is a point B. The position of any point on the sphere is determined by its N.P.D. and its longitude, measured from an arbitrary origin, say from the point E of the centre left-handedly : then, in the three figures, the positions are as follows.
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745] AND THE POLYHEDRAL FUNCTIONS. 193101. F⅛. 1. Pole at Θ.

N.P.D.’s Longitudes.
2A a - 31° 43' 0°, 180°
2A 90° — α = 58 17 90, 2704A 90 ( 0, 180) + a = 31° 43'
2A 90° + a = 121 43 90 , 270
2A 180° - a= 148 17 0 , 180
2B β = 20° 55' 90°, 270°
4B g= 54 44 45 , 135, 225, 315
2B 90° - β = 69 5 0 , 180
4=B 90 (90 , 270) + yS = 20o 55'
2B 90° + β≈ 110 55 0 , 180
⅛B 180° — g = 125 16 45 , 135, 225, 315
2B 180° - β = 159 5 90 , 2701Θ 0° —4© 36 (90°, 270°)+a = 31043'4© 60 ( 0 , 180 )±β = 20 554© 72 (90 , 270 )+ a = 31 434© 90 0, 90, 180, 2704© 108 (90 , 270 ) + a=31 434© 120 ( 0 , 180 ) + ∕3 = 2O 554© 144 (90, 270 ) +a =31 431© 180 —

C. XI. 25
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194 ON THE SCHWARZIAN DERIVATIVE [745102. Fig. 2. Pole at A.
θ

θN.P.D.’s Longitudes.
A 0 —

5A 2α = 63° 26' 0° 72° 144° 216° 288°
5A 180° - 2a= 116 34 36 108 180 252 324

A 180 —
5A γ= 37 22 36 108 180 252 324
5A 90° - a + β= 79 12 36 108 180 252 324
5A 90 + a - β = 100 48 0 72 144 216 288
5A 180 - γ = 142 38 0 72 144 216 288
5Θ a= 31 43 0 72 144 216 2885Θ 90° - a = 58 17 36 108 180 252 32410Θ 90 (36 108 180 252 324)+ 18°5Θ 90 + a = 121 43 0 72 144 216 2885Θ 180 - a = 144 17 36 108 180 252 324
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745] AND THE POLYHEDRAL FUNCTIONS. 195103. Fig. 3. Pole at B.

3A γ= 37° 22' 30°150° 270°3A 90° - α + β= 79 12 90 210 3303A 90 + a - β = 100 48 30 150 270
3A 180 - γ = 142 38 90 210 330
B 0 __

3B 2/3 = 41 50 90 210 330
§B £c= 70 32 (30 150 270) + £ = 37° 46'
6B 180° - £c = 109 28 (90 210 330) + a = 37 46
3B 180 -2β = 138 10 30 150 270
B 180 —3© β = 20 55 90 210 3306Θ g = 54 44 (90 210 330) + φ = 22° 14'3© 90° - β = 69 5 30 150 2706Θ 90 0 60 120 180°240°300°3© 90 + β = 110 55 90 210 3306© 180 -g = 125 16 (30 150 270) + φ = 22° 14'3© 180 - β = 159 5 30 150 270

25—2

N.P.D.’s Longitudes.
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196 ON THE SCHWARZIAN DERIVATIVE [745

The groups of homographie transformations, resumed. Art. Nos. 104 to 117.
104. The axes of rotation for the dodecahedron and the icosahedron are 15 axes each through a pair of opposite points Θ, 6 axes each through a pair of opposite points A, and 10 axes each through a pair of opposite points B ; or say 15 Θ-axes, 10 .B-axes and 6 A-axes : the corresponding angles of rotation are 180°, 72° and 120°; so that (excluding in each case the original position or that of a rotation 0) we have in respect of each Θ-axis 1 position, in respect of each A-axis 4 positions, and in respect of each ,B-axis 2 positions ; in all, including the original position,1 + 15 +(6 × 4) + (10 × 2), = 60 positions, that is, a group of 60 rotations.To find, in any one of the three forms, the group of homographie transformations, we can in each case obtain from the foregoing tables the values cos f cos g, cos h of the cosine-inclination of an axis of rotation to the axes of coordinates, and thence calculate the values ofλ, μ, r = tan⅛⅛cos∕ tan ∣⅛ cos <7, tan ∣⅛ cos A,and thence the values of

A, B, C, D ≈ — v — i, ∖ + iμ, ∖-iμ, v — i;viz. in the case of a Θ-axis, & is = 180°, (so that here tan ⅜⅛ = ∞ , or the values of 
A, B, G, D are =-v, ∖+iμ, ∖-iμ, v, that is,—cos A, cos∕+⅛cos^, cos/— icosg, cos A); in the case of a jB-axis, the values are ⅛ = 120o, 240°, and therefore tan⅜¾∙= + √3j and in the case of an J.-axis, they are ⅛ = 72°, 144°, 216°, 288°, and thereforelcι 1 √10 + 2√⅛ , √10^2√52 √5-1 √o + l105. The Θ-form was first given in my paper of 1879, but in obtaining it I used results given in the paper of 1877. As regards the identification with the substitution-symbols, since there is nothing to distinguish inter se the letters a, b, c, d, e, any transformation A, B, C, D of the fifth order might have been taken for abcde, but No. 37 of the group having been taken for this substitution abode, I do not recall in what manner I found that, consistently herewith, the transformation No. 2 (—1, 0, 0, 1, that is, s into — s) of the second order could be taken for ab.cd. But there is no sub-group of an order divisible by 5 ; and hence, these two transformations being identified with the two substitutions, the other transformations correspond each of them to a determinate substitution.
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745] AND THE POLYHEDRAL FUNCTIONS. 197106. Homographie Transformations. The group of 60. Pole at Θ. 
(Ax +B) ÷ (Cx + D)

i 1 1 0

2 -1 0
3 0 1
4 0 1
5 2 -3 + √5+i( l-√5)
6 2 -3 + √5 + i(-l+√5)
7 2 3-√5 + i(-l + √5)
8 2 3-√5+i( l-√5)
9 2 -l-√5 + i( l-√5)

10 2 -l-√5 + i(-l + √5)
11 2 l+As∕δ + i(-ι + ⅛y5)
12 2 l+√5+i( l-√5)
13 2 -l-√5 + i(-3-√5)
14 2 -l-√5 + ι( 3 + √5)
15 2 l+√5 + i( 3 + √5)
16 2 l + √5 + ∕(-3-√5)

17 -i i
18 -1 i
19 1 - i
20 - i - i
21 i i
22 1 i
23 -1 -i
24 i -i
25 -l-fJ5+i( 3 + √5) 2
26 l + x∕5 + ι( 3 + v∕5) 2
27 l + ∖∕5 + i( - 3 — tJ5) 2
28 —1-∖∕5+i(-3 —^∕5) 2
29 — 3 + ∣^∕5 + ζ( 1 — ^/5) 2
30 — 3+∣^∕5 + i(-1+∣^∕5) 2
31 3-√5 + i(-l+√5) 2
32 3-√5 + i( l-√5) 2
33 2 -l-√5+i(-l+√5)
34 2 l + √5 + ∕( l-√5)
35 2 -l-√5+i( l-√5)
36 2 l + x∕5+ζ(- 1+fj 5)

37 -l-√5 + i(-3-√5) 2
38 -l-√5+i( l-√5) 2
39 -l-√5 + i(-l+√5) 2
40 -l-√5 + i( 3 + √5) 2
41 l+x∕5 + i( 3 + x∕5) 2
42 l+√5 + i (- 1 +√5) 2
43 l + √5 + i( l-√5) 2
44 l + √5 + i(-3-√5) 2
45 -l-√5 + i(-l+√5) 2

0 1 1

0 1 ab . cd
1 0 ac . bd

-1 0 ad . be
-3+√5+i(-l+√5) -2 be . de
-3 + √5 + i( l-√5) -2 ae . be

3-√5 + i( l-√5) -2 ad . ce
3-√5 + i(-l+√5) -2 ad . be

-l-√5+i(-l + √5) -2 ae . cd
-l-√5 + i( l-√5) -2 ab . de

l + √5 + i( l-√5) -2 be . cd
l+√5 + i(-1+√5) -2 ab . ce

-l-√5 + ∕( 3+√5) -2 ac . be
-l-√5+i(-3-√5) -2 bd. ce

l + √5 + i(-3-√5) -2 ae. bd
l + ∖∕5 + i( 3+x∕5) -2 ac. de

1 1 abc
1 i acb
1 i ade
1 -1 acd
1 -1 adb
1 - i abd
1 - i bed
1 1 bde

-2 -l-√5 + i(-3-√5) aec
-2 l + √δ + i(-3-√5) ace
-2 l + ∖∕5 + i( 3 + x∕5) bed
-2 -l-√5 + i( 3 + √5) bde

2 3-√5 + ζ( l-√5) bee
2 3-√5+i(-l + √5) bee
2 ~ 3 + x∕5 + i( -1 + x∕5) aed
2 -3 + √5 + ι( l-√5) ade
l+√5 + i(-l+√5) 2 ede

-l-√5 + i( l-√5) 2 ced
l+√5 + i( l-√5) 2 aeb

-1 — ¼∕5 + i( - 1 + λ∕5) 2 abe

2 l + √5+i(-3-√5) abede
2 l + √5+i( l-√5) acebd
2 l + √5 + i(-l+√5) adbec
2 l + x∕5 + i( 3 + x∕5) aedeb
2 -l-√5 + z( 3 + √5) adeeb
2 — 1 — √,5 + ∕(-1 + ∣^∕5) acbde
2 -l-√5 + i( l-√5) aedbc
2 -l-√5 + i(-3-√5) abecd

-2 -l-√5+i( l-√5) acbed
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198 ON THE SCHWARZIAN DERIVATIVE [745

46 ^^ 3 + √5 + i ( --l + √5) 2 -2 -3 + √5 + i( l-√5) abdee
47 3-√5+i(--l + √5) 2 -2 3-√5 + i( l-√5) aecdb
48 1 + s∕ 5 + i (--l + √5) 2 -2 l+√5 + i( l-√5) adebc
49 1 + >J 5 + i ( l-√5) 2 -2 l + √5+i(-l+√5) aecbd
50 3-√5 + i( l-√5) 2 -2 3-√5 + i(-l+√5) aedeb
51 ~ 3 4-^/5 + i ( l-√δ) 2 -2 -3 + √5 + i(-l+√5) abedc
52 — 1 — ^∕5 + i( l-√5) 2 -2 -l-√5 + i(-l+√5) adbee
53 2 — 3 + √5 + i( - 1÷∖∕5) 3-√5 + i(-l+√5) 2 aebdc
54 2 -l-√5 + i( 3 + √5) 1 + nJ5 + i ( 3 + x∕δ) 2 abced
55 2 l+√5 + i(-3-s∕5) -l-√5 + i(-3-√5) 2 adeeb
56 2 3-√5 + i( l-√5) — 3 + ∣^∕5 + i( 1 —y∕5) 2 aedbe
57 2 -3 + √5+i( l-√5) 3-√5+i( l-√5) 2 abdec
58 2 -l-√5 + i(-3-√5) 1+√5 + i ( - 3 - λ∕5) 2 adebe
59 2 l + x∕5 + τ( 3 + √5) -l-√5 + i( 3 + √5) 2 aebed

60 2 3-√5 + t(-l + √5) — 3+xZ5 + i ( -1 + x∕5) 2 acedb107. Taking out of the foregoing group of 60 a group of 12 contained in it, viz. that corresponding to the positive substitutions of the four letters abed, it is easy to see, that there is a transformation (i, 0, 0, 1), that is, 5 into is, which can be taken for the substitution adbc, and also to complete thence the group of 24. And we have thus the following Table.Groups of 12 and 24. Pole at Θ.
(Ar + -B) ÷ (Cx +D}

1 1 0 0 1 1
2 -1 0 0 1 ab . cd
3 0 1 1 0 ac. bd
4 0 1 -1 0 ad . be

5 - i i 1 1 abc
6 -1 i 1 i acb
7 - i 1 i adc
8 -i - i 1 -1 acd
9 i i 1 -1 adb

10 1 i 1 - i abd
11 -1 - i 1 -i bed
12 i -i 1 1 bde

13 i 0 0 1 adbc
14 - i 0 0 1 acbd
15 0 i 1 0 cd
16 0 i -1 0 ab

17 1 -1 1 1 aedb
18 - i -1 1 t bd
19 i 1 1 i abed
20 1 1 1 -1 be
21 -1 -1 1 -1 abdc
22 i -1 1 -i ac
23 - i 1 1 -i adeb
24 -1 1 1 1 ad
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745] AND THE POLYHEDRAL FUNCTIONS. 199108. The group of 60 was obtained in the J.-form by Gordan in his paper. The passage from the ©-form to the J.-form is made as follows: let X, Y, Z be the coordinates of a point when the axes are as in the ©-form, X1, Y1, Z1 the coordinates of the same point when the axes are as in the A-form : we may write
where X, Γ, Z = bX1-aZ1 : Γ1 : aZ1+b∕,,. /5 — √5 /5 + √5

a> b - V —io - ’ V io ;then, if the equations of an axis of rotation referred to the first set of coordinates are X : Y : Z = L : M : Ni those of the same axis referred to the second set of coordinates are bJΓ1 + aZ1 : Γ1 : -aX1 + bZ1 = Z : Μ : N;or taking these to be
X1 : Γ1 : Z1 = Z1 : M1 : N1,we may write Z1, M1, 2V1 = bZ + a^, M, — aZ + b7V^ : these values are such that Z12 + M12 + X12 = L2 + M2 + N2,and hence, λ, ∕z, v and λ1, μ1, v1 being the rotations, we may writeZ, J∕, 2V^=5⅛λ, Sγι, ⅛z∕j Z1, Jf1, 2V1=⅛λ1, ⅛∕ι1, θτ∕1jwhere ⅛ has the same value in each set of equations. From the equations *

Λ : B : G : D = — v — i : λ + iμ : λ — iμ : v — i,we have
B + G : B—G : Z — A : Z -I- A = λ : iμ : v : — i

= L : iM : N : -i⅛,and similarly
Bi + G1 : B1—G1 : D1—A1 : Z1-l-A1 = Z1 : iMi : N1 : —⅛⅛.Hence we may write Zj + G1 = b (Z + G) + a (Z — A), s Z1 - G1 = Z - G,

D1 — A1 = — a (Z + G) + b (Z — A),Z1 + A1 = Z + A jor say, A1 = a (Z + G) - b (Z - A) + (Z + A),Z1= b(Z + G) + a(Z-A) + (Z-G),
G1= b(Z + G) + a(Z-A)-(Z-G),Z1 = - a (Z + G) + b (Z - A) + (Z + A),which are the values for a transformation (A1, Z1, G1, D1) in the A-form: of course, as only the ratios are material, the values may be multiplied by any common factor.
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200 ON THE SCHWARZIAN DERIVATIVE [745109. The results are exhibited in terms of e, an imaginary fifth root of unity : taking e = cos 72° +i sin 72°, we have⅛!f√L⅝6.
,, ,,--1÷li√G3i

where the upper signs belong to e, e" and the lower to e4, e3. It may be remarked that 1 ∕5 + √5 1 /5 —√5 b _ √5 ÷ 1 a _ √5 — 1a=V ~Γ^^, b^V~T^^, l~~2~, b-~Γ-∙For instance, we have in the Θ-group (A, B, G, D} = (-1l, 0, 0, 1); ab.cd: and thence in the A -group A1, B1, C1, Z>1 = (-2b, 2a, 2a, 2b); ab.cd: or say this is(-1, ⅛, J, l), =(-l, e + e*, e + i∙, 1);
which in the Table is given as (— e3, e2 + e4, e2 + e4, e3) ; ab. cd.By effecting the passage to the J.-group in this manner, we of course obtain the proper substitution corresponding to each transformation : but I found it easier starting from two transformations and the corresponding substitutions, to obtain thence by successive compositions the entire group.110. Homographie Transformations. The group of 60. Pole at A. θ No. (As +B) ÷(Gs +D)111 11
240 — 1 1 0 ad. be
3 13 0 -e4 1 0 ac .be
4 9 0 - es 1 0 ae. cd
5 10 0 I -ea 1 0 ab.de

6 14 0 — e 1 θ bd.ee
7 6 e + e2 e4 1 ~(< + e3) ae. be
8 5 e + e3 1 e4 - (e + e3) be. de
9 16 e + e3 e e3 -(e+e8) ac.de

10 3 e + e3 e2 e2 - (e + e3) ac. bd
11 15 e + e3 e3 c -(e + e3) ae. bd
12 12-1 e + e3 e2 + e4 1 ab.ee
13 11—6 e3+l e2 + e4 e be. cd
14 7 - es 1 + e2 e2 + e4 e2 ad. ce
15 2 -e3 e2 + e4 e2 + e4 e3 ab. cd
16 8 -e4 e4+e e2 + e4 e4 ad. be
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745] AND THE POLYHEDRAL FUNCTIONS. 201

17 21 e3+l -o
e 1 - (e + e3) adb

18 35 e3+l e2 e4 — (e + e3) aeb
19 30 e3+l e3 e3 - (e + e3) bce
20 34 e3+l e4 e2 — (e + e3) ced
21 19 e3+l 1 e -(e + e3) adc
22 33 e + e4 e2 1 — (e + e3) cde
23 20 e + e4 e3 e4 - (e + e3) acd
24 22 e + e4 e4 e3 — (e + e3) abd
25 36 e + e4 1 e2 — (e + e3) abe
26 29 e + e4 e € - (e + e3) bec
27 31 — e e2 + e4 e2 + e4 1 aed
28 17 — e2 e4 + e e2 + e4 e abc
29 27 -e3 e+e3 e2 + e4 e2 bed
30 25 -e4 e3+l e2 + e4 e3 aec
31 23 -1 1 + e2 e2 + e4 e4 bed
32 24 -e4 1 + €2 e2 + e4 1 bdc
33 32 -1 e2 + e4 e2 + e4 e ade
34 18 — € e4+e e2 + e4 e2 aeb
35 28 -e2 e+e3 e2 + e4 e3 bde
36 26 -e3 e3+l e2 + e4 e ace

37 44 e 0 0 1 abecd
38 43 e2 0 0 1 aedbc
39 42 e3 0 0 1 acbde
40 41 e4 0 0 1 adceb
41 38 e2 + e4 1 1 -(e + e3) acebd
42 46 e2 + e4 e e4 - (e + e3) abdce
43 58 e2 + e4 e2 e3 -(e + e8) adcbe
44 55 e2 + e4 e3 c2 -(e + e3) adecb
45 50 e2 + e4 e4 e - (e + e3) acdeb
46 51 1 + e2 e3 1 - (e + e3) abedc
47 39 1 + e2 e4 e4 -(e+e3) adbec
48 47 1 + e2 1 e3 - (e + e3) aecdb
49 59 1 +e2 e e2 - (e + e3) aebcd
50 54 1 + e2 e2 € \ — (e + e3) abced
51 56 -e2 e3+l e2 + e4 1 acdbe
52 49 -e3 1 +€2 e2 + e4 c aecbd
53 37 -e4 e2 + e4 e2 + e4 e2 abcde
54 45 -1 e4 + e e2+e4 e3 acbed
55 57 — e e + e3 e2 + e4 e4 abdec
56 48 -e3 e4+e e2+e4 1 adebc
57 60 — e4 e+e3 e2 + e4 e acedb
58 53 -1 e3 + l e2 + e4 e2 aebdc
59 52 — e 1 + e2 e2 + e4 e3 adbce
60 40 — e2 e2 + e4 e2 + e4 e4 aedcb

C. XI, 26

www.rcin.org.pl



202 ON THE SCHWARZIAN DERIVATIVE [745111. Selecting the transformations which correspond to the positive sub⅛i∣ιtutions 
abed, and completing the group of 24 we have

Homographie Transformations. The groups of 12 and. 24. Pole at A.

(As +B) ÷(Cn + D)

1 1 0 0 1 1
2 0 -1 1 0 ad . be
3 e + e3 c2 e2 - (e + e3) ac . bd
4 -e3 e2 + e4 e2 + e4 e3 ab. cd
5 -ea e +e* e2 + e4 € abc
6 — € e +e4 e2+e4 C2 acb

7 € + e4 e3 e4 -(e÷e3) acd
8 e3 + l 1 € -(e + e3) adc

9 e + e4 e4 es -(e + e3) abd
10 es + l € 1 -(e+e8) adb
11 -1 l + e2 e2 + <4 e4 bed
12 — e4 l + e2 e2+e4 1 bde

13 1 l + 2e4 l + 2e -1 ab

14 — e2 + e8 1 + e + 3e4 - 1 - 3e - e4 e3-e3 cd

15 ia-e4 3 + e + e3 -1 - 3e - e3 -ea+e4 ac

16 -l+ea — 1 —e2 + 2e4 1 + e2 — 2e3 1 —e2 bd

17 2 + es + 2e4 _2 —2e2-e3 2e + e3 + 2e4 2e + 2e2 + e3 ad

18 2 + 2ea + e3 2 + e3 + 2e4 -2e —2∈2-c3 2e + t3 + 2e4 be

19 - 2 + e + e3 -e+e3 -e + e3 e + e3-2e4 abed
20 1 -1 1 1 abdc
21 1 1 -1 1 aedb
22 l + e + 3e4 e2-e3 e2-e8 l+8e + e4 acbd

23 l + 2e4 -1 -1 -l-2e adbc
24 3 + e + e3 - e2 + e4 -e2+e4 1 + 3e + e3 adeb

As an example of the calculation we have (A, B, G, D) = (0, i, —1, 0); ab. Hence A1, B1, G1, D1≈(a(i-1), b(i-l) + t+l, b (» - 1) — (τ + 1), -a(τ+l)),
-(■· l,' ⅛i. -■)·

The second and third coefficients are√5 +1 . ∕5 + √5 √5 + 1 . ∕δ + √5
2 ’V ~2 ’ 2 +t V 2^~ ’which, in virtue of the values of e and e4, are = 1 + 2e4 and 1 + 2e respectively : or the result is as above (1, 1 + 2e4, 1 + 2e, — 1).
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745] AND THE POLYHEDRAL FUNCTIONS. 203112. In like manner for the passage from the Θ-form to the B-form, if X, Y, Z be the coordinates of a point on the spherical surface in regard to the Θ-axes, Aγ2, F2, Z2 those of the same point in regard to the B-axes, we may write
X : Y : Z=X2 : bΓ2 + aZ2 : -aF + bZ2,where

-i ∙∖∕ o — 1 √5 + 1a, = 2^√r, ~2√y∙Hence X : Y : Z=L : Μ : X, being the equations of an axis of rotation in the first set of coordinates, those of the same axis in the second set of coordinates will be
X2 : bΓ2 + aZ2 : -aF2 + bZ2 = B : Μ : X,or calling these A 2 : F2 : Z2 = L2 : M2 : X2,we have

L2, M2, X2 = L : bJf-aW : adi + bA: these values are such that
L22 + M22 + N22 = L2 + M2 + √Y2, or λ, μ, ν, λ2, μ2, v2 being the rotations, we have

L, M, N = ⅛λ, 5⅛∕¼ S-z'; L2, M.,, Ar2 = ¾λ2, ⅜μ2, ⅜v2, where ⅛ has the same value in the two sets of equations. We have thus
B +C : B -G : D — A : D + A = L : 2M : N : -i⅛,

B2+G2 : B2-G2 : D2-A2 : D2+A2 = L2 : 2M2 : W2 : -and hence
B2+ C2= B + G,

B2-G2 = b(B-G)- ai(B - A),

D2-A2 = — a,i(B — G)+ b (G>-A),B2 + A2 = D + A ;and thence A2= a⅛(B-(7)-b (B-A) + (B + A),
B2= b (B-C)-ai(B-A)÷(B + C'),C2 = -b (B-C*) + ai(B-A) + (B + C),B2 = -a⅛'(B-C) + b (B-A~} + (B + A).113. As an example of the transformation, take

(A, B, G, D)- (2, -3 + √δ + ⅛(l-√5), - 3 + √δ + i (- 1 + √5), -2) ∖bc.de]-.then
B-C, B + C, D — A, B + A=⅛(l-√5), -3 + √δ, -2, 0;

26 — 2
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204 ON THE SCHWARZIAN DERIVATIVE [745and thence
6-2'z5>+⅛< 2+2√5)∙

B‘= 2√"3(_ 4i) + 2⅛ (2*' (1 + √5) + (- 3 + √5)),
c" = ⅛< 4i> +2ts(2i(l-√5) + (-3 + √5)),

'i*s32⅛i-6 + 2'z5* + 2⅛i-2-2'z'5^
viz. multiplying by 2 √3, these are8, ⅛'(-6 + 2√5) + 2√3(-3+√5), i (6 - 2 √5) + 2 √3 (- 3 + √5), -8,that is, 8, (-6+2√5)(ι + √3), (-6 + 2√5)(→ + √3), -8,or since 2 + √3 = — 2iω and — 2 + √3 = 2ιω2,dividing by 4 these are 2, ⅛(3-√δ)ω, ⅛(-3÷√5)ω2, —2,as in the table.114. Homographie Transformations. The group of 60. Pole at B.

w = 2 (- 1 -∣^ t, *∕3).
(Λs + B) ÷(Gs +D)

1 1 0 0 1 1

2 0 1 1 0 ac . bd
3 0 ω 1 0 ae . bd
4 0 ω2 1 0 bd . ce
5 2 i( 3-√5) i ( — 8 + √o) -2 ab .cd
6 2 i ( - 3 - √5) i( 3 + √5) -2 ad . be
7 2 i( 3-√5)ω »( -3+√δ)ω2 -2 be . de
8 2 i ( - 3 — x∕5) ω i( 3 + √δ)ω2 -2 be . cd
9 2 i ( 3-λ∕5)ω2 »( -3 + √5)ω -2 ad. be

10 2 t(-3-√5)ω2 i( 3 + √5)ω -2 ab . de
11 2 ( - √3 - i x∕5) ω (-√3 + i √δ) ω2 -2 ab .ce
12 2 - ∖∕ 3 — i 5 -√3+t√δ -2 ac. be
13 2 (- ∣J3-i x∕5) ω2 (-√3 + i x∕5) ω -2 ae . be
14 2 √3-t√δ √3 + i -2 ac . de
15 2 ( √3-i√δ)ω ( √3 + ι√δ)ω2 -2 ad. ce
16 2 ( √3-i√5)ω2 ( ∖∕3 + i ∖∕5) ω -2 ae . cd
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AND THE POLYHEDRAL FUNCTIONS. 205

17 ω 0 θ 1 ace18 ω2 0 0 1 aec19 χ/3 — ? ^∕5 2 -2 √3 + i ο bed20 -√3-i√5 2 -2 -√3+f√5 bde21 -√3-ι√5 2ω2 — 2ω — ∖∕3 4- i ∖J⅛ bdc22 √3-i√5 2ω2 -2ω \Z3 + î ∖∕5 bed23 -√3-i√5 2ω — 2ω2 -√3 + i √5 abd24 ∖∕3 — i rJ5 2ω - 2ω2 ∖∕3 4" t ∖∕5 adb25 2ω2 -√3-ζ√5 — \/3 4- i fJ5 — 2ω abc26 2ω -√3-i√5 -√3 + z'√5 — 2ω2 acb27 2ω2 - √3 - £ √5 (-√3 + f √5) ω2 -2 abe28 2 -√3-i√5 (-\/3 + £ v∕5) ω2 -2ω2 aeb29 2ω is∕3 — £ x∕5 √3 + f√5 — 2ω2 acd30 2ω2 √3-i√5 nJ i√5 — 2ω adc31 2ω2 √3-i√5 ( √3 + i∙√5)ω2 -2 ade32 2 √3-i√5 ( √3 + f√5)ω2 - 2ω2 aed33 2 -√3-i√5 ( — κj⅛∙sr i 5) ω — 2ω bee34 2ω -√3-i√5 ( - ∖Z3 ÷ i √5) w -2 bee35 2ω ,√3-i√5 ( √3 + z'χ∕5)ω -2 ede36 2 √3-i√5 ( √3 + f√5)ω — 2ω ced37 2 £( 3-s∕5)ω2 £( —3 + √5) -2ω2 adeeb38 -√3-i√5 + 2ω2 -2 (“V3 + £ v∕5) ω2 acbde39 ∖∕3-i^/5 2 — 2ω ( √3 4- i γ/5) ω aedbc40 2 £( 3-√5) £ ( - 3 + √5) ω — 2ω abecd41 2 £( 3-√5)ω i(-3+√5) — 2ω aedeb42 ~ ∖∕3 — 2ω -2 ( — ∖∕3 + z^∕5) ω adbec43 √3-i√5 2 — 2ω2 ( √3 + i√5)ω2 acebd44 2 i( 3-√5) £ ( - 3 + √5) ω2 — 2ω2 abede45 2 £ ( 3 - √5) ω2 ^-3+√5)ω2 — 2ω adebc46 ^/3 —£^/5 2ω2 — 2ω2 ( \Ζ3 + £^/5)ω aecdb47 - √3 - i √5 2ω — 2ω (-√3+^δ)ω2 abdee48 2 i ( 3 - x∕5) ω £ ( ~ 3 + ∖∕5) ω — 2ω2 acbed49 2 z(-3-√5)ω £ ( 3 + ,v∕5) ω -2ω2 aedeb50 √3-i√5 2ω — 2ω ( λ∕3 + iv∕5)ω2 adbee51 -√3-z√5 2ω2 — 2ω2 ( - √,3 + £ √,5) ω aecbd52 2 i (-3-√5) ω2 £( 3 + x∕5)ω2 — 2ω abede53 2 i ( - 3- √5) ω £( 3 + √5) — 2ω aebed54 -√3-*√5 2ω -2 ( - ∖∕3 + £ √5) ω abdee55 ∣∖∕3-irJ5 2 — 2ω2 ( √3 + ι'√5)ω2 acedb56 2 i(-3-√5) £( 3 + √5)ω2 - 2ω2 adebe57 2 ι(-3-√5) ϊ ( 3 4*∖∕5) ω — 2ω adeeb58 —\/3 — 2 — 2ω (-~∖∕3 + i^∕5) ω aebdc59 √3 — irJ5 2ω2 -2 ( λ/3 + £ν/5)ω2 aedbe60 2 £ ( -3-√5) ω2 £( 3 + √5) — 2ω3 abced

745]
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206 ON THE SCHWARZIAN DERIVATIVE [745115. We hence deriveHomographie Transformations. The groups of 12 and 24. Pole at B.

(Λκ + R) ÷(Cs + D)

1 1 0 0 1 1
2 2 i( 8-√δ) t(-3+√δ) -2 ab . cd
3 0 1 1 0 ac . bd
4 2 ι(-3-√δ) i( 3 + √5) -2 ad . be
5 2ω2 -√3-ι√δ -√3 + i√δ - 2ω abc
6 2ω - √3 - i √δ ∖∕ 3 +1 5 -2ω2 acb
7 -√3-i√δ 2ω -2ω2 -√3 + i√δ abd
8 √3-i√δ 2ω - 2ω2 √3 + i√δ adb
9 2ω √3-i√δ √3 + i fJ5 -2ω2 acd

10 2ω2 √3 - i x∕5 √3 + i√δ — 2ω adc
11 √3-i√δ 2ω3 — 2ω √3 + i √δ bed
12 -√3-i√δ 2ω2 — 2ω - v∕3 + ιλ∕5 bde

13 2 √3( l + √5)+ (-3-√δ) √,3 ( 1 + ∖∕5) + i ( 3 + √5) -2 ab
14 2 √3(-l-√5)+ (-3-√δ) √3(-l-√δ) + i( 3 + √5) -2 cd
15 √5 - i i -√5 ac
16 1 <√5 -i*Jf> -1 bd
17 2 √3(-l+√δ)+i( 3-√δ) √3(-l + √δ) + ι( -3 + √5) -2 ad
18 2 √3( l-√δ) + i( 3-√5) √3( l-√δ)+t( -3 + √5) -2 be
19 1 i i 1 abed
20 1 - i - i 1 adeb
21 √3( l-√δ)+i( 3+√5) 2 -2 √3( l-√δ)+i(-3 + √δ) abdc
22 √3( l + √5) + i(- 3 + √5) 2 -2 √3( l + √5)÷i( 3+√5) acbd
23 √3(-l + √5)+i( 3-√5) 2 -2 ∖∕3 ( — 1 +^∕δ) + £ ( —3 + x∕5) aedb
24 √3(-l-√δ)+i(- 3-√5) 2 -2 √8(-l-√δ) + i( 3+√δ) adbc

116. I give also the group of 12, (abce), slightly modifying the form: viz. I write first √3 + ⅛√5=2√2fc, and therefore √3 — i √5 = 2 √2. : then for x I write λ√r,and divide the A and B by λ: the A and B then contain ç, and the C and D A,contain , and assuming = i, we have = — i. For instance, in the transformation corresponding to abc, the Ax + B and Cx + D,

= 2ω'1x — (√3 + i √5) and (—√3 + 2 √5)zc — 2ω,become first 2ω⅛-2√2Ar, and — 2√2^λj-2ω, and then (omitting also the factor 2)ω⅛-√2~ and — √2^zc- ω, viz. when = ‰ they are ω⅛-⅛'√2 and aj.t'√2-ω; that is, the values of A, B, C, D are ω2, -i∖∣2, i^J2, — ω. The group is
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745] AND THE POLYHEDRAL FUNCTIONS. 207Group of 12. Pole at B.

1 0 0 1 1
ω 0 0 1 ace
ω2 0 0 1 aec
1 - iω λ∕2 iω v∕2 - ω2 abc
1 -iωa√2 iω2√2 — ω acb
1 -i-ω√2 i√2 — ω abe
1 -t√2 ∕ωa √2 — ω2 aeb
1 - iωa √2 i√2 — ω2 bee
1 -i√2 iω x∕2 - ω bee
1 -iω s∕2 iω2√2 -1 ab. ce
1 -fωa√2 iω x∕2 -1 ae . be
1 -i√2 i√2 -1 ac . be117. From the Table of the Groups of 12 and 24, Θ-form, it appears that the group of 12 is 1 _ 1 ¾(zc- 1) — ¾'(zr-1) ⅞(ff+ 1) -⅛(λ7+1)

x, x, x' x' x + 1 ’ x +1 ’ χ — 1 ’ x — 1 ’

x + i x — i -(x + i) — (x — i)
x-i,x + i, x — i ’ χ + i ’and if we proceed to form the product of the twelve factors s — x, s — -, s + zc, &c.

xwe have first the three productss= - ≈≈. s-∙ - i ; i + . o∙ + (J±i)' ; s≈ - (⅛)a. s∙- (^-∙)s
= s4 + αs2 + 1 ; s4 ÷ βs2 + 1 ; s4 + ys2 + 1 ;if for shortness o ∕ 2 l 1 ∖ o tf4 + 6^2 + 1 o <r4 - 6<r2 + 1α, Aγ≈-^+^, 2 7y--7y. , -21-w-.The product of the three quartic functions is

= (s4 + 1)3 + (s4 +1)2 s2 (α + β + γ) + (s4 + 1) s4 (βy + ya + aβ) + sβ. a2β272and we have „ 32tf2(α4 + l) a, - O12 - 33,s∙8 - 33s4 + 1)'3 + ^≈ (√-ιy--∙ *-ri3+γ= - ⅛-ι>=-------■— 4 (æ8 — 34α∙4 +1) z _ . — 32.τ2 (⅛4 + 1)2
(^-ïÿ—∙ a<β+^—⅞(⅛-1y -λ n -36λ∙2O4-1)2 fjβ o 4 (a;12 — 33s8 — 33s4 + 1)β7 + ya + aβ, = = —36, aβy —-------- --------------------- 2.

Hence the product is found to be
= (i∙≈ - 33s» - 33s1 + 1) - s’ (s* - 1)≈.--------------------- ,
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208 ON THE SCHWARZIAN DERIVATIVE [745which is 2∕4 lλ2 fs12-33s8-33s4 + l a∙12-33rc8-33tf4 + υ - *■ («· -1>, 1----- ? (ir-1 γ------------------ v------------------} ∙

We thus verify that the twelve transformations x into x, into -, &c., give each ofthem a transformation of the functionα12-33α8-33zr4+ 1ar,O4- l)iinto itself.
The system of 15 circles. Art. Nos. 118 to 127.118. It has been already remarked that we can from the coefficients (A, B, C, D) of the homographie transformation pass back to the position of the axis of rotation : viz. we have
A : B : C : D = — v — i : ∖ + iμ, : λ — iμ, : v — i,and thence λ : μ∣ : v : 1 = B + C! : —i(B—G) : D — A : ⅛'(D + √1),that is, λ, μ, v = -i(B + G), — (B — G), —i(D — A); ÷(D + A).The equations of the axis thus are

x _ iy _ z 
B+G~~B^C^1)^A,and the equations of the central plane at right angles to the axis are — (.B + (7) a: + î (T? — C) y + (A — Z)) 2 = 0.119. In particular, we may find the equations of the 15 planes at right angles to the Θ-axes : these are in fact the before-mentioned 15 planes, intersecting the sphere in great circles the projections of which are the circles in the three figures respectively. Taking the equation of the plane to be Lx + My + Nz = 0, it is at once seen that the equation of the projecting cone (vertex at the South pole) is

N (x2 + y2 + z2 — 1) — 2 (z + 1) (Lx + My + Nz) = 0, and hence, writing z =0, we find
N (a? + y2 — 1) — 2 (Lx + My) = 0for the equation of the circle in the plane figure. We have thus the equations of a system of 15 circles related to each other in the manner before referred to.120. Taking the Θ-form, the equations of the 15 planes are at once found: and we thence obtain the equations of the 15 circles : viz. writing for shortness

Ω=x2 + y2-l,
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745] AND THE POLYHEDRAL FUNCTIONS. 209the equations are
z = 0, (ab .cd) Ω = 0,
x = 0, (αc. bd) x — 0,

y = 0, (ad .be) y = 0,(3 —√5)a> + ( 1 —√5)y + 2^ = 0, (ae.be) il — [( 3 —√5)aj + ( 1 — √5)y] = 0,(—1 —√5)ar + (-l+√5)y + 2s = 0, (ab.ee) Ω - [(—1 — √5)λj + (-1+ √5)y] =0,(1 + √5)λj+( 3 + √5)y + 2^ = 0, (ac.be) Ω-[( l+√5)ic + ( 3 + √5)y] = 0j(— 3 + √5)zr + (— 1 + √5)y + 2^ = 0, (ad.be) and similarly for the other circles.(l + √5)ic + ( 1 — √5)y + 2z = 0, (ab.de)(—1 —√5)zr + (-3 —√5)y + 2^ = 0, (ae.bd)(—3 + √5)ir + ( 1 — √5)y + 2s = 0, (ad.ee)(1 + √5) x + (— 1 + √5) y + %z = 0, (ae. cd)(—1 —√5)zr + ( 3 + √5)y + 2^ = 0, (ac.de)(3 —√5)zr + (-1+ √5)y+ 2s = 0, (bc.de)(— 1 — √5) x + ( 1 — √5) y + sLz = 0, (be. cd)(1 + √5)zr + (- 3 — √5)y + 2,z = 0, (bd.ee).121. Observe that the arrangement is in sets of 3 planes, or circles, intersecting at right angles. One of the circles is the circle Ω, = a? + y--1, =0 corresponding to the equator, and two of them are the right lines x = 0 and y = 0. The equations of the remaining 12 circles may be written in the somewhat different formΩ + (√5 — 1) [y — ⅜ (√5 - 1) x] = 0,∩ _ (√5 - 1) [2∕ _ ⅜ (√5 + 3) 0 = 0,Ω — (√5 + 3) [y + ⅜ (√5 — 1) x] = 0,Ω - (√5 - 1) [y - ⅜ (√5 - 1) λ∙] = 0,Ω + (√5 - 1) [y - ⅜ (√5 + 3) 0 = 0,Ω + (∖∕b + 3) [y + √ (^Jb — 1) x] = 0,Ω + (√,5 — l) [y + ⅜ (V^ - i) 0 — θ,Ω — (√o — l) [y + ⅜ (√5 + 3) 0 = θ,Ω - (√5 + 3) [y - ⅜ (√5 - 1) 0 = 0,∩ _ (√5 - 1) [y + ⅜ (√5 -1)0 = 0,Ω + (√5 - 1) [y + ⅛ (√5 + 3) 0 = 0,Ω + (√5 + 3) [y - ⅛ (√5 - 1) 0 = 0.It hence appears that 4 and 4 circles have with Ω = 0 the common chords y + ⅛(√5 -l)x = 0, 
y _ ⅜ (√5 _ l)zc = O respectively: and that 2 and 2 circles have with Ω = 0 the common chords y + ⅜ (√5 + 3) x = 0, y - ⅜ (√5 + 3) x = 0 respectively.

C. XI. 27
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210 ON THE SCHWARZIAN DERIVATIVE [745122. The equations of the 12 circles are, in fact,Ω ± (√δ — 1) [y ± ⅜ (√δ — 1) x] = 0, Ω + (√5 + 3) [y + ∣ (√5 — 1) λj] = 0,Ω + (y,5 — 1) ∖y ± ⅜ (Vo τ 3) ćc] = 0 :hence the radii are ==√5-l, 2 and √5 + l respectively.The construction of the 12 circles is as follows. Starting with a circle radius 1.Lay down the diameters τ∕+⅜(√δ-l)zr = O (A A in the figure), and through the extremities of each describe 2 pairs of circles with the radii √δ-1, √δ + l respectively.Lay down the diameters y + ⅜ (√5 + 3) x = 0 (BB in the figure), and through the extremities of each describe a pair of circles with the radius 2.123. For the ∠4-form, the equations of the fifteen planes are at once found to be
y =0, ad. be

— x + (e + e4) z = 0, ac . bd(e + e4) æ + z = 0, ab . cd(e2 — e3) x — i (e2 + e3) y ≈ 0, ac . be— (e2 + e3) x + i (e2 - e3) ?/ + 2 (e + e4) 2 = 0, ae .bc— & + ⅛ (e2 + e4 — e — e3) y + 2z = 0, ab .ce(e — e4) x — i (e -t- e4) y =0, ab . de— (e + e4) x + i (e — e4) y + 2 (e + e4) z = 0, ae .bd+ (ea + es + 2) ic — i (e2 — e3)y + 2z = 0, ad. be(e — e4) x + î (e + e4) y =0, ae . cd— (e + e4) x — î (e — e4) y + 2 (e + e4) z = 0, ac .de(e2 + e8 + 2) x + i (e2 — e3) y ÷ 2z = 0, ad . ce(e2 — e3) x + i (e2 + e3) y = 0, bd .ce— (e2 + e3) x — i (e2 — e3) y + 2 (e + e4) z = 0, be .de
— x — i (e2 + e4 — e — e3) y + 2z = 0, be . cd,where, as before, the three planes of each set intersect at right angles.124. Passing to the circles, the first plane of each set gives a right line, and we have thus five of the circles reducing themselves to right lines inclined to theaxis of x at angles 0°, 36°, 72°, 108° and 144° respectively.The remaining 10 circles form 5 pairs, the circles of a pair having differentradii, but the two radii being the same for each pair, and so that for the severalpairs the common chords with the circle Ω = 0, are the diameters inclined to the axis of x at the angles 18°, 54°, 90°, 126° and 162° respectively. Considering the two circles for which the inclination is 90°, these arise from the planes — x + (e + e4) z = 0, 

(e + e4)x + z = 0 respectively. The equations of the circles thus are (e + e4) Ω + 2x = 0,
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745] AND THE POLYHEDRAL FUNCTIONS. 2112Ω — 2 (e + e4) x = 0, or recollecting that 2 (e + e4) = √5 — 1 and therefore —-4 = √5 + 1, the equations are «2 + y2 — (√5 — 1) « — 1 = 0, x? + yi + (√5 + 1) x = 0 ;hence for the first circle the «-coordinate of the centre is ⅜(√5-1) and the radius is = ⅜√(10-2√5)j for the second circle the «-coordinate of the centre is =⅜(√5 + l), and the radius = ⅝√(10 + 2√5). We have thus the construction of these two circles, and consequently the construction of all the 12 circles.125. For the B-form, after some easy reductions and attending to the relation 
ω- ω2 = ⅛√3, the equations of the 15 planes become

X = 0, ac . bd(■- 3 + √5) y + 2s = 0, ab. cd(3 + √5)2∕ + 2s = 0, ad. bc∖∕3x ~t^^ √5 2∕ + 2s = 0, ac . be— (f ^t^ ∖∕3x + ( 3-√5)2∕ + 4s = 0, ab. ce(— 1 + ∖∕5) ∖,3x + (∙- 3 — √5) y + 4s — 0, ae . bc

x + √3 y = 0, ae . bd
— ∖J3x + y + (3 + √5) s = 0, ad. be∖J3x — y + (3 - √5) s = 0, ab. de

— ∖J3x + √5 2∕ + 2s = 0, ac . de(1 - √5) ∖J3x + (■-3-√5)2∕ + 4s = 0, ad. ce(1 + ∖∕5) *J3x ^f^ (3-√5)2Z + 4s = 0, ae . cd

x — √3 y = 0, bd . ce

*J3x + y + (3 + √δ) s = 0, bc . de— √3a> — y + (3 - √5) s -- 0, be . cd.126. Of the 15 circles, 3 are the lines # —2∕√3 = O, a?=0, x + y √3 = 0, viz. these are lines at inclinations 30°, 90°, 150° to the axis of x. The equations of the remaining 12 circles are Ω + (3 — √5) y = 0,Ω — (3 + √5) y = 0,(3 + √5) Ω — 2(y-x √3) = 0,(3 — √5) Ω + 2(y-x √3) = 0,(3 + √5) Ω - 2(y + x √3) = 0,(3 — √5) Ω ÷ 2 (y + x γ,3)= θ,
27—2

www.rcin.org.pl



212 ON THE SCHWARZIAN DERIVATIVE [745viz. these are pairs of circles having, for their common chords with Ω = 0, the diameters at inclinations 0°, 60°, 120° respectively. And, lastly, we have the circles2Ω - [(-1 + √5) >JZx - (3 + √5) y} = 0,Ω — [ — √3xc + √5 y] = 0,2Ω + [( 1 + √5) √3tc — (3 — √5) y] = 0,
2Ω + [(-l + √5)√3α + (3 + √5)y] = 0,Ω —[ √3zr+ √5y] = 0,2Ω-[( 1+√5)√3zc + (3-√5)y] = 0.127. The first three of these have, for common chords with Ω = 0, the diameters whose equations are(— 1 + <√5) *J⅜x — (3 + √5)y = 0, — y‰+√5y = 0, (1 + √5) √3zc-(3 — √5)y = 0 :∕oviz. these equations are y = (— 2 + √5) x √3, y = x, y = (2 + √5)jr√3. If, as in a∖∕ D

∕Q ∕Z ∕Qforegoing table, 0 = 37j 46', sin 0 = o .-, cos d and therefore tan0 = τ ; then the
2 y 2 2 y 2 y 5inclinations of these diameters to the axis of x are respectively 60° — θ, θ and120° - θ, or say 3Oo-(0-3Oo), 3Oo + (0-3Oo) and 9Oo-(0-3Oo), where 0 - 30° = 7° 46', i.e. the inclinations are 30° + 7° 46' and 90° — 7° 46'. And for the other three circlesthe common chords are the diameters at the same inclinations taken negatively. Thegeometrical construction of the fifteen circles for the J5-case in question is thus notso simple as in the Θ- and A-cases.

The Regular Polylιedra as Solid figures. Art. Nos. 128 to 134.128. I annex some results relating to the polyhedra considered as solid figures bounded by plane faces ; or say results relating to the regular solids : s is in each case taken for the length of the edge of the solid.Tetrahedron. Cube. Octahedron. Dodecahedron. Icosahedron.Edge s s s s IsEad. of circum. sphere, JR s ». ∣√3 « i s *Z1WΔ±2) sRad. of inters, sphere, p s 2~ s J_ s . ⅛ I β s 1±^JiBad. of inscribed sphere, r ,2_^ ,.4 .-Λfl ' *~rfiRad. of circle circnm. to fh∞,E' s.± ,-L , ⅛ *λ∕5+lΓ * √3Rad. of circle inscribed to face, r, a.Aj ,.4 , « √°+⅛^ .fjgInch of adjacent faces cos-1 ⅜ = 70° 28' 90θ cos^1 - ⅛= 109° 32'1 1Inch of edge to adjacent face cos~1 -7- = 54° 46' 90° cos~1 - ,5 = 125° 44'√3 J I s∕3
But we require further data in the cases of the dodecahedron and the icosahedron respectively.
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745] AND THE POLYHEDRAL FUNCTIONS. 213129. For the dodecahedron, taking the edge to be = s as before, then in the pentagonal face diagonal, g is = s. ⅛ (√5 + 1), altitude, k „ = s. ⅜ √(5 + 2 √5),segments of do., e „ = s. ∣ √(10 — 2 √5),
f „ =s.⅛√(10+2√5),where

k = e+ f=R' + r'.130. rΓhe section through a pair of opposite edges is a hexagon, as shown in the figure, viz. this is constructed by taking the four equal distances OΘ, = p, = s.⅛(3 + √5), meeting at right angles in 0; then drawing the double ordinates BB, each = s, through Θ1 and Θ3 respectively, and joining their extremities with Θ2 and @4: the sides Θ2B and Θ4B are then each — k, = s. ⅛ √(5 + 2 √5)j and inserting upon them the points A, Φ from the figure of the pentagon, we have several

geometrical relations; viz. the line A A cuts the parallel sides jBΘ2, jBΘ4 at right angles, and when produced passes through the intersection of BΘ1 and 23Θ4: we have 
OA, OB, 0& = r, R, p respectively: the four points Φ form a square, the side of which is g, = s.⅜(√5 + l).
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214 ON THE SCHWARZIAN DERIVATIVE [745131. We find also ^-√8-V-∙
^-.√*ψ-8,
<3M=s∕+⅛l√i,=r.2v2,
r.r, ∕25+ll√5OQ = *λ∕---- 8~~, =r∙√5>ωi=s√⅛∙
>B = s,v∕^(L+2√δ)

It may be remarked that in the figure -5Θ2, 71Θ4 are the projections of pentagonal faces, at right angles to the plane of the paper, having their centres at the points 
A, A, and the perpendicular distance between them = AA∙. the points Q, Q (only one of them shown in the figure) determine the directions of the 5 + 5 sides which abut on these pentagonal faces respectively ; and the 5 + 5 points B which are the other extremities of these sides respectively form two pentagons, centres Μ, M in the planes MB and MB respectively: the remaining 10 sides of the dodecahedron are the skew decagon obtained by joining in order these 10 points B. We have thus the means of making the perspective delineation of the dodecahedron.132. The dodecahedron is built up from the cube, by placing on each face a figure of two triangular and two quadrangular faces, the orthogonal projection of which on the face of the cube is as in the figure : the side of the square is g,

= s.⅛(√5 + l)! the slope-breadths of the triangular faces are e, = s. {√(10 — 2 √5), and those of the quadrangular faces are f, = s. ⅛ √(10 + 2 √5) ; the lines represented by the other lines of the figure are in actual length each = s. We have thus a
www.rcin.org.pl



745] AND THE POLYHEDRAL FUNCTIONS. 215section which is an isosceles triangle, base =g, othei’ sides each = f∖ and the square of the altitude is thus =∕2 — ⅛<∕2 = ⅛s2, or the altitude = viz. the altitude of the ridge-line BB, above the face of the cube is = ⅛s, the half-side of the dodecahedron.

We have in this result the most simple means of forming the perspective delineation of the dodecahedron.133. For the icosahedron the section through two opposite edges is a hexagon, as shown in the figure (p. 216) : to construct it, we take the four distances OΘ each = p = s.∣(l + √δ) meeting at right angles; and then the distances A®.,, √1Θ4 each = |s; and complete the hexagon. This gives the sides ∠4Θ1, √1Θ√ each = s.⅜√3, the altitude of the triangular face, side — s; and then, taking Θ1B one-third of this,= s∩-7qj we have OB at right angles to √1Θ1, and 0A, OB, OΘ = B, r, p respectively.2 γ oMoreover, joining √41Θ2 and (λd2, we have these lines cutting at right angles in a point M : we find J-1Θ3 = s. ∣√(5 + 2√δ),
^-√,-⅛A-1'j'-∙√s⅛-'
1,j,-√5⅛-∙ - i-t.-lf.
^-√⅛∙.

134. It may be remarked that A1Θ3, M3Θ1 are the projections of two pentagons in planes perpendicular to that of the paper, their centres being Μ, M: producing 
OM, 0M to the points √12, A4 respectively, we have a pentagonal pyramid, summit M2, standing on the first pentagon, and an opposite pyramid, summit A4, standing on
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216 THE SCHWARZIAN DERIVATIVE AND THE POLYHEDRAL FUNCTIONS. [745the other pentagon : the 5 + 5 triangular faces of the two pyramids are ten of the faces of the icosahedron, and the remaining ten faces are the triangles each having for its base a side of the one pentagon, and for its vertex a summit of the other

pentagon, viz. the sides are the sides of the skew decagon obtained by joining in order the angular points of the two pentagons. We have thus a convenient method of forming the perspective delineation of the icosahedron.

www.rcin.org.pl


	ON THE SCHWARZIAN DERIVATIVE, AND THE POLYHEDRAL FUNCTIONS
	PART I
	PART II. THE POLYHEDRAL FUNCTIONS



